
HAL Id: hal-01954421
https://inria.hal.science/hal-01954421

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Assessing Attack Impact on Business Processes by
Interconnecting Attack Graphs and Entity Dependency

Graphs
Chen Cao, Lun-Pin Yuan, Anoop Singhal, Peng Liu, Xiaoyan Sun, Sencun Zhu

To cite this version:
Chen Cao, Lun-Pin Yuan, Anoop Singhal, Peng Liu, Xiaoyan Sun, et al.. Assessing Attack Impact
on Business Processes by Interconnecting Attack Graphs and Entity Dependency Graphs. 32th IFIP
Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2018, Bergamo, Italy.
pp.330-348, �10.1007/978-3-319-95729-6_21�. �hal-01954421�

https://inria.hal.science/hal-01954421
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Assessing Attack Impact on Business Processes
by Interconnecting Attack Graphs and Entity

Dependency Graphs

Chen Cao1, Lun-Pin Yuan1, Anoop Singhal2, Peng Liu1,
Xiaoyan Sun3, and Sencun Zhu1

1 The Pennsylvania State University
2 National Institute of Standards and Technology

3 California State University, Sacramento
caochen11@mails.ucas.ac.cn,lunpin@psu.edu,anoop.singhal@nist.gov,

pliu@ist.psu.edu,xiaoyan.sun@csus.edu,szhu@cse.psu.edu

Abstract. Cyber-defense and cyber-resilience techniques sometimes fail
in defeating cyber-attacks. One of the primary causes is the ineffective-
ness of business process impact assessment in the enterprise network.
In this paper, we propose a new business process impact assessment
method, which measures the impact of an attack towards a business-
process-support enterprise network and produces a numerical score for
this impact. The key idea is that all attacks are performed by exploit-
ing vulnerabilities in the enterprise network. So the impact scores for
business processes are the function result of the severity of the vulnera-
bilities and the relations between vulnerabilities and business processes.
This paper conducts a case study systematically and the result shows
the effectiveness of our method.

1 Introduction

Although enterprises and organizations have been paying ever more attention
to cyber defense, today’s cyber-attacks towards enterprise networks often un-
dermine the security of business processes. The reason is directly related to
several main limitations of existing cyber-defense practice, because the security
of business processes heavily relies on the deployed cyber-defense measures and
procedures.

Although a fundamental limitation of existing cyber-defenses is that zero-day
attacks cannot be prevented, this limitation is clearly not the only reason why
cyber-attacks can undermine security. In many, if not most, real-world cyber-
security incidents, the security of business processes is actually undermined by
known attacks.

Regarding why known attacks could sigificantly undermine the security of
business processes, the following main reasons have been recognized in the re-
search community. First, enterprises and organizations do not have the resources
needed to patch all the known vulnerabilities. As a result, although the security

2

administrators are working hard to patch as many vulnerabilities as possible and
as soon as possible, many vulnerabilities are actually in the “not yet patched”
status when cyber-attacks happen. Another contributing factor to the result is
that the time a vulnerability becomes known is not the time the corresponding
patch becomes available.

Second, when cyber-attacks are happening, even if the intrusion detection
system accurately detects the intrusions, the intrusion alerts and alert corre-
lation results are still not able to directly tell “what should I do?” in terms
of intrusion response. (In real-world enterprises new intrusion alerts keep on
being raised, and the security administrators are already fully loaded.) It has
been widely recognized in the research community [8, 18, 20] that there is a
wide semantic gap between the information contained in intrusion alerts and
how the cost-effectiveness of intrusion response is evaluated. On one hand, the
cost-effectiveness of intrusion response is usually evaluated based on business
process-level metrics (e.g., the number of customers affected by a cyber-attack,
the number of tasks that need to be undone) and measurements. On the other
hand, business process-level metrics are not really measured by intrusion detec-
tion systems.

Therefore, to achieve cost-effective intrusion response, this semantic gap must
be bridged. To bridge the semantic gap, impact assessment is necessary. Al-
though researchers have found the necessity of using entity dependency graphs
[8] to assess the impact of attacks on business processes for quite a few years,
the existing impact assessment techniques still face a key challenge. The chal-
lenge is two-fold: (1) impact assessment results cannot be automatically used
to make recommendations on taking active cyber-defense actions; and (2) ex-
isting active cyber-defense techniques cannot be business-process-aware. That
is, these techniques will not be able to directly state their effectiveness using
business process-level measurements such as how much of what tasks will be
accomplished by when.

In [19] it has been perceived that attack graphs and entity dependency graphs
could be interconnected to address the above key challenge; however, no realistic
case study has been conducted to validate the perceived method. As a result, the
intrusion response research community still lacks essential understanding about
(a) how to efficiently implement the perceived method; (b) whether it really
works; and (c) how well it works.

The goal of this work is to efficiently design and implement the perceived
method and conduct a realistic case study to assess the impact of attacks on
business processes using not only system-level metrics (e.g., how many files are
corrupted, which processes are compromised) but also business process-level met-
rics. We believe that this case study is a solid step forward towards bridging the
aforementioned semantic gap.

The main contributions of this work are as follows.

– We propose the first efficient implementation of the method perceived in
[19]. We extend the perceived method to make use of CVSS scores. We
invent an algorithm to prune the raw interconnected graph. Through logic

3

programming, the implemented tool can automatically generate an intercon-
nected graph, which interconnects an attack graph and an entity dependency
graph, and calculate the impact scores of an attack on tasks in a business
process.

– The first realistic case study is systematically conducted to show how the
perceived method and our implementation can assess the impact of attacks
on business processes using not only system-level metrics but also business
process-level metrics.

– Through the case study, we also evaluate our implementation in several as-
pects such as scalability and running time.

2 Background

2.1 CVSS score

The Common Vulnerability Scoring System (CVSS) provides a way to mea-
sure the impacts of vulnerabilities and produce a numerical score for the attack
impact [9]. The current version of this score system is version three, which is
released in 2015. The system contains three metric groups: base score metrics,
temporal score metrics, and environmental score metrics. A base score ranging
from 0 to 10 is assigned to a vulnerability according to the base score metrics. The
temporal score metrics and environmental score metrics can be used to refine the
base score to better reflect the risks caused by a vulnerability to the user’s envi-
ronment. However, the temporal score metrics and environmental score metrics
are optional. Therefore, in this paper we only use base score for impact analysis
and still refer it as CVSS score. The National Vulnerability Database (NVD)
provides a CVSS base score for almost all known vulnerabilities. A higher CVSS
base score of a vulnerability implies that: 1) the vulnerability is easier to be
exploited due to more vulnerable components and available technical means for
exploitation; or 2) more impact on the availability, confidentiality, and integrity
upon successful exploitation. Therefore, the base score can be leveraged to assess
the impact of vulnerability exploitation on business processes in terms of both
exploitability and impact.

2.2 Attack Graph

To analyze the impact of attacks on business processes, it’s necessary to first
understand how the vulnerabilities in an enterprise network can be used to com-
promise the host machines. Attack graph [1, 7, 10, 12, 17] is a very effective way
to generate potential attack paths. Given the vulnerabilities, the attack graph
is able to show the possible attack sequences to the final attack target.

MulVAL (Multihost, multistage Vulnerability Analysis) is an attack graph
generation tool that models the interaction between software vulnerabilities and
the system and network configurations [11]. It leverages Datalog [14] to model
network system information (such as the vulnerabilities, configurations of each

4

machine, etc.) as facts and the interaction of various network components as
rules. With these facts and rules, MulVAL can generate an attack graph showing
the potential attack paths from the vulnerabilities to the attack goal. In the
attack graph, facts and rules are represented by nodes with different shapes.
There are two types of fact nodes: primitive fact nodes and derived fact nodes.
The primitive facts nodes are denoted with boxes, which represents host and
network configuration information. The derived fact nodes are denoted with
diamonds, which are generated according to certain rules. The interaction rules
are denoted with ellipses.

Fig. 1 shows a very simple attack graph containing only 5 nodes. In Fig. 1,
if the conditions in node 1, 2 and 3 are satisfied, then the rule in node 4 can
be applied. The eventual consequence is that the attacker is able to execute
arbitrary code on the host machine (shown in node 5).

5:execCode(Host, root)

4:RULE(remote exploit of a server program)

3:vulExists(Host, ‘CVE-X-X’, Software, remoteExploit, privEscalation)

2:networkServiceInfo(Host, Software, Protocol, Port, Perm)

1:netAccess(Host, Protocol, Port)

Fig. 1. An Example Attack Graph

The attack graph is essential for business process impact assessment, as it
shows how the vulnerabilities can be leveraged to compromise the host ma-
chines. If the host machines are involved in the business processes, the impact
of vulnerabilities on business processes can then be further analyzed.

2.3 Entity Dependency Graph

In an enterprise network, a business process is supported by a number of entities
at several abstraction layers: asset layer, service layer and business process task
layer. At the asset layer, an asset is (part of) a persistent disk and the file stored
on the disk, a computer (hypervisors, desktops or servers), or a peripheral device.
At the service layer, services represent the functionalities provided by hosts,
such as web services, database services, etc. At the business process task layer,
a business process is composed of one or more tasks.

An entity dependency graph [2] can be established due to the dependencies
between the abstraction layers and the dependencies on each individual layer.
Generally, the higher layer depends on the function of the lower layer. The
business process task layer depends on the functionality provided by the services
at service layer. One task may even depend on several services. The services
further depends on the assets at the services layer. In addition, dependencies
also exist at an individual layer. For example, at the business process task layer,
a task may depend on another task.

3 Approach Overview

The primary goal of our paper is to assess the attack impact on business pro-
cesses. Since attacks essentially exploit vulnerabilities in the enterprise network,

5

the attack impact heavily relies on the intrinsic characteristics of each indi-
vidual vulnerability. Considering that the characteristics of vulnerabilities have
been measured using the CVSS scores, the impact towards a business process
can also be measured based on the scoring system. That is, an impact score can
be generated for a business process to indicate the impact of attacks towards
the business process. Therefore, the key problem need to be addressed is how
to generate the impact score for a business process given the CVSS scores of
involving vulnerabilities.

In this paper, we propose an three-step approach for business process impact
assessment. The general idea is to generate an interconnected graph by analyz-
ing the dependency relationships between vulnerabilities and attacks on hosts,
between services and hosts, and between tasks and services. The approach takes
three sets of knowledge units as the inputs and generates the business impact
score as the output.

The three sets of knowledge units are respectively 1) Common Vulnerability
and Exposure (CVE) system that provides information of publicly known vul-
nerabilities and their CVSS scores, 2) the vulnerability information generated
by the vulnerability scanner, and 3) the business process dependency graph. The
business impact assessment approach mainly involves the following steps:

Step 1: Instantiate the knowledge units with Datalog as facts and rules in
MulVAL. Utilize MulVAL to generate an interconnected graph which consists of
impact paths from the vulnerabilities.

Step 2: Prune the interconnected graph to get a more clear relationship be-
tween business processes and vulnerabilities.

Step 3: Calculate the impact score based on the CVSS scores of the vulner-
abilities exploited in this attack.

3.1 Instantiate Knowledge Units

CVE system refers to the vulnerability database which contains all information
about publicly known vulnerabilities. From this system, we can get the CVSS
score of each vulnerability. The vulnerability information generated by vulnera-
bility scanner contains the exact CVE IDs of each vulnerability and where these
vulnerabilities are located in the enterprise network. By combining these two
sources of knowledge, we can easily get the whole picture of these vulnerabil-
ities, including CVSS score, CVE ID, and location in the enterprise network,
etc. Such vulnerability information can be used to analyze the potential attacks
that might happen, which may further impact the business processes. As the in-
formation represents facts about vulnerabilities in the network, we crafted fact
nodes in MulVAL to instantiate the information.

Business process dependency graph describes how entities in the network
depend on each other. Sun et al. [19] summarizes and bridges the semantic
gap between the attack graph generated by MulVAL and the business process
dependency graph. Hence, in this paper, we extend MulVAL to craft new fact
nodes and new rule nodes to interconnect the attack graph and the business
process dependency graph.

6

Listing 1.1. Example Interaction Rules Describing Three Dependency Relationships

interaction_rule(/* And depends */

(nodeImpact(Task):-

node(Task , and , Task1 , Task2), nodeImpact(Task1)

),

rule_desc(’An impacted child task affects an And task’)

).

interaction_rule(/* Or depends */

(nodeImpact(Task):-

node(Task , or, Task1 , Task2),

nodeImpact(Task1), nodeImpact(Task2)

),

rule_desc(’Both impacted child task affects an Or task’)

).

interaction_rule(/* Flow depends */

(nodeImpact(Task):-

node(Task , flow , Task1 , Task2), nodeImpact(Task2)

),

rule_desc(’A flow node is impacted from its flow’)

).

First of all, entities in a business process dependency graph become primitive fact
nodes or derived fact nodes. Primitive fact nodes usually represent already known
information, such as host configuration, network configuration, etc. Derived fact nodes
are computed information by applying interaction rules towards primitive fact nodes.

Secondly, rule nodes are added to model the causality relationships among fact
nodes. For example, if a service S runs on a machine H and an attacker has exploited
a vulnerability to execute arbitrary code on the machine, then this service S can be
impacted by the attacker. This relation can be interpreted as a rule “A compromised
machine impacts a service running on it”. In other words, when two fact nodes “S
runs on machine H” and “attacker executes arbitrary code on the machine” are both
present, this rule node will take effect and the derived fact node “S is impacted” will
become present. In this example, machine H has a vulnerability. The attack graph
generated by MulVAL can only tell “attacker executes arbitrary code on the machine,”
but it is not able to tell “S is impacted”. Therefore, interconnecting the attack graph
and the business process dependency graph can help infer the impact of attacks on
business process.

Thirdly, the dependency relationships among entities in the business processes be-
come rule nodes. There are three dependency relationships in the business process
dependency graph: Or-depends, And-depends and Flow-depends. Listing 1.1 shows a
set of example interaction rules crafted to depict the impact propagation among tasks
when different types of dependency relationships exist among these tasks. That is, if
a task and-depends on task 1 and task 2, then this task is impacted by the attacker
when either of the two tasks are impacted. if a task or-depends on task 1 and task 2,
then this task is impacted only when both tasks are impacted. if a task flow-depends
on task 1 and task 2, then this task will be impacted when task 2 is impacted. In this
case, task 2 can be completed only after task 1 is completed. So if task 1 is impacted,

7

then task 2 is impacted. We will explain more about the dependency relationships in
section 5.1.

1:nodeImpact(Task)4:RULE(An impacted child task affects an And Task)

3:node(Task, and, Task1, Task 2)

2:nodeImpact(Task1)

Fig. 2. And-dependency in the graph

With all the fact nodes and rule nodes set up, MulVAL can be used to generate
the interconnected graph. For example, Fig. 2 shows the first and-depends example in
Listing 1.1. In the interconnected graph, different nodes are represented by different
shapes, i.e., box, ellipse and diamond. The ellipse shape represents rule node, which
is applied only if all needed precondition fact nodes are present. Hence, the ellipse
shape represents AND-relation for all precondition fact nodes. The diamond shape
represents derived fact node, which is generated as long as one deriving rule node is
present. Therefore, the diamond shape represents OR-relation between the deriving
rule nodes. In other words, the interconnected graph reflects the relationship between
vulnerabilities and the business processes. However, the interconnected graph is too
complicated for generating the impact assessment score for a business process. To
enable computation of the impact score, we prune the graph to reduce the complexity.

3.2 Prune Raw Interconnected Graph

Impact score is a function result of CVSS scores of the vulnerabilities involved in the
interconnected graph. When we prune the graph, we must preserve the vulnerability
node and the impacted business process node. We apply all the five rules below to
prune the graph. The entire process of pruning may take several rounds by applying
different rules in each round. In addition, based on different circumstances, we also
deal with the edges connecting to the reduced nodes correspondingly.

Prune all the non-vulnerability leaf nodes. In this interconnected graph generated
by MulVAL, derivation nodes (rule nodes) imply AND relations and derived fact nodes
imply OR relations. The primitive fact node in this graph represents the facts in this
network, such as the vulnerabilities and deployment configuration. They are repre-
sented as leaf nodes in the graph with a shape of box. These non-vulnerability leaf
nodes do not participate in the function of CVSS scores. So if a node is not a vulnera-
bility node and is not an AND or OR node, we can prune it. Then each edge derived
from these nodes can also be pruned.

Prune the nodes that have only one ancestor node. If a node has only one ancestor
node, no matter how many child nodes it has, it does nothing but directly deliver impact
from its ancestor node to its child nodes. This node is an intermediate impact deliverer
for its ancestor node and can be directly pruned without information loss. This kind of
nodes is usually the derivation nodes which have only one ancestral vulnerability node,
or derived fact nodes which have only one rule to be generated. By pruning one node,
the edges from the ancestor node to this node and from this node to the child nodes
are removed. A new edge is added directly between the ancestor node and the child
node. This operation of pruning one-ancestor nodes may be done several times in the
graph-pruning process, as more of them may be produced in other rounds of pruning.

8

Prune the nodes, except the vulnerability nodes, which have no ancestors. Because
all left nodes are relation nodes, vulnerability nodes, and the impacted business process
nodes. If a node has no ancestor node and is not a vulnerability node, it is a relation
node and does not contain any valuable information. This kind of nodes are produced by
pruning their ancestor nodes that are usually non-vulnerability nodes. As their ancestor
nodes have been pruned, no impact information is delivered to them. Therefore, they
can be pruned without impact information loss. The edges from these nodes can also
be pruned.

Find the shortest path from one vulnerability node to the target impacted business
process node and merge these paths. The impact assessment for an attack is to find
the relationship between vulnerabilities and the target impacted business processes. If
a vulnerability can be exploited in an easy way to affect a business process, there is no
need to make it more complex. The assumption in our paper is that attackers always
choose the easiest way to achieve the attack goal. Based on this assumption, if there are
different paths between a vulnerability node and the impacted business process node in
the interconnected graph, the shortest path that has least nodes should be chosen. As a
result, each vulnerability node has a shortest path to the target business process node.
All other nodes and edges that are not on these paths should be pruned. In some cases,
one vulnerability node may have more than one shortest paths to the target business
process node. In this case, these paths should also be preserved. To simplify these
circumstances, if there are two or more equal shortest paths between one vulnerability
node and the impacted business process node, we convert this interconnected graph
to two or more interconnected graphs to ensure there is only one shortest path for a
vulnerability in one interconnected graph. Finally we calculate each graph’s impact
score to get the average score.

Leave only one edge for linked nodes and prune the other edges between them. In
some cases, there are more than one edges between two nodes. The extra edges could
be produced by the previous rounds of pruning. They are not needed and thus should
be removed too.

These five ways are applied sequentially to the raw interconnected graph generated
by MulVAL until the graph does not change again. Two or more graphs could possible
be generated as one vulnerability may have two or more equal shortest paths to a
target business process node.

3.3 Calculate Impact Score

Step 2 can prune the raw interconnected graph to the simplified graph which contains
only the vulnerability nodes, the target business process node and their relations. The
impact score of the vulnerability node and the target business process node can be
represented by V and M respectively. The impact score calculations based on AND-
relations and OR-relations are called AND-calculation and OR-calculation. We take
the following steps to generate the impact score.

First, we value V by a number between 0 and 1, i.e.,

Vi =
CV SSi

10
. (1)

Second, we define AND-calculation as:

Vi AND Vj = Vi × Vj . (2)

9

and OR-calculation as:

Vi OR Vj = Vi + Vj − Vi × Vj . (3)

Finally, M can be easily calculated by above mentioned calculation methods. For
example,

M = FUNC(V1, V2, V3) = (V1 OR V2) AND V3 = (V1+V2−V1×V2) × V3 (4)

In this paper, we use the above definitions of AND-calculation and OR-calculation
to compute the impact score. However, the administrators of an enterprise network
can change the definitions of AND-calculation and OR-calculation based upon different
situations and scenarios.

The results of AND-calculation and OR-calculation are directly influenced by the
CVSS score of the vulnerabilities. Higher CVSS score usually leads to higher impact
score towards the business process, which implies more impact the attack can bring to
the business process.

4 Case Description

To demonstrate the method for attack impact assessment, we describe a concrete case in
this section. We will illustrate the application of our method to this case in section 5.1.

Business Process Scenario. This case is a travel reservation system supporting a
business process of “providing customers with a web interface for reserving tickets and
hotel”. This business process consists of seven tasks: T1: Search travel information; T2:
Reserve tickets and hotel options; T3: Prompt for signing in or signing up; T4: If signed
in, load preference and promotion code; T5: If signed in, reserve a hotel and tickets as
a member; T6: If not signed in, reserve a hotel and tickets as a guest; T7: Prompt for
payment and confirm the reservation.

From T1 (start of the business process) to T7 (end of the business process), the
business process may be executed through four different workflows (i.e. execution paths)
as shown in Fig. 3a : P1: T1T2T3T4T5T7; P2: T1T3T2T4T5T7; P3: T1T2T3T6T7; and P4:
T1T3T2T6T7. The difference between P1 and P2 and between P3 and P4 is the order of
T2 and T3. The customer can either first make reservations (T2) and then be prompted
to sign in (T3), or first sign in and then make reservations. If the customer chooses not
to sign in during T3, she is recognized as a guest. The difference between P1 and P3

and between P2 and P4 is whether the customer has signed in. If signed in, the system
loads customer preference and promotion code (T4) for reserving a hotel (T5). Since T5

depends on the information obtained from T4, T5 should come after T4.

T1

T2

T3

T4 T5

T6

T7

(a) Execution paths

T1

T3

T4 T5

T2 T6

T7

Business process

FLOW

AND OR

(b) Dependency tree

Fig. 3. Inter-task dependency

10

VM 1
VM 2

VM 3

Web Service 1 Web Service 2

Docker 1 Docker 2

Container 3 Container 4

Docker 3

Container 1

Container 2
DatabaseTicket Service

Hotel Service Payment Service

OpenStack

Desktop

Root
access

Root access

①

②

Hyperviosr 1

Hyperviosr 2

Fig. 4. Software Architecture

This travel reservation system can be viewed as a complicated business-process-
support enterprise network shown in Fig. 4. The services provided by the network are
hosted on different hosts. VM 1, VM 2 and VM 3 are three virtual machines. Web
service 1 is hosted in VM 1 which runs in Hypervisor 1. Web service 2 is hosted in VM
2 which runs in Hypervisor 2. VM 3 also runs in Hypervisor 2.

Database service runs in Container 1 which is hosted by Docker 3. Ticket ser-
vice, which processes ticket-related business, runs in Container 2 which is also hosted
by Docker 3. Hotel service, which processes hotel-related business, runs in Container
3 which is hosted by Docker 1. Payment service, which is responsible for monetary
transaction, runs in Container 4 hosted by Docker 2. These dockers run in different
workstations. A developer’s desktop can access the VM 3 and has a root account cre-
dential. It can also access Container 1 as a root user. This desktop has a dashboard
which displays through HTTP protocol, i.e. it runs a web service. It can also be accessed
through SSH protocol from Internet.

Table 1. Vulnerability Information

Vulnerability CVSS Score Exploited Result

CVE-2016-0777 6.5 Privilege Escalation

CVE-2016-7479 9.8 Privilege Escalation

CVE-2016-6325 7.8 Privilege Escalation

CVE-2014-3499 7.2 Container Escape

CVE-2016-6258 8.8 Virtual Machine Escape

Attack Scenario. We assume this network has five vulnerabilities and their related
information is displayed in table 1. CVE-2016-0777, CVE-2016-7479 and CVE-2016-
6325 locate in the developer’s desktop and allow attackers to escalate privilege. CVE-
2014-3499 locates in the docker software and can enable an attacker to escape from the
container. CVE-2016-6258 locates in the Kernel-based Virtual Machine(KVM) software
and can also be used to break the virtual machine.

There are two attack paths in Fig. 4. One attack path is denoted as red line 1 in
Fig. 4. The attacker firstly exploits the vulnerability in the web application or the SSH
application to compromise the developer desktop, which has the log-in credential for
VM 3. By leveraging the vulnerability in the KVM software, the attacker can directly
access the host, i.e. Hypervisor 2, by breaking the isolation between the virtual machine
and the host. The attacker can then access VM2 which hosts Web service 2 and execute
arbitrary code on this virtual machine. Once Web service 2 is compromised, all tasks
depend on this service are impacted. The other attack path is denoted as red line 2

11

in the Fig. 4. As the developer’s desktop has the log-in credential for Container 1, the
attacker can also access this container. With the database running in this container,
the attacker can execute arbitrary code in the database process and then affect all
tasks depending on the database.

5 Case Study and Evaluation

5.1 Case Study Results

In this section, we applied the impact assessment method to the case described above
and demonstrate the experiment results.

First, we obtained the CVSS scores for the five vulnerabilities in this case according
to their CVE IDs.

Business
process
Layer

Service
Layer

Asset
Layer

Web1 Web2

DB Ticket
Service

Hotel
Service

Payment
Service

VM1 VM2 VM3

Hypervisor1 Hypervisor2
Desktop

Container1 Container2Container3 Container4

Docker3
Docker1

Docker2

...
...

Fig. 5. The Entity Dependency Graph

Second, we constructed a entity dependency graph for this network, as shown in
Fig. 5 (as web services are depended on by each task, some edges from the tasks to
Web1 and Web2 are ignored in this figure). The entity dependency graph contains three
layers: asset layer, service layer and business process task layer. Among these tasks, T1

and-depends on the web services, database service, ticket service and hotel service. T2

and-depends on web services, ticket service and hotel service. T3 and-depends on web
services, and database service. T4 and-depends on web services, and database service.
T5 and-depends on web services, database service, and hotel service. T6 and-depends on
web services, and hotel service. T7 and-depends on web services, and payment service.

At the business process layer, we specified the dependency relationships among
tasks. To better understand the relationships, we firstly define three special tasks: Tor,
Tand and Tflow. As the name implies, these tasks represent three relationships: Or-
dependency, And-dependency, and Flow-dependency. That is, if a task Tor or-depends
on sub-tasks Ti and Tj , then Tor is impacted only when Ti and Tj both are impacted.
If a task Tand and-depends on sub-tasks Ti and Tj , then Tand is impacted when Ti or
Tj is impacted. If a task Tflow flow-depends on sub-tasks Ti and then Tj , then Tflow

is impacted when Tj is impacted. In addition, the impact on Ti will cause an impact
on Tj , which leads to an impact on Tflow. The relationships of the seven tasks of this
business process can be depicted in Fig. 3b. In other words, this business process viewed
as one Tflow flow-depends on T1, Tand, Tor and then T7. Tand and-depends on T2 and
T3. Tor or-depends on T6 and Tflow, which flow-depends on T4 and then T5.

12

1:nodeImpact(business_process)

2:RULE 133 (A flow node is impacted somewhere in its flow)

-1

3:nodeImpact(t7)

-1

4:RULE 132 (A former node impacts a latter node in a flow)

-1

5:nodeImpact(t_or)

-1

6:RULE 110 (No child of an Or node is effective)

-1

7:nodeImpact(t6)

-1

8:RULE 98 (A child of an And node is impacted)

-1

9:nodeImpact(web2,vm2)

-1

70:RULE 101 (A child of an And node is impacted)

-1

92:RULE 98 (A child of an And node is impacted)

-1

101:RULE 105 (A child of an And node is impacted)

-1

120:RULE 101 (A child of an And node is impacted)

-1

126:RULE 98 (A child of an And node is impacted)

-1

129:RULE 98 (A child of an And node is impacted)

-1

10:RULE 38 (A compromised host impacts a service)

-1

11:execCode(vm2,root)

-1

12:RULE 29 (A compromised host impacts its guests)

-1

13:execCode(hypervisor2,kvm)

-1

14:RULE 31 (VM Escalation)

-1

15:vulExists(hypervisor2,’CVE-2016-6258’,kvmd,localExploit,vmEscalation)

-1

63:RULE 32 (VM Escalation)

-1

16:iaasHostInfo(iaas,hypervisor2,kvmd,kvm)

-1-1

17:iaasGuestInfo(iaas,vm3,hypervisor2,kvmd,kvm)

-1-1

18:execCode(vm3,root)

-1-1

19:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

-1

20:canAccessHost(vm3)

-1

21:RULE 9 (Access a host through a log-in service)

-1

22:netAccess(vm3,sshProtocol,sshPort)

-1

23:RULE 5 (multi-hop access)

-1

24:hacl(desktop,vm3,sshProtocol,sshPort)

-1

56:RULE 5 (multi-hop access)

-1

57:RULE 5 (multi-hop access)

-1

58:RULE 5 (multi-hop access)

-1

25:execCode(desktop,account_desktop)

-1

80:RULE 5 (multi-hop access)

-1

26:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

-1

27:canAccessHost(desktop)

-1

28:RULE 8 (Access a host through executing code on the machine)

-1

29:execCode(desktop,root)

-1

55:RULE 11 (password sniffing)

-1

-1

82:RULE 5 (multi-hop access)

-1

30:RULE 1 (local exploit)

-1

31:vulExists(desktop,’CVE-2016-6325’,httpd,localExploit,privEscalation)

-1

40:RULE 1 (local exploit)

-1

32:execCode(desktop,ssh)

-1

48:RULE 8 (Access a host through executing code on the machine)

-1

-1

83:RULE 5 (multi-hop access)

-1

33:RULE 2 (remote exploit of a server program)

-1

34:netAccess(desktop,sshProtocol,sshPort)

-1

50:RULE 9 (Access a host through a log-in service)

-1

35:RULE 6 (direct network access)

-1

36:hacl(internet,desktop,sshProtocol,sshPort)

-1

37:attackerLocated(internet)

-1

44:RULE 6 (direct network access)

-1

38:networkServiceInfo(desktop,sshd,sshProtocol,sshPort,ssh)

-1

52:RULE 13 (Access a host through executing code on the machine)

-1

39:vulExists(desktop,’CVE-2016-0777’,sshd,remoteExploit,privEscalation)

-1

-1

41:execCode(desktop,www)

-1

49:RULE 8 (Access a host through executing code on the machine)

-1

-1

84:RULE 5 (multi-hop access)

-1

42:RULE 2 (remote exploit of a server program)

-1

43:netAccess(desktop,httpProtocol,httpPort)

-1

-1

45:hacl(internet,desktop,httpProtocol,httpPort)

-1

46:networkServiceInfo(desktop,httpd,httpProtocol,httpPort,www)

-1

47:vulExists(desktop,’CVE-2016-7479’,httpd,remoteExploit,privEscalation)

-1

-1

-1-1

51:logInService(desktop,sshProtocol,sshPort)

-1

-1

53:hasAccount(account_desktop,desktop,account_desktop)

-1

-1

54:principalCompromised(account_desktop)

-1

-1

76:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

-1

-1

-1-1 -1

59:logInService(vm3,sshProtocol,sshPort)

-1

60:RULE 13 (Access a host through executing code on the machine)

-1

61:networkServiceInfo(vm3,sshd,sshProtocol,sshPort,ssh)

-1

62:hasAccount(account_desktop,vm3,root)

-1

-1

64:iaasGuestInfo(iaas,vm2,hypervisor2,kvmd,kvm)

-1

65:networkServiceInfo(vm2,web2,httpProtocol,httpPort,www)

-1

66:node(t6,and,web1,vm1,web2,vm2,hoteld,container3)

-1

67:nodeImpact(t_flow)

-1

68:RULE 126 (A flow node is impacted somewhere in its flow)

-1

69:nodeImpact(t5)

-1

-1

71:node(t5,and,web1,vm1,web2,vm2,database,container1,hoteld,container3)

-1

72:RULE 102 (A child of an And node is impacted)

-1

-1

73:nodeImpact(database,container1)

-1

94:RULE 99 (A child of an And node is impacted)

-1

103:RULE 106 (A child of an And node is impacted)

-1

128:RULE 99 (A child of an And node is impacted)

-1

74:RULE 38 (A compromised host impacts a service)

-1

75:execCode(container1,root)

-1

110:RULE 26 (Container Escalation)

-1

114:RULE 27 (Container Escalation)

-1

-1

77:canAccessHost(container1)

-1

78:RULE 9 (Access a host through a log-in service)

-1

79:netAccess(container1,sshProtocol,sshPort)

-1

-1

81:hacl(desktop,container1,sshProtocol,sshPort)

-1-1 -1 -1

-1 -1 -1

85:logInService(container1,sshProtocol,sshPort)

-1

86:RULE 13 (Access a host through executing code on the machine)

-1

87:networkServiceInfo(container1,sshd,sshProtocol,sshPort,ssh)

-1

88:hasAccount(account_desktop,container1,root)

-1

89:networkServiceInfo(container1,database,dbProtocol,dbPort,db)

-1

90:RULE 125 (A former node impacts a latter node in a flow)

-1

91:nodeImpact(t4)

-1

-1

93:node(t4,and,web1,vm1,web2,vm2,database,container1)

-1 -1

-1

95:node(t_flow,flow,t4,t5)

-1

-1

96:node(t_or,or,t_flow,t6)

-1

97:RULE 131 (A former node impacts a latter node in a flow)

-1

98:nodeImpact(t_and)

-1

99:RULE 130 (A former node impacts a latter node in a flow)

-1

100:nodeImpact(t1)

-1

-1

102:node(t1,and,web1,vm1,web2,vm2,database,container1,ticketd,container2,hoteld,container3)

-1 -1

104:RULE 107 (A child of an And node is impacted)

-1

-1 -1

105:nodeImpact(ticketd,container2)

-1

122:RULE 102 (A child of an And node is impacted)

-1

106:RULE 38 (A compromised host impacts a service)

-1

107:execCode(container2,root)

-1

108:RULE 25 (A compromised deployment impacts its containers)

-1

109:execCode(workstation3,docker)

-1

-1

111:vulExists(workstation3,’CVE-2014-3499’,dockerd,localExploit,vmEscalation)

-1-1

112:deploymentInfo(docker3,workstation3,dockerd,docker)

-1-1

113:containerInfo(docker3,container1,workstation3,dockerd,docker)

-1-1

-1

115:containerInfo(docker3,container2,workstation3,dockerd,docker)

-1

116:networkServiceInfo(container2,ticketd,tickedProtocol,ticketPort,ticket)

-1

117:node(business_process,flow,t1,t_and,t_or,t7)

-1

-1

-1

-1

118:RULE 40 (A child of an And node is impacted)

-1

119:nodeImpact(t2)

-1

-1

121:node(t2,and,web1,vm1,web2,vm2,ticketd,container2,hoteld,container3)

-1 -1

-1

123:node(t_and,and,t2,t3)

-1

124:RULE 41 (A child of an And node is impacted)

-1

-1

125:nodeImpact(t3)

-1

-1

127:node(t3,and,web1,vm1,web2,vm2,database,container1)

-1 -1

-1

-1

130:node(t7,and,web1,vm1,web2,vm2,payd,container4)

-1

Fig. 6. Interconnected Graph

After instantiating the knowledge units, we can get the interconnected graph as
shown in Fig. 6. In this graph, the ellipse represents AND-calculation and the diamond
represents OR-calculation. By applying the five pruning rules described in section 3.2
against the raw graph, we generated the pruned graph, as shown in Fig. 7, to show the
relationship between vulnerabilities and the target business process. The expression
“nodeImpact(X)”means “X” is impacted, e.g. “nodeImpact(business process)” means
the target business process is impacted. The CVSS scores of these vulnerabilities are
shown in table 1. Therefore, the final impact score of this attack can be calculated as:

M = (((VCV E−2016−0777 OR VCV E−2016−7479) AND VCV E−2016−6325)

AND VCV E−2016−6258) OR VCV E−2016−3499

= 0.91.

1:nodeImpact(business_process)

3:nodeImpact(t7)

15:vulExists(hypervisor2,’CVE-2016-6258’,kvmd,localExploit,vmEscalation)

63:RULE 32 (VM Escalation)

19:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

22:netAccess(vm3,sshProtocol,sshPort) 31:vulExists(desktop,’CVE-2016-6325’,httpd,localExploit,privEscalation)

39:vulExists(desktop,’CVE-2016-0777’,sshd,remoteExploit,privEscalation) 47:vulExists(desktop,’CVE-2016-7479’,httpd,remoteExploit,privEscalation)

111:vulExists(workstation3,’CVE-2014-3499’,dockerd,localExploit,vmEscalation)

Fig. 7. Pruned Interconnected Graph
Apart from the impact score calculated from the pruned interconnected graph,

there is more information about whether the services and tasks are impacted or not
from the raw interconnected graph. By searching through the raw interconnected graph
showed in Fig. 6, we can get that all tasks are impacted by this attack. Three services
including Web service 2, Ticket service and Database service are also impacted. All
tasks are impacted as they all and-depend on Web service 2. These three services are

13

impacted as they can be accessed by the developer’s desktop which can be controlled
by the attacker. That is, the impact on these services match the attack path described
in Section 4. Moreover, we can also get the impact score for each task through the same
process: pruning the graph and calculating the score based on the AND-calculation and
OR-calculation. The impact score for each task is 0.992 for task 1, 0.91 for task 2, 0.973
for task 3, 0.973 for task 4, 0.973 for task 5, 0.682 for task 6, and 0.91 for task 7. We can
see some scores are higher than the impact score for the whole business process. This is
because some task are easily attacked by the attacker from the Internet. For example,
task 3 and-depends on web service 1, web service 2 and database service. The attacker
can impact task 3 without exploiting the vulnerability “CVE-2014-3499”, which lowers
the requirement for the attacker.

There are three services that are not impacted by the attack, including Web service
1, Hotel service and Payment service. They cannot be found as the impacted nodes in
the raw interconnected graph. This is because they are not involved in the attack path.
Therefore, the raw interconnected graph can precisely present the attack path in the
real world.

5.2 Analysis of Different Cases

Section 5.1 has shown a successful application of our impact assessment method to
the case described in section 4. However, in the real world, the enterprise network is
not static. For example, a vulnerability can be patched or a host can be removed. In
this section, we will show that our method can still handle the dynamic changes in
the enterprise network and generate new impact scores for the business processes by
re-running the analysis after changes to the system.

1:nodeImpact(business_process)

2:RULE 132 (A flow node is impacted somewhere in its flow)

-1

3:nodeImpact(t7)

-1

4:RULE 131 (A former node impacts a latter node in a flow)

-1

5:nodeImpact(t_or)

-1

6:RULE 109 (No child of an Or node is effective)

-1

7:nodeImpact(t6)

-1

8:RULE 97 (A child of an And node is impacted)

-1

9:nodeImpact(web2,vm2)

-1

69:RULE 100 (A child of an And node is impacted)

-1

91:RULE 97 (A child of an And node is impacted)

-1

100:RULE 104 (A child of an And node is impacted)

-1

106:RULE 100 (A child of an And node is impacted)

-1

111:RULE 97 (A child of an And node is impacted)

-1

114:RULE 97 (A child of an And node is impacted)

-1

10:RULE 37 (A compromised host impacts a service)

-1

11:execCode(vm2,root)

-1

12:RULE 29 (A compromised host impacts its guests)

-1

13:execCode(hypervisor2,kvm)

-1

14:RULE 31 (VM Escalation)

-1

15:vulExists(hypervisor2,’CVE-2016-6258’,kvmd,localExploit,vmEscalation)

-1

16:iaasHostInfo(iaas,hypervisor2,kvmd,kvm)

-1

17:iaasGuestInfo(iaas,vm3,hypervisor2,kvmd,kvm)

-1

18:execCode(vm3,root)

-1

19:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

-1

20:canAccessHost(vm3)

-1

21:RULE 9 (Access a host through a log-in service)

-1

22:netAccess(vm3,sshProtocol,sshPort)

-1

23:RULE 5 (multi-hop access)

-1

24:hacl(desktop,vm3,sshProtocol,sshPort)

-1

56:RULE 5 (multi-hop access)

-1

57:RULE 5 (multi-hop access)

-1

58:RULE 5 (multi-hop access)

-1

25:execCode(desktop,account_desktop)

-1

79:RULE 5 (multi-hop access)

-1

26:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

-1

27:canAccessHost(desktop)

-1

28:RULE 8 (Access a host through executing code on the machine)

-1

29:execCode(desktop,root)

-1

55:RULE 11 (password sniffing)

-1

-1

81:RULE 5 (multi-hop access)

-1

30:RULE 1 (local exploit)

-1

31:vulExists(desktop,’CVE-2016-6325’,httpd,localExploit,privEscalation)

-1

40:RULE 1 (local exploit)

-1

32:execCode(desktop,ssh)

-1

48:RULE 8 (Access a host through executing code on the machine)

-1

-1

82:RULE 5 (multi-hop access)

-1

33:RULE 2 (remote exploit of a server program)

-1

34:netAccess(desktop,sshProtocol,sshPort)

-1

50:RULE 9 (Access a host through a log-in service)

-1

35:RULE 6 (direct network access)

-1

36:hacl(internet,desktop,sshProtocol,sshPort)

-1

37:attackerLocated(internet)

-1

44:RULE 6 (direct network access)

-1

38:networkServiceInfo(desktop,sshd,sshProtocol,sshPort,ssh)

-1

52:RULE 13 (Access a host through executing code on the machine)

-1

39:vulExists(desktop,’CVE-2016-0777’,sshd,remoteExploit,privEscalation)

-1

-1

41:execCode(desktop,www)

-1

49:RULE 8 (Access a host through executing code on the machine)

-1

-1

83:RULE 5 (multi-hop access)

-1

42:RULE 2 (remote exploit of a server program)

-1

43:netAccess(desktop,httpProtocol,httpPort)

-1

-1

45:hacl(internet,desktop,httpProtocol,httpPort)

-1

46:networkServiceInfo(desktop,httpd,httpProtocol,httpPort,www)

-1

47:vulExists(desktop,’CVE-2016-7479’,httpd,remoteExploit,privEscalation)

-1

-1

-1 -1

51:logInService(desktop,sshProtocol,sshPort)

-1

-1

53:hasAccount(account_desktop,desktop,account_desktop)

-1

-1

54:principalCompromised(account_desktop)

-1

-1

75:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

-1

-1

-1 -1-1

59:logInService(vm3,sshProtocol,sshPort)

-1

60:RULE 13 (Access a host through executing code on the machine)

-1

61:networkServiceInfo(vm3,sshd,sshProtocol,sshPort,ssh)

-1

62:hasAccount(account_desktop,vm3,root)

-1

63:iaasGuestInfo(iaas,vm2,hypervisor2,kvmd,kvm)

-1

64:networkServiceInfo(vm2,web2,httpProtocol,httpPort,www)

-1

65:node(t6,and,web1,vm1,web2,vm2,hoteld,container3)

-1

66:nodeImpact(t_flow)

-1

67:RULE 125 (A flow node is impacted somewhere in its flow)

-1

68:nodeImpact(t5)

-1

-1

70:node(t5,and,web1,vm1,web2,vm2,database,container1,hoteld,container3)

-1

71:RULE 101 (A child of an And node is impacted)

-1

-1

72:nodeImpact(database,container1)

-1

93:RULE 98 (A child of an And node is impacted)

-1

102:RULE 105 (A child of an And node is impacted)

-1

113:RULE 98 (A child of an And node is impacted)

-1

73:RULE 37 (A compromised host impacts a service)

-1

74:execCode(container1,root)

-1

-1

76:canAccessHost(container1)

-1

77:RULE 9 (Access a host through a log-in service)

-1

78:netAccess(container1,sshProtocol,sshPort)

-1

-1

80:hacl(desktop,container1,sshProtocol,sshPort)

-1 -1 -1-1

-1 -1-1

84:logInService(container1,sshProtocol,sshPort)

-1

85:RULE 13 (Access a host through executing code on the machine)

-1

86:networkServiceInfo(container1,sshd,sshProtocol,sshPort,ssh)

-1

87:hasAccount(account_desktop,container1,root)

-1

88:networkServiceInfo(container1,database,dbProtocol,dbPort,db)

-1

89:RULE 124 (A former node impacts a latter node in a flow)

-1

90:nodeImpact(t4)

-1

-1

92:node(t4,and,web1,vm1,web2,vm2,database,container1)

-1 -1

-1

94:node(t_flow,flow,t4,t5)

-1

-1

95:node(t_or,or,t_flow,t6)

-1

96:RULE 130 (A former node impacts a latter node in a flow)

-1

97:nodeImpact(t_and)

-1

98:RULE 129 (A former node impacts a latter node in a flow)

-1

99:nodeImpact(t1)

-1

-1

101:node(t1,and,web1,vm1,web2,vm2,database,container1,ticketd,container2,hoteld,container3)

-1 -1

-1

103:node(business_process,flow,t1,t_and,t_or,t7)

-1

-1

-1

-1

104:RULE 39 (A child of an And node is impacted)

-1

105:nodeImpact(t2)

-1

-1

107:node(t2,and,web1,vm1,web2,vm2,ticketd,container2,hoteld,container3)

-1

108:node(t_and,and,t2,t3)

-1

109:RULE 40 (A child of an And node is impacted)

-1

-1

110:nodeImpact(t3)

-1

-1

112:node(t3,and,web1,vm1,web2,vm2,database,container1)

-1 -1

-1

-1

115:node(t7,and,web1,vm1,web2,vm2,payd,container4)

-1

(a) The raw interconnected graph

1:nodeImpact(business_process)

14:RULE 31 (VM Escalation)

15:vulExists(hypervisor2,’CVE-2016-6258’,kvmd,localExploit,vmEscalation) 19:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)

22:netAccess(vm3,sshProtocol,sshPort) 31:vulExists(desktop,’CVE-2016-6325’,httpd,localExploit,privEscalation)

39:vulExists(desktop,’CVE-2016-0777’,sshd,remoteExploit,privEscalation) 47:vulExists(desktop,’CVE-2016-7479’,httpd,remoteExploit,privEscalation)

(b) The pruned interconnected graph

Fig. 8. Interconnected graphs with a vulnerability is patched

A vulnerability is patched. When a vulnerability is patched, it means a fact node
should be deleted. As a consequence, the interconnected graph will be different and
so is the pruned graph. For instance, we assume the vulnerability “CVE-2014-3499” is
patched as this vulnerability is the oldest one in these five vulnerabilities. Fig. 8 shows
the new raw interconnected graph and pruned graph without “CVE-2014-3499.” By
analyzing this pruned graph, the new impact score towards the business process is
0.682, which is much smaller than 0.91.

Whether a task or a service is impacted can also be acquired through the raw
interconnected graph. By searching this graph, we can see all tasks are still impacted.

14

Two services including Web service 2 and Database service are impacted. The other four
services, including Web service 1, Hotel service, Payment service and Ticket service,
are not impacted. Compared with section 5.1, ticket service is not impacted in this
case. This is because patching the vulnerability “CVE-2014-3499” prevents the escape
from Container 1. The attacker cannot access Container 2 any more so that the ticket
service running in Container 2 is free from the impact.

The developer desktop is removed. When the developer desktop is removed, several
fact nodes should be deleted. For example, three vulnerabilities in this desktop no
longer impact the network, so these vulnerability nodes are deleted. When generating
the interconnected graph with MulVAL, we found no graph was generated. This means
although there are vulnerabilities in this network, the attacker located in the Internet
cannot impact this business process. The reason is that all attack paths start from
this desktop as the entry point. Removing this desktop prevents the attacker from
exploiting the vulnerabilities inside the network. Therefore, the interconnected graph
can precisely reflect the real-world impact circumstances.

5.3 Evaluation of Scalability

Table 2. Time consumed to generate interconnected graphs according to different
Number of Units (NoU) and different Connectivity Level (CL)

CL
NoU

100 200 400 600

5 1m2.45s 7m44.71s 67m55.64s 228m42.53s

10 1m0.33s 7m49.49s 65m4.48s 253m9s

100 0m59.67s 7m48.85s 65m18.60s 224m33.49s

Section 5.1 illustrates how to leverage our impact assessment method to calculate
the impact score for an attack targeting a particular business process. The key idea is
to extend MulVAL to generate an interconnected graph and calculate the impact score
based on the pruned graph. In this process, generating the interconnected graph is the
most time-consuming part. It directly affects the scalability of our impact assessment
method. Therefore, in this section, we evaluate the scalability of our method in terms
of how fast interconnected graphs can be generated for different scopes of network.

In order to get different scopes of network, we view the small network of the afore-
mentioned case in section 4 as one unit and duplicate it. These units are then combined
on the basis of different connectivity levels. Because different connectivity levels differ
the network complexity, which may affect the time used to generate the interconnected
graph. We define connectivity level as how widely one web server is shared, i.e., how
many units share one web server. These units sharing one web server constitute one
group and each group is connected by the database server of one unit in the group.
Therefore, the scope of a network generated through this method can be measured by
number of units and connectivity level.

Table 2 describes the time consumed to generate interconnected graphs for different
scopes of network according to different number of units and different connectivity level.
The first column indicates connectivity level and the first row presents the total number
of duplicated units. The other grids in the table indicate how much time is used to
generate one graph. For example, with 100 duplicated units in the network and every
5 units sharing one web server, generating the interconnected graph for this scope of
network consumes 1 minute and 2.45 seconds.

15

From table 2, we can see the time used to generate an interconnected graph is
mainly determined by the number of connected units, not the connectivity level. This
is because when generating the interconnected graph, the time is mainly consumed
by finding new path from one node to another node. As sharing web server does not
increase paths in the graph, the consumed time does not affected by the connectivity
level. Furthermore, the time increases non-linearly, i.e., the time increases faster than
the number of connected units increases. In summary, our method cannot scale well
in a very large network. However, it does not mean our solution is not practical in
the real world. Taking a university as an example, the scope of one unit is similar
to a network of a department. Therefore, for a big university with 100 departments,
the time consumed to generate an interconnected graph is less than 2 minutes, which
means our solution is feasible in practice.

6 Related Work

Little research has been done on business process impact assessment in recent years.
Jakobson [8] presents a business process impact assessment that quantifies impact by
using Operational Capacity (OC), and considers intra and inter dependencies between
assets, services, and business processes. Dai et al. [3] propose a cross-layer Situation
Knowledge Reference Model (SKRM) which considers intra and inter-dependencies
between instruction layer, OS layer, app/service layer, and workflow (task) layer. Sun
et al. [18] introduce a novel probabilistic impact assessment method which leverages
Bayesian networks. Sun et al. [20] also propose a multi-layer impact evaluation model
which includes four layers, namely vulnerability layer, asset layer, service layer, and
mission layer. They measure impacts by OC and impact factor. Poolsappasit et al. [13]
leverages attack graph (called Bayesian Attack Graph) and attack tree to revise the
likelihoods in the event of attack incidents and identify the vulnerable points in the
network system. Frigault et al. [5] use attack graph as a special Bayesian network to
model probabilistic risks in a network. They also introduce Dynamic Bayesian Net-
works [6] with attack graphs to model the security of dynamically changing networks.
Dewri et al. [4] leverage an attack tree model with multi-objective optimization to
solve the problem, i.e. balance between security hardening and limited budget for an
enterprise network. Ray et al. [15] also utilize an attack tree model with an algorithm
simplifying the tree to locate the malicious insiders in a network. Saripalli et al. [16]
present QUIRC which utilizes Microsoft’s STRIDE to assess the security risk in a cloud
computing environment and define risk as a combination of the Probability of a security
thread event and its severity.

Our method uses the interconnected graph, which interconnects attack graph and
entity dependency graph, to demonstrate the relationships between vulnerabilities and
the impacted business process. By pruning the interconnected graph, we can get sim-
plest relationships and calculate the impact score based on vulnerabilities’ CVSS score.
For different cases in one network, our method can handle these changes and generate
related impact scores. With these impact scores, the network operator may do further
security hardening for the network.

7 Conclusion

In this paper, we propose a new business process impact assessment method, which
measures the impact of an attack towards a business process in an enterprise network.

16

Our method produces a numerical score for the attack impact. We extend MulVAL,
a logic-based network security analyzer, to support more fact nodes and rule nodes
for business process impact assessment. With the facts and rules, our approach gen-
erates an interconnected graph for an attack and prunes the interconnected graph to
show the simplified relation between vulnerabilities and business processes. In the end,
the impact score can be calculated by analyzing the pruned graph and following the
relation calculation rules. According to our case study, this business process impact
assessment method is effective and can facilitate the cyber-defense and cyber-resilience
in an enterprise network that supports business processes.

Acknowledgment

We thank the anonymous reviewers for their valuable comments. This work was sup-
ported by NIST 60NANB17D279, NSF CNS-1505664, ARO W911NF-13-1-0421 (MURI),
and NSF CNS-1618684.

Disclaimer

This paper is not subject to copyright in the United States. Commercial products are
identified in order to adequately specify certain procedures. In no case does such identi-
fication imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the identified products are necessarily the best
available for the purpose.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security. pp. 217–224. ACM (2002)

2. Chen, X., Zhang, M., Mao, Z.M., Bahl, P.: Automating network application de-
pendency discovery: Experiences, limitations, and new solutions. In: OSDI. vol. 8,
pp. 117–130 (2008)

3. Dai, J., Sun, X., Liu, P., Giacobe, N.: Gaining big picture awareness through an
interconnected cross-layer situation knowledge reference model. In: Cyber Security
(CyberSecurity), 2012 International Conference on. pp. 83–92. IEEE (2012)

4. Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security hardening using
multi-objective optimization on attack tree models of networks. In: Proceedings of
the 14th ACM conference on Computer and communications security. pp. 204–213.
ACM (2007)

5. Frigault, M., Wang, L.: Measuring network security using bayesian network-based
attack graphs. In: Proceedings of the 2008 32nd Annual IEEE International Com-
puter Software and Applications Conference. pp. 698–703. IEEE Computer Society
(2008)

6. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic bayesian network. In: Proceedings of the 4th ACM workshop on Quality
of protection. pp. 23–30. ACM (2008)

17

7. Jajodia, S., Noel, S., OBerry, B.: Topological analysis of network attack vulnera-
bility. In: Managing Cyber Threats, pp. 247–266. Springer (2005)

8. Jakobson, G.: Mission cyber security situation assessment using impact depen-
dency graphs. In: Information Fusion (FUSION), 2011 Proceedings of the 14th
International Conference on. pp. 1–8. IEEE (2011)

9. NIST: Cvss score. https://nvd.nist.gov/vuln-metrics/cvss (2017)
10. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network

hardening via exploit dependency graphs. In: Computer security applications con-
ference, 2003. proceedings. 19th annual. pp. 86–95. IEEE (2003)

11. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM conference on Computer and communica-
tions security. pp. 336–345. ACM (2006)

12. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the 1998 workshop on New security paradigms. pp. 71–79. ACM
(1998)

13. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
bayesian attack graphs. IEEE Transactions on Dependable and Secure Computing
9(1), 61–74 (2012)

14. Racket: Datalog. https://docs.racket-lang.org/datalog/ (2017)
15. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from

authorized insiders. In: European Symposium on Research in Computer Security.
pp. 231–246. Springer (2005)

16. Saripalli, P., Walters, B.: Quirc: A quantitative impact and risk assessment frame-
work for cloud security. In: Cloud Computing (CLOUD), 2010 IEEE 3rd Interna-
tional Conference on. pp. 280–288. Ieee (2010)

17. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Security and privacy, 2002. Proceedings. 2002
IEEE Symposium on. pp. 273–284. IEEE (2002)

18. Sun, X., Singhal, A., Liu, P.: Who touched my mission: Towards probabilistic
mission impact assessment. In: Proceedings of the 2015 Workshop on Automated
Decision Making for Active Cyber Defense. pp. 21–26. ACM (2015)

19. Sun, X., Singhal, A., Liu, P.: Towards actionable mission impact assessment in the
context of cloud computing. In: IFIP Annual Conference on Data and Applications
Security and Privacy. pp. 259–274. Springer (2017)

20. Sun, Y., Wu, T.Y., Liu, X., Obaidat, M.S.: Multilayered impact evaluation model
for attacking missions. IEEE Systems Journal 10(4), 1304–1315 (2016)

