
HAL Id: hal-01954410
https://inria.hal.science/hal-01954410

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fingerprinting Crowd Events in Content Delivery
Networks: A Semi-supervised Methodology

Amine Boukhtouta, Makan Pourzandi, Richard Brunner, Stéphane Dault

To cite this version:
Amine Boukhtouta, Makan Pourzandi, Richard Brunner, Stéphane Dault. Fingerprinting Crowd
Events in Content Delivery Networks: A Semi-supervised Methodology. 32th IFIP Annual Conference
on Data and Applications Security and Privacy (DBSec), Jul 2018, Bergamo, Italy. pp.312-329,
�10.1007/978-3-319-95729-6_20�. �hal-01954410�

https://inria.hal.science/hal-01954410
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fingerprinting Crowd Events in Content Delivery

Networks: a Semi-Supervised Methodology

Amine Boukhtouta1, Makan Pourzandi1, Richard Brunner2, and Stéphane
Dault3

1 Ericsson Security Research, 2 Ericsson Universal Delivery Network, 3 Ericsson

Business Area Digital Services, R&D Security Operations

8275 Trans Canada Route, Saint-Laurent, Montréal, Québec, Canada

amine.boukhouta,makan.pourzandi,richard.brunner,stephane.dault@ericsson.com

Abstract. Crowd events or flash crowds are meant to be a voluminous

access to media or web assets due to a popular event. Even though the

crowd event accesses are benign, the problem of distinguishing them from

Distributed Denial of Service (DDoS) attacks is difficult by nature as both

events look alike. In contrast to the rich literature about how to profile

and detect DDoS attack, the problem of distinguishing the benign crowd

events from DDoS attacks has not received much interest. In this work, we

propose a new approach for profiling crowd events and segregating them

from normal accesses. We use a first selection based on semi-supervised

approach to segregate between normal events and crowd events using the

number of requests. We use a density based clustering, namely, DBSCAN,

to label patterns obtained from a time series. We then use a second more

refined selection using the resulted clusters to classify the crowd events.

To this end, we build a XGBoost classifier to detect crowd events with a

high detection rate on the training dataset (99%). We present our initial

results of crowd events fingerprinting using 8 days log data collected from

a major Content Delivery Network (CDN) as a driving test. We further

prove the validity of our approach by applying our models on unseen

data, where abrupt changes in the number of accesses are detected. We

show how our models can detect the crowd event with high accuracy. We

believe that this approach can further be used in similar CDN to detect

crowd events.

1 Introduction

CDNs are the global networks delivering content from different content providers
to cope with the increasing demand for the QoE required by the commercial
content providers. To address the ever increasing demand for content in the
Internet, CDNs turned out to be the de-facto solution to cache content, including
video streaming, news, and social media [5]. CDNs are meant to accelerate the
delivery of content on the Internet to cope with the business-grade performance.
As such, their importance increased within the cyberspace ecosystem over time.
A recent report stipulates that 70% of all Internet traffic will cross CDNs by 2021
[4].

2 Amine Boukhtouta et al.

Among the key players in networks deployment, CDNs have been facing many
challenges from the complexity and versatility of emerging online services. Thus,
CDNs are exposed to benign events such as crowd events and cyber-threats
like DoS, DDoS and harmful crawling of cached assets. The CDN operators
are therefore increasingly interested in the prediction of faulty events in CDNs
resulting from misconfigurations, unpredictable networking conditions, or the
result of cyber-attacks. In recent years, sophisticated malicious artifacts are
used by attackers to take advantage of any vulnerability to conduct sabotaging
CDN itself or target critical infrastructures to cause service unavailability. By
metamorphosing CDNs to support security as a built-in asset to counter different
cyber-threats have become then of a paramount importance to operators. As
part of this effort, there is a keen interest shown operators to investigate events
logging data for identifying misbehavior of CDNs. Crowd events (flash crowds)
are simultaneous and huge access to web or media based content from legitimate
users. There have been several efforts to predict the DDoS attacks based on
analyzing the event logs. However, few works targeted to distinguish between
the benign crowd events from DDoS attacks. However, this distinction is of
high importance to avoid false positive DDoS attacks and better planning of
resources to address legitimate users during crowd events. To this end, we aim
at addressing the problem of framing crowd events in CDNs and differentiate
them from unsolicited/malicious activities by exploring CDN’s data obtained
from a large operator. In this research effort, we aim to provide an answer to the
following questions: (1)What are the key indicators identified in CDNs ecosystem?
(2) Given observable crowd events, how to profile them and isolate them from
normal events? (3) By considering profiles, how to use engineered features to
distinguish between crowd events and anomalies?

To answer these questions, we shape the contributions of this paper as follows:
(1) We draw upon 169 GB of logging data collected from a large CDN operator
to characterize access events in a hybrid CDN, where web and media assets
are cached. The number of events is more than 452 million events (more than
386 million access events, whereas the rest are routing events). We present
different perspectives to engineer features, namely, delivery, cache, IP and HTTP
based features. (2) We propose a semi-supervised methodology to identify crowd
events with high detection rate on the training dataset (99%). The methodology
is driven by the number of requests to profile patterns in a timely manner
(time series). By using a density clustering algorithm (DBSCAN), we manage
to create profile normal and crowd accesses. The clustering plays the role of a
first filter layer towards crowd events fingerprinting. The resulted labeling is
then used for classification (XGBoost) which subsequently identifies the crowd
events. We manage to identify two patterns of crowd accesses patterns that can
be considered as a ground truth to potentially identify anomalies. (3) To test
further our methodology, we used anomalous unseen data to test classifiers. We
showed that our methodology allowed to discern crowd events and anomalies.
Thus, we believe our methodology can be used to create multi-level time series
classification system to identify anomalies in CDN’s deployment.

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 3

The remainder of this paper is as follows: In section 2, we explain the
methodology used to discern crowd and normal accesses, as well as the features
set used to characterize . Section 3 puts forward a description of the dataset
and experiments layout as well as results obtained from them. In Section 4, we
expose the different related works as well as how they compare with our work.
In Section 5, we conclude with a few observations and future directions of our
research.

2 Methodology

2.1 Overview

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 3

Fingerprinting

No

Yes

Model

Normal Event

Potential Crowd

Event

Timestamp: 2016-12-12T00:00:00

Time Window: 1 minute

Time

Multi-level Profiler

Delivery
HTTP

(Application)
IP Cache

No

Crowd Event

Yes

Alert

492,-69,-173,76,14,119,-140,113,-123,-12,

139,-120,175,-198,28,-72,17,-18,77,58,102,

-54,-60,33,-90,33,33,-10,30,43,-123,46,71,8,

-63,-42,-53,11,96,-38,2,7,-5,16,-78,8,80,

-120,26,177,-77,-2,-152,118,-150,44,-33,

-22,35,102,332

Request Variation

Timestamp: 2016-12-12T00:00:00

Time Window: 1 minute

Time

Logs

Fig. 1. General Approach.

The reason behind showing an interest to crowd events, lies in the fact
that they tend to be frequent over time, therefore, prone to be fingerprinted
in comparison with cyber-attacks like DDoS, where data needs to be recorded
during an on-progress attack (e. g., [6]), or inferred from network telescopes
(e. g., [10,11]), or even simulated through attacking tools (e. g., [12]). Our strategy
is to characterize thoroughly crowd events through number of accesses, then
differentiate them from anomalies based on attributes collected from different
perspectives (delivery, IP, cache, HTTP). Figure 1 depicts our approach. We
pre-process the input logs and events to extract patterns representing aggregated
counters collected during a time window. We then use them to train a first model
to discern between the normal and crowd accesses (fingerprinting component
in Figure 1). Subsequently, the potential crowd events are subject to a more
in-depth multi-level profiling to check whether the event is a real crowd event
or an alert (Multilevel profiling component in Figure 1). In our approach, we
use different perspectives to aggregate several features (attributes) into new

4 Amine Boukhtouta et al.

features allowing to detect crowd events. Then, we use collected aggregates as a
downstream outcome to fingerprint crowd events. We refer readers to Section
2.3, where we describe the different features considered in our work.

2.2 Fingerprinting Crowd Events

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 4

Fig. 2. Detailed View of the Fingerprinting Approach.

Figure 2 illustrates the fingerprinting methodology, which is a semi-supervised
approach, where we use empirically a density clustering algorithm to label crowd
and normal accesses. Based on that, we create a detection model to identify labeled
patterns. As such, we apply a data-driven approach based on logs collected from
CDN’s operator. The logs are used to compute different attributes indexed per
time. Given a time granularity and aggregation window, we create patterns, which
are fed to a density clustering algorithm to segregate between normal and crowd
events. However, obtained solution does not allow to balance between normal and
crowd accesses cardinalities. Therefore, we employ data augmentation technique
to increase the number of crowd accesses patterns. This is done to balance the
number of normal access patterns with crowd access patterns. Afterwards, we
label the balanced data to create a ground truth for classification. The latter’s
result is a model that represents a decision system that discerns crowd events
from normal events. It is important to mention that all these steps are done
offline. In the sequel, we detail different components.

Aggregation By aggregation, we mean encompassing observed raw values during
a granularity time unit (e. g., 1 second) into one value observed during a time
window period (e. g., 1 minute). As such, the result of the aggregation is a data
point that reflects a statistical view of raw values, which can be a count, sum,

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 5

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 7

492, 2016-12-13T00:00:00

423, 2016-12-13T00:00:01

250, 2016-12-13T00:00:02

…..

…..

333, 2016-12-13T23:59:57

303, 2016-12-13T23:59:58

291, 2016-12-13T23:59:59

492,-69,-173,76,14,119,-140,113,-123,-12,139,

-120,175,-198,28,-72,17,-18,77,58,102,-54,-60,

33,-90,33,33,-10,30,43,-123,46,71,8,-63,-42,-53,

11,96,-38,2,7,-5,16,-78,8,80,-120,26,177,-77,-2,

-152,118,-150,44,-33,-22,35,102,332

…..

366,-65,-35,-96,53,87,-51,-18,-38,108,107,-141,

97,-132,149,-47,-22,-55,-86,141,-48,-87,127,-40,

-10,-14,86,82,-131,37,-117,87,-67,88,-21,-20,-51,

87,-35,55,-60,-50,36,88,-28,-36,-3,129,-201,13,14,

38,-16,125,-98,76,7,-31,-30,-12,291

Granularity: second

Window: 1 minute

Analyst

Fig. 3. Aggregation Example.

average, etc. In the context of our work, we consider initially the number of
access requests to CDN, indexed per second. It is important to mention that the
aggregation period ca be adjusted, but, needs to be selected carefully to obtain a
rich set of patterns to fingerprint crowd events. In this work, as a first attempt,
we consider two aggregation time windows, namely, 1 minute or 5 minutes. Other
aggregation periods can be considered, although the aggregation period is longer
(e. g., 10 minutes), less is the number of collected patterns. Figure 3 illustrates an
aggregation pattern recorded for 1 minute aggregation time window. A pattern
is represented by a starting and an ending value, as well as, differences (shifts)
between values observed every second.

Density Clustering Density clustering is meant to segregate between high and
low density data, thus, we assume that crowd events happen less in comparison
with normal events. As such, we consider using this clustering technique to
characterize normal events as a highly dense data (highly dense core cluster),
whereas crowd events are seen like low dense data (low dense clusters or outliers).
Based on prior usage of DBSCAN [3] in different works [13,14,15], we exploit it
to cluster data collected from accesses aggregates. DBSCAN algorithm is based
on two parameters, namely, the radius distance and the minimum core number.
Given sampled data points, the algorithm iteratively looks for other data points
located within radius distance to create a cluster. If two data core points are
close within the radius distance, they are merged into the same cluster. Based on
the minimum core number, the algorithm sets a minimal cardinality to create a
cluster. Points that are not enclosed within clusters, are considered as outliers
or singletons. In our case, we target mainly to group normal accesses in a core
cluster and crowd accesses in low density clusters or singletons. Thus, we set the
minimum core number to 1, to find data points representing crowd events as
singletons. As a distance function, we use Euclidean distance between points. We
use the silhouette score to evaluate the quality of clustering solution.

Data Augmentation Being inspired by works from [16,17,18], we employ data
augmentation on time series. The main reason behind doing so, lies in the fact

6 Amine Boukhtouta et al.

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 10

8104,0

7740,1

9270,2

…..

10819,57

11294,58

11090,59

11070,60

9898,61

11323,62

…..

12778,117

14301,118

13943,119

A
g

g
re

g
a

te
 1

A
g

g
re

g
a

te
 2

8104,-364,1530,3202,488,-1500,235,-167,-672,

-871,354,386,-26,-852,1025,-288,-236,1126,735,

-1500,305,-75,-2,-1029,584,-394,136,60,230,-718,

483,406,-268,-568,1316,-272,339,-866,1098,529,

-323,-1041,815,137,-1005,-379,-84,-404,-442,-874,

2442,264,-583,-163,277,-358,743,-206,475,-204,

11090

11070,-1172,1425,-464,1444,2349,1399,-1122,391,

-825,-192,-1075,176,-1001,537,-201,-456,-1109,

1462,712,489,-1029,1938,-282,-606,-1184,2064,

-63,-919,-517,1443,-1117,-565,-1161,849,253,218,

-204,613,-108,-533,-644,898,277,841,21,-642,-572,

365,-1071,972,230,356,-109,960,-453,-323,-1255,

1523,-358,13943

Adjacent Patterns

8104,0

7740,1

9270,2

…..

10819,57

11294,58

11090,59

11070,60

9898,61

11323,62

…..

12778,117

14301,118

13943,119

A
g

g
re

g
a

te
 1

A
g

g
re

g
a

te
 2

7740,1530,3202,488,-1500,235,-167,-672,-871,

354,386,-26,-852,1025,-288,-236,1126,735,-1500,

305,-75,-2,-1029,584,-394,136,60,230,-718,483,

406,-268,-568,1316,-272,339,-866,1098,529,-323,

-1041,815,137,-1005,-379,-84,-404,-442,-874,

2442,264,-583,-163,277,-358,743,-206,475,-204,

-20,11070

New Pattern

1
 m

in
u

te

Augmentation

Fig. 4. Augmentation Example.

of unbalance between normal accesses and crowd accesses. With this intent, low
density clusters and singletons representing crowd access patterns are used to
create new patterns. Timely adjacent patterns are used to extract new patterns
to create a balanced dataset between normal accesses and crowd accesses. We
use a sliding window (e. g., 1 second) to extract a new pattern, Figure 4 depicts
an example of two adjacent patterns aggregated during 1 minute and used to
obtain a new pattern by utilizing a sliding window of 1 second.

Labeling & classification As a downstream outcome from clustering solution
and data augmentation, we label the core cluster patterns representing normal
accesses with 0, whereas singleton and augmented patterns are labeled with 1.
Thus, a labeled dataset is created, and used as an input for a binary classifier.
The latter is built by applying the XGBoost algorithm [1], which is based on
optimization through tree models [19,20] and boosting [21]. It supports many
learning and boosting parameters that can be used to build classification models.
XGBoost has three loss functions to control prediction, namely, Mean Square
Error for regression, Log-Loss for binary classification and mLog-Loss for multi-
classification. XGBoost uses regularization functions to control the complexity of
the model to avoid over-fitting. Both loss function and regularization terms to
define the objective function. The latter is optimized by using the gradient descent
algorithm to compute gradients. XGBoost builds the boosting tree by computing
predictions of leaves and greedily finding splitting points optimizing the objective
function. In [22], the authors enumerated the advantages of XGBoost: (1) Tree
models have rich representational abilities. (2) The boosting is adaptive, thus,
models are flexible to determine neighborhoods in different parts of the input
space. (3) Bias-Variance trade-off control, XGBoost starts with low variance
and high bias model and reduces the bias accordingly by decreasing the size of
neighborhoods in the input space.

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 7

Perspective Feature Description

Delivery

Hit Ratio The number of caching hits divided by the total number of requests

during a time period.

Volume Sum The sum of bytes saved by caching during a time period, it is negative

if content assets are fetched from the origin.

Volume Average The average value of volume records during a time period.

Volume Deviation The standard deviation of volume records during a time period.

Volume Minimum The minimum value of volume records during a time period.

Volume Maximum The maximum value of volume records during a time period.

Duration Average The duration average for content assets delivery during a time period.

Duration Deviation The standard deviation of content assets’ delivery duration during a

time period.

Duration Maximum The maximum value of delivery duration records during a time period.

IP

Number of Requests The total number of requests observed during a time period.

Number of Distinct IPs The total number of requesting unique IPs during a time period.

Maximum Requesting IP The maximum number of requests issued by the most accessing IP

during a time period.

IPs Entropy The number of unique IPs divided by number of requests issued by IPs

during a time period.

Average request per IP The average value of requests issued per IP during a period of time.

Deviation request per IP The standard deviation value of requests issued per IP during a period

of time.

Cache

Number of Distinct Caches The total number of unique caches serving requests during a time period.

Maximum Requested Cache The maximum number of requests observed on the most serving cache

during a time period.

Caches Entropy The number of unique caches divided by number of requests served by

caches during a time period.

Average request per Cache The average value of requests served by a cache during a period of time.

Deviation request per Cache The standard deviation value of requests served by a cache during a

period of time.

HTTP
Ratio HTTP Status The HTTP status (20X,40X,50X) observed requests divided by the

total number of requests.

Ratio HTTP Method The HTTP method (GET, POST, HEAD, DELETE, PUT) observed

requests divided by the total number of requests.

Table 1. Features Description.

2.3 Features Engineering

The features engineering aims to the creation of attributes from the domain
knowledge, namely, log traces collected from CDN deployment. Based on internal
experts’ inputs, we define four perspectives based on field attributes: delivery
perspective, IP perspective, cache perspective, and HTTP perspective (see Table
1). We consider these metrics as an increase in the delivery duration metrics
indicates a bandwidth saturation indicating a possible crowd event. From a
delivery perspective, we are interested in: (1) the hit ratio through counting how
frequent the content assets are found in caches, (2) the cached volume through
computing saved bytes (content objects’ size) as well as different statistical
metrics, and (3) the delivery duration of different content assets as well as
the average, the standard deviation and the maximum values. As the delivery
perspective asses the effectiveness of CDNs, we propose to use those features for
fingerprinting.

The IP perspective is meant to monitor clients requesting content from CDN.
The metrics associated with IPs help to describe the dynamics of accessing
content, thus, they are potential indicators for DDoS attacks or massive contents’
crawling. From IP perspective, we are interested in: (1) the total number of

8 Amine Boukhtouta et al.

requests produced by clients (IP addresses), (2) the total number of distinct
IP addresses observed during aggregation time, and (3) the maximum number
of requests generated by the most occurring IP address, (4) IPs entropy score,
which represents the total number of distinct IP addresses divided by the total
number of requests, (5) the average of requests’ number generated per IP, and
(6) the standard deviation of requests’ number generated per IP.

The cache perspective represents how cached content is served to clients
instead of accessing the content from origin servers. As such, being aware how
content is distributed can help detection of caching anomalies. For instance,
the distribution of requests through caches pinpoints to how fairly or unfairly
requests are distributed to caches. Low cached volume metric indicates potential
high number of requests to unpopular content indicating possible DDoS events.
From cache perspective, we are interested in: (1) the total number of distinct
caches serving requests during aggregation time, (2) the maximum number of
requests observed on the most serving cache, and (3) caches entropy score, which
represents the total number of distinct caches divided by the total number of
requests, (4) the average of requests’ number served by a cache, (5) the standard
deviation of requests’ number served by a cache.

The HTTP perspective is meant to be aware of the application protocol used
to request content from CDN. A drastic change in the number of POST or GET
can indicate the presence of a flooding attack; thus a misuse of HTTP protocol.
From HTTP perspective, we are interested in: (1) the ratio of HTTP status codes
(e. g., 200 or 404), and (2) the ratio of HTTP methods (e. g., GET, POST). At
the end, we discard some constant features: (1) the minimum delivery value since
it tends to 0, (2) the number of requests from the less requesting IP addresses
since it tends to 1, and (3) the number of requests observed on less accessed
caches, which tends to 1.

3 Experiments

3.1 Experiments Setup

We run the experiments on a virtual machine deployed on Intel Xeon CPU
E5-2060 2 GHz, consisting of 12 virtual CPUs and 32GB of memory. The
experiments are done on a dataset collected from the 12th to 19th of December
2016. It represents Web access logs collected from a large operator hosting a
sport league website. The size of the data is 169GB of logs, which corresponds to
386, 396, 885 access events. We enumerate 1, 268, 160 IPs spanning over 200, 634
“/16” subnets, geo-located in 219 countries and 15, 646 cities. The crowd events
were observed on 14th and 15th of December 2016, whereas anomalies were
observed the 12th of December 2016. Figure 5 represents the distribution of
requests’ number between 13th to 19th December 2016. We notice two peaks
of the request number in the 14th and 15th of December, these peaks represent
crowd accesses during games. We consider then data collected from 13th to 19th

December 2016 to cluster normal and crowd accesses. The clustering is done on
the patterns as described in Section 2.2. Once the clustering is done, we augment

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 9

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 13

50000

40000

30000

20000

10000

0

Fig. 5. Number of Requests (13th to 19th December 2016).

the patterns collected from the original data, then, label different patterns to
create the classifier. To build the latter, we use a 10 rounds’ classification process
with a 5-fold cross validation. To test our approach, we apply the classifier on the
anomalous day (12th of December 2016, not used for the training) to check, if the
model detects abrupt changes. As such, we can use patterns extracted from other
features, to see which ones can segregate between crowd accesses and anomalies.

3.2 Clustering & Augmentation Results

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 11

1 Minute

5 Minutes

0.877 0.909

1995 2002

0.855 0.93114.20

3.71

9965

10055

Fig. 6. Clustering: Running Time & Silouhette Scores & Core Cluster Coverage.

10 Amine Boukhtouta et al.

We apply DBSCAN algorithm on patterns extracted from two aggregation
periods (1 minute and 5 minutes). The intent is to find empirically a core
cluster grouping normal accesses, and discerning crowd accesses. To do so, we
tweak the distance parameter of DBSCAN and check the quality of clustering
solutions through silhouette scores and how many patterns are enclosed in the
core cluster. The intent is to find a distance parameter that produces a good
quality of clustering, meanwhile segregating crowd accesses from normal ones.
For each distance, we compute clustering execution time, silhouette score and
core clustering coverage. Figure 6 depicts clustering running time, silhouette
score and core cluster coverage with respect to distance parameter, which varies
from 5 to 65 for 1 minute patterns, and from 5 to 110 for 5 minutes patterns.
The running time to build clustering solutions spans from 10.7 to 28.25 seconds
for 1 minute patterns, and from 2.69 to 5.01 seconds for 5 minutes patterns. The
clustering running time average is 14.2 seconds for 1 minute patterns and 3.71
seconds for 5 minutes patterns. Regarding silhouette scores, we observe that it
tends to 1, which means that clustering quality is good and therefore no need to
increase the distance beyond the current distances used for our experiments. The
core cluster is discernible, since the majority of patterns are grouped together
(core cluster covers the majority of patterns). We observe that the silhouette
scores increase when the distance gets higher, but we need to monitor a trade-off
between high silhouette scores and missing patterns representing crowd accesses.
To illustrate this trade-off, we consider two clustering solutions for both 1 minute
(distances equal to 25 and 65, silhouette scores equal to 0.855 and 0.931, coverage
values equal to 9965 and 10055) and 5 minutes (distances equal to 80 and 110,
silhouette scores equal to 0.877 and 0.909, coverage values equal to 1995 and
2002) patterns (see Figure 6).

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 12
Aggregation Period ID

5 Minutes

Distance=80

Silhouette=0.877

5 Minutes

Distance=110

Silhouette=0.909

0 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 20000
0.0

0.2e7

0.4e7

0.6e7

0.8e7

1.0e7

1 Minute

Distance = 25

Silhouette=0.855

1000080006000400020000

0

25e4

20e4

15e4

10e4

5e4

0

25e4

20e4

15e4

10e4

5e4

1000080006000400020000

1 Minute

Distance = 65

Silhouette=0.931

N
u

m
b

e
r

o
f

R
e

q
u

e
s

ts

0.0

0.2e7

0.4e7

0.6e7

0.8e7

1.0e7

Fig. 7. Silhouette & Distance vs. Crowd Events Identification.

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 11

We refer to Figure 7 to depict the trade-off between solutions for different
patterns. Based on observations inferred from aforementioned illustration, we
select two solutions, meaning a distance equals to 25 for 1 minute patterns
and a distance equals to 80 for 5 minutes patterns. Despite the fact that these
distances do not output the best silhouette score, their values manage to segregate
better between core cluster patterns (normal accesses) and singleton patterns
representing crowd accesses (see circled peaks in Figure 7). In the second case
observed in Figure 7, where distance values are respectively 65 and 110 for 1
minute and 5 minutes patterns, the silhouette scores are slightly better, but
the clustering solutions do not segregate effectively between normal and crowd
accesses. We can observe that some peaks are not distinguishable from normal
accesses (the peaks that are not circled in Figure 7).

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 15

1 Minute

5 Minutes

Magnitude (Delta Values)

M
a
g

n
it

u
d

e
 (

R
a
w

 V
a
lu

e
s
)

Fig. 8. Patterns Augmentation (1 Minute & 5 Minutes).

We apply augmentation to balance between the patterns belonging to the core
cluster (normal accesses) and other patterns (crowd accesses). The motivation
behind doing so, is to infer more crowd access patterns from existing patterns
and scale their cardinality with normal access patterns in order to label them for
classification. Figure 8 illustrates the plotting of magnitude values of raw values
and difference values within patterns. Data points at the bottom of both plots
represent the core cluster, whereas data points in the middle up to the top of
plots represent crowd accesses. Augmentation of crowd accesses can be observed
in the right hand side, where new patterns are created to balance classification
dataset.

Table 2 shows the number of patterns before and after augmentation. In
this experiment, we randomly select some adjacent crowd access patterns and
infer augmented data. For 5 minutes’ aggregation period, data augmentation is
used for both normal and crowds accesses to increase the number of samples

12 Amine Boukhtouta et al.

Patterns Normal Access (before) Crowd Access (before) Normal Access (After) Crowd Access (after)

1 Minute 9, 965 115 9, 965 7, 015

5 Minutes 1, 992 24 5, 893 5, 409

Table 2. Number of Patterns before and after Data Augmentation.

to more than 5, 000; whereas for 1 minute’s aggregation, we consider increasing
the number of crowd accesses patterns since we already have more than 9, 000
patterns for normal accesses. However, the data augmentation process is to
subject for refinement, since we can infer more normal access and crowd patterns,
thus, increasing number of patterns in the classification dataset. Moreover, we
need to carefully label patterns in the border between normal and crowd accesses.
This is depicted in the grey zone illustrated within the right hand side of Figure
8, where normal and crowd accesses can be mixed, therefore a potential over or
under fitting of the classification model can take place.

3.3 Classification Results

We apply the XGBoost algorithm by considering its default execution layout.
We use first and second order gradients (grad and hess) by applying logistic
transformation (sigmoid) [2] on LogLoss function. To evaluate trained models, we
consider stacking, an ensemble learning technique, where the predicted value is
computed from cross validation. The number of learning rounds is 10, where the
number of folds within the dataset is 5. The evaluation metrics are: (1) the Area
Under Curve (AUC) of Receiver Operating Characteristic (ROC) function, which
represents the trade-off between sensitivity (fall-out) and specificity (recall), and
(2) the accuracy average for both training and testing.

Period AUC Mean(Tr.) AUC Std(Tr.) AUC Mean(Te.) AUC Std(Te.) Acc. Mean(Tr.) Acc. Mean(Te.)

1 Minute

%99.9128 %0.0144 %99.7489 %0.0766 %99.8274 %99.6370

%99.9552 %0.0168 %99.8066 %0.0964 %99.8542 %99.6489

%99.9814 %0.0075 %99.8740 %0.1108 %99.1070 %99.6608

%99.9831 %0.0048 %99.9125 %0.1063 %99.9137 %99.6371

%99.9838 %0.0050 %99.9200 %0.1187 %99.9420 %99.6906

%99.9861 %0.0037 %99.9442 %0.0773 %99.9509 %99.7144

%99.9861 %0.0037 %99.9665 %0.0528 %99.9524 %99.7263

%99.9872 %0.0033 %99.9661 %0.0536 %99.9628 %99.7203

%99.9945 %0.0040 %99.9667 %0.0529 %99.9673 %99.7204

%99.9980 %0.0026 %99.9663 %0.0533 %99.9702 %99.7322

5 Minutes

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%100 %0.0217 %99.9738 %0.0214 %99.9911 %99.9735

%100 %0.0217 %99.9738 %0.0214 %99.9911 %99.9735

%100 %0.0217 %99.9736 %0.0216 %99.9911 %99.9735

%100 %0.0217 %99.9736 %0.0216 %99.9911 %99.9735

Table 3. 10 Rounds of 5 Fold Cross Validation Results(Tr. Training Phase, Te. Testing

Phase).

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 13

Table 3 depicts classification results for both 1 minute and 5 minutes patterns.
Each row contains a round of 5 fold cross validation, where we consider AUC mean
and standard deviation, as well as accuracy mean. These metrics are computed
for both training and testing phases. From results observed in the table, we notice
that for each round, AUC statistics are maintained, since the mean tends to 1,
whereas the standard deviation tends to 0. We also observe that the accuracy is
high and tends to 1 for both training and testing. Regarding 5 minutes patterns
classification, the results are constant; consequently, any round can be considered.
Regarding 1 minute patterns classification, the results change slightly from a
round to another. Usually, the model with the highest accuracy rate, or with the
lowest difference between AUC mean and standard deviation (best sensitivity and
specificity trade-off), can be selected. As such, we can consider models obtained
from the 10th round, which has the best AUC and high accuracy rate metrics.
To test their detection of abrupt changes, the models are then tested on unseen
data (12th of December). Figure 9 illustrates patterns detected by models as
abrupt changes in the number of requests for two training days (14th and 15th of
December 2016) and unseen data (12th of December 2016).

Regarding crowd accesses, we notice 2 types of patterns illustrated in the
top and bottom plots within Figure 9 (dashed ellipses). The first crowd accesses’
patterns illustrate a continuous periodic access to a sport event, whereas the
second ones illustrate some crowd accesses at the beginning of the game, then,
another set of crowd accesses during up to the end of the game. This can be
explained as people followed up the first game continuously at the opposite of
the second one. In the latter, people were more interested to know what is the
issue of the game than following it continuously. The abrupt changes present in
the middle plot are different than the aforementioned crowd accesses’ patterns.
As such, we will consider studying other attributes during the period, where we
observed crowd accesses and suspicious patterns. Regarding the classification
runtime, we compute the time taken to predict each pattern. Table 4 illustrates
different statistics observed on classification runtime expressed in Milliseconds.
We notice that the average time to classify 1 minute pattern is in the range
of 0.75 Milliseconds, whereas it is in the range of 1 Milliseconds for 5 minutes
pattern. The standard deviation is in the range of 0.1 Milliseconds for both 1
minute and 5 minutes pattern.

Patterns Minimum Maximum Average Deviation

1 Minute 0.715971 3.186941 0.749865 0.103742

5 Minutes 0.961065 2.573013 1.008195 0.123094

Table 4. Classification Runtime (Milliseconds) per Pattern.

14 Amine Boukhtouta et al.

Toughts_ML_VRAN | Ericsson Internal | 2018-01-23 | Page 23
Aggregation Period ID

N
u

m
b

e
r

o
f

R
e
q

u
e

s
ts

1
5

 D
e

c
e

m
b

e
r

2
0

1
6

1
2

 D
e

c
e

m
b

e
r

2
0

1
6

1
4
 D

e
c
e
m

b
e

r
2

0
1
6

Fig. 9. Prediction on 12th14th15th December 2016 Patterns (1 Minute & 5 Minutes).

4 Related Work

Several works considered studying abnormal access patterns to the web sites in
order to detect DDoS attacks. In[23], authors analyzed IBM Olympic Games Web
site, and developed models to predict seasonal patterns based on peak request rates
and traffic variation. The study did not consider the implication of CDNs, or DoS
attacks. In [24], authors studied a peak workload analysis of the football World
Cup 1998 Web site [9]. They focused on the reference of few extremely popular
webpages, where clients inter-session time were short. The authors considered
the workload observed on the world cup website as an initial characterization
of how future workloads look like. They profiled HTTP server response codes,
type of content, unique file distribution and, files’ reference behavior (temporal
locality and concentration of references). In [28], the authors proposed a behavior
based detection that can discriminate DDoS attack traffic from traffic generated
by real users. Their detection method relies on the repeatable features of the
packet arrivals. They used Pearson’s correlation coefficient to define a segregation

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 15

threshold between predictable and non-predictable data. They used [9] and [8]
datasets to test thresholds defined from simulated inter-arrival time data. This
work did not consider CDNs’ logs and consider traffic flows. The inter-arrival
time can be subject to other networking constraints like congestion, type of
content (e.g. Video) and cached and non-cached web objects. In addition, as any
correlation analysis, an error metric needs to be considered to support threshold
decision. In [29], the authors used also Pearson coefficient on users’ activity
through number of requests. In [30], the authors introduced a method to detect
application-layer DDoS attack based on the entropy of HTTP GET requests per
source IP address. They used adaptive auto-regressive model to transform time
series into a multi-dimensional vector, then, applied SVM classification to identify
the attacks. The authors utilized NS-2 simulator to create attacks ground truth
and considered World Cup 1998 Web dataset [9] for crowd events. The approach
is promising, however, the use of simulated data can be biased or noisy. None
of the mentioned studies considered patterns to build a crowd events detection
model.

In [25], the authors considered crowd events analysis, where they studied
two HTTP log traces collected from a popular TV show (24 hours) and Chilean
election site (approximately 33 hours). They showed that number of clients was
in the proportion of of request rate. They studied also the number of clients’
clusters during crowd events, the clusters overlap, and request rate, as well as
reference to files access. They also considered datasets representing password
cracking and five web servers disabling traces to characterize DoS attacks. They
looked at the same perspectives, clients and files, and drew upon results some
differentiation between crowd events and DoS. They proposed an enhancement
to CDNs, namely, adaptive CDN, by using collected trace-driven simulation to
study their enhancement. Despite the fact the study considered clustering clients,
it has not investigated temporal aggregation of counters to create a crowd event
detection model. In [26], the authors examined usage patterns, files’ characteristics
(popularity and referencing), transfer behaviors of YouTube, and compare them
to traditional Web and media streaming workload. The data were collected from
a university network, where staff and students accessed two Youtube’s points of
presence. This work focused more on usage patterns and file referencing without
elaborating predictive tasks. In [27], the authors differentiated DDoS and crowd
access flows by considering the fact that generated flows from DDoS tools can
be fingerprinted (high level of similarity), whereas crowd accesses are randomly
distributed (low level of similarity). The authors used Jeffrey distance, Sibson
distance, and Hellinger distance to measure the similarity among flows. They
concluded that Sibson distance is the most suitable, after applying experiments
on two distinctive datasets, Aukland VIII [7] representing crowd events and
Lincoln Laboratory DDoS scenario [8]. Despite the fact that the approach is
interesting, they used old datasets (collected on 2003 and 1999 respectively). As
explained above, none of the previous works, consider using a temporal set of
patterns as we use in our approach to detect crowd events.

16 Amine Boukhtouta et al.

In [31], the authors applied a discrimination algorithm based on a similarity
metric, namely, entropy variations to identify suspicious flows. They formulated
the problem in the Internet with botnets, and presented theoretical proofs for
the feasibility of their method. In this work, the authors relied on simulations to
prove their approach. For our work, we used a recent dataset collected from a
major operator, and applied a semi-supervised approach to profile crowd accesses.

5 Conclusion and Future Work

The distinction between crowd events and DDoS attacks is difficult, making it
of an increasing interest to CDN operators. In this paper, we applied a semi-
supervised approach on a sport league dataset collected from a major operator
to identify normal and crowd access patterns. The patterns are represented by
number request shifts during 1 and 5 minutes. We first used DBSCAN to group
normal accesses into a core cluster, a crowd accesses into low dense clusters and
singletons. By applying data augmentation, we balanced classification vectors
representing 1 minute and 5 minutes patterns. Then, we utilized XGBoost to
fingerprint crowd and normal accesses. The results of the classification (99%
accuracy) showed the great potential of our approach. We tested our approach by
applying it to unseen data. The approach detected abrupt changing patterns, even
though these change patterns do not have the same shape like the ones identified
in the training dataset. We believe our approach can be successfully used to
detect crowd events in other CDN environments. Despite of our initial good
results, the diversity of CDN environments would necessitate more investigation.
We frame our future works to consider other features described in Section 2.3 to
distinguish anomalies (e.g., DDoS) from crowd events. We will rely on patterns
found on unseen data to carry on this research. In addition, we plan to tweak
XGboost models to study the trade-off between their complexity and performance.
Moreover, we want to thoroughly test the classification model on additional data,
as well as deploy it in online mode.

References

1. C. Tianqi, and C. Guestrin. Xgboost: A scalable tree boosting system. Proceedings

of the 22nd ACM sigkdd international conference on knowledge discovery and data

mining. ACM, 2016.

2. C. Tianqi, T. He, and M. Benesty. Xgboost: extreme gradient boosting. R package

version 0.4-2 (2015): 1-4.

3. M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, No. 34,

pp. 226-231).

4. Cisco, Cisco Visual Networking Index: Forecast and Methodology 2016-2021.

Available at: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-481360.
html.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

Fingerprinting Crowd Events in CDNs: a Semi-Supervised Methodology 17

5. V. Stocker, G. Smaragdakis, W. Lehr and S. Bauer. The growing complexity of

content delivery networks: Challenges and implications for the Internet ecosystem.

Telecommunications Policy 2017, Elsevier.
6. The CAIDA UCSD “DDoS Attack 2007” Dataset. Available at: http://www.caida.

org/data/passive/ddos-20070804_dataset.xml.
7. WITS: Waikato Internet Traffic Storage. Available at: https://wand.net.nz/wits/

auck/8/
8. Lincoln Laboratory MIT. DARPA Intrusion Detection Evaluation. Available at:

https://www.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html
9. The Internet Traffic Archive, WorldCup98. Available at: http://ita.ee.lbl.gov/

html/contrib/WorldCup.html
10. C. Fachkha, E. Bou-Harb, and M. Debbabi. Fingerprinting Internet DNS Amplifi-

cation DDoS Activities. In the 6th International Conference on New Technologies,

Mobility and Security (NTMS), pages 1–5. IEEE, 2014.
11. C. Rossow. Amplification Hell: Revisiting Network Protocols for DDoS Abuse.

In Proceedings of the 21st Network and Distributed System Security Symposium

(NDSS), 2014.
12. D. Moustis, and P. Kotzanikolaou. Evaluating security controls against HTTP-based

DDoS attacks. Information, Intelligence, Systems and Applications (IISA), 2013

Fourth International Conference on. IEEE, 2013.
13. J. Erman, M. Arlitt, and Anirban Mahanti. Traffic classification using clustering

algorithms. Proceedings of the 2006 SIGCOMM workshop on Mining network data.

ACM, 2006.
14. T. Tran Manh, and J. Kim. The anomaly detection by using dbscan clustering

with multiple parameters. Information Science and Applications (ICISA), 2011

International Conference on. IEEE, 2011.
15. S. Shahaboddin, A. Amini, N. B. Anuar, M. L. M. Kiah, Y. W. Teh, and S. Furnell.

D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for

intrusion detection in wireless sensor networks. Measurement 2014.
16. A. Le Guennec, S. Malinowski, and R. Tavenard. Data augmentation for time

series classification using convolutional neural networks. ECML/PKDD Workshop

on Advanced Analytics and Learning on Temporal Data. 2016.
17. A. G Howard. Some improvements on deep convolutional neural network based

image classification. arXiv preprint arXiv:1312.5402 (2013).
18. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing systems.

2012,pp.1097–1105.
19. T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics

(2009). Springer.
20. K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press

(2012). Cambridge, MA.
21. L. Breiman. Arcing classifier (with discussion and a rejoinder by the author). The

annals of statistics 26.3 (1998): 801-849.
22. D. Nielsen. Tree Boosting With XGBoost-Why Does XGBoost Win Every Machine

Learning Competition?. MS thesis. NTNU, 2016.
23. A. K. Iyengar, M. S. Squillante, and L. Zhang. Analysis and characterization of

large-scale Web server access patterns and performance. World Wide Web 2.1-2

(1999): 85-100.
24. M. Arlitt, and T. Jin. A workload characterization study of the 1998 world cup

web site. IEEE network 14.3 (2000): 30-37.

http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://wand.net.nz/wits/auck/8/
https://wand.net.nz/wits/auck/8/
https://www.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

18 Amine Boukhtouta et al.

25. J. Jaeyeon, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of ser-

vice attacks: Characterization and implications for CDNs and web sites. Proceedings

of the 11th international conference on World Wide Web. ACM, 2002.

26. G. Phillipa, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization:

a view from the edge. In Proceedings of the 7th ACM SIGCOMM conference on

Internet measurement, pp. 15-28. ACM, 2007.

27. S. Yu, T. Thapngam, J. Liu, S. Wei and W. Zhou, Discriminating DDoS Flows

from Flash Crowds Using Information Distance, in Proceedings of the 3rd IEEE

International Conference on Network and System Security (NSS’09), 18-21 October

2009.

28. T. Thapngam et al. Discriminating DDoS attack traffic from flash crowd through

packet arrival patterns. Computer Communications Workshops (INFOCOM WK-

SHPS), 2011 IEEE Conference on. IEEE, 2011.

29. X. Chuan, C. Du, and X. Kong. An application layer DDoS real-time detection

method in flash crowd. In IACSIT Hong Kong Conferences, pp. 68-73. 2012.

30. T. Ni, X. Gu, H. Wang, and Y. Li. Real-time detection of application-layer DDoS

attack using time series analysis. Journal of Control Science and Engineering 2013

(2013): 4.

31. K. M. Prasad, K. Munivara, A. R. M. Reddy, and K. V. Rao. Discriminating ddos

attack traffic from flash crowds on internet threat monitors (itm) using entropy

variations. African Journal of Computing & ICT 6, no. 2 (2013): 53.

	Lecture Notes in Computer Science

