
HAL Id: hal-01954401
https://inria.hal.science/hal-01954401

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FlowConSEAL: Automatic Flow Consistency Analysis of
SEAndroid and SELinux Policies

B. S. Radhika, N. V. Narendra Kumar, R. K. Shyamasundar

To cite this version:
B. S. Radhika, N. V. Narendra Kumar, R. K. Shyamasundar. FlowConSEAL: Automatic Flow Con-
sistency Analysis of SEAndroid and SELinux Policies. 32th IFIP Annual Conference on Data and
Applications Security and Privacy (DBSec), Jul 2018, Bergamo, Italy. pp.219-231, �10.1007/978-3-
319-95729-6_14�. �hal-01954401�

https://inria.hal.science/hal-01954401
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


FlowConSEAL: Automatic Flow Consistency
Analysis of SEAndroid and SELinux Policies?

Radhika B S1, N V Narendra Kumar2, and R K Shyamasundar1

1 Indian Institute of Technology Bombay, Mumbai, India
{radhikabs184, shyamasundar}@gmail.com

2 Institute for Development and Research in Banking Technology, Hyderabad
naren.nelabhotla@gmail.com

Abstract. SELinux/SEAndroid policies used in practice contain tens of
thousands of access rules making it hard to analyse them. In this paper,
we present an algorithm for reasoning about the consistency of a given
policy by analysing the information flows implied by it. For this purpose,
we model SELinux policy rules using the Readers-Writers Flow Model
(RWFM). Using this model, our method identifies all possible indirect
flows due to a given policy that could lead to inconsistency. One of the
main features of the method is that it not only identifies inconsisten-
cies in the policy but also traces the rules that lead to inconsistency. To
distinguish between benign and vulnerable indirect flows, we further cat-
egorise the indirect rules that directly contradict neverallow rules in the
policy and hence have a high potential for information leak. We further
rank the rules and domains based on the number of policy violations
they cause. We have also implemented a tool FlowConSEAL based on
the above method and have applied it on various SELinux/SEAndroid
policies for providing a succinct feedback to the user.

1 Introduction

In this digital era, protecting data from intentional and unintentional misuse has
become a major concern. Security of Operating System (OS) plays a vital role
in data protection and privacy. With Linux kernel forming the core of a wide
range of computing devices ranging from mobile phones to supercomputers, its
security is of paramount importance. Over the years, several efforts have been
made to enhance the security of Linux, SELinux [1] being a prominent example.

Traditionally, Linux supports Discretionary Access Controls (DAC) where
access decisions are taken based on the user identity and the permission bits of
the object. It is well known that DAC alone is not powerful enough to effectively
protect the system because of its inherent weaknesses.

SELinux introduced Mandatory Access Controls (MAC) to overcome DAC's
drawbacks and enhance security through fine-grained access control. It does

? We thank Asokan N, Elena R and Filippo B for their invaluable insights on SE-
Android policy analysis and for sharing SEAndroid policies in early stages of the
work.



so by labeling every entity in the system such as files, sockets, processes etc.
and specifying a policy to control accesses based on the labels of subjects and
objects involved in actions. In addition to providing better protection against
unauthorized accesses, SELinux also helps in confining the attack in case of
a breach. From Android 4.3 onward SELinux is also being used in Android
(referred to as SEAndroid) to provide better application sandboxing and fine-
grained access control3.

In SELinux systems, a well-written policy is the key to protecting the sys-
tem resources against security threats. However, as these policies get larger and
complex, assuring the consistency of all the rules and information flows allowed
by them becomes difficult. Currently, the tools [2] used for writing and analysing
these policies are not sufficient for detecting information leaks in them. In this
paper, we describe a method to analyse information flows implied by a given
SELinux policy, and verify their consistency with respect to the accesses in the
given policy. The main contributions of the paper are:

1 Automatically analysing consistency of SELinux policies via implied infor-
mation flows (IF), enabling the policy writers in preventing IF leaks.

2 Identifying and producing evidence for indirect IFs which violate neverallow
rules specified by the policy.

3 Identifying security critical rules and domains (group of processes).
4 Implementation of the tool FlowConSEAL to demonstrate the effectiveness

of our approach by applying it on various real-life policies.

In the rest of the paper, background is provided in section 2, followed by
the need for IF analysis of SELinux policies in section 3. Our approach and
experimental analysis are given in section 4 and section 5 respectively. Discussion
on related work is presented in section 6. Conclusions are presented in section 7.

2 Background

2.1 SELinux

SELinux is a MAC system implemented using Linux Security Module (LSM)
framework [3]. LSM modules work on top of Linux's built-in DAC and enhance
its security. In an SELinux system, every subject (active entities like processes)
and object (passive entities like files,sockets etc.) is assigned a label which con-
sists of four fields corresponding to SELinux user, role, type and an optional level
and it is denoted as user:role:type[: level]. The third field type represents
the logical grouping to which the entity belongs (type of a subject is commonly
referred as a domain). Although SELinux supports policies based on both type

field (Type Enforcement policy) and level field (MLS, MCS policies), Type
Enforcement (TE) policies are the most commonly used. The analysis presented
in this paper is focused on SELinux TE policies.

3 As SELinux and SEAndroid policies have the same syntax, our approach is applicable
to both families.



TE policy supports several types of rules. In this paper we are concerned
with two predominant rules - allow and neverallow. Every time a subject at-
tempts to perform an action on an object, a request is sent to the SELinux
module. Access decision is taken based on the subject and object's label. By
default, every access is denied. allow rules are used to explicitly grant access
permission. Unlike allow, the neverallow rules are used at policy compilation
time to ensure that there are no corresponding allow rules. The general syntax
of these rules is rule source target:class permissions where rule repre-
sents the rule name, source represents the type of the subject requesting the
access, target represents the type of the object which is being accessed, class
represents the category of the object (such as file, pipe etc.) and permissions

denote actions associated with the object class.

2.2 Readers-Writers Flow Model (RWFM)

In a MAC system, we can ensure information flow security by employing a suit-
able formal information flow model and ensuring that the MAC policy conforms
to the model. In this paper, we use RWFM [4] model to capture the information
flows in a given SELinux policy. RWFM is a powerful lattice-based information
flow model based on Dennings model [5]. It can be used to provide both confi-
dentiality and integrity. It supports dynamic labeling and declassification. Also,
it can capture several well-known models like BLP[6], Biba[7] etc. Its labeling
and access rules are described below.

Labeling: Let S and O be the set of subjects and objects in the system
respectively. An RWFM label, also called as RW Class is defined as a triplet
(s,R,W ). Where s ∈ S denotes the owner of the information in the class. R ∈ 2S

denotes the set of subjects which can read the objects of the class. W ∈ 2S

denotes the set of subjects which can write or which have influenced the class.
Access Rules: Let owner(x), R(x) and W (x) be the functions mapping

S ∪ O to the owner, readers and writers components of the label respectively.
Under the above labeling model, access rules of RWFM are specified as follows:

– A subject s is allowed to read an object o if owner(s) ∈ R(o) and R(o) ⊇ R(s)
and W (o) ⊆W (s)

– A subject s is allowed to write an object o if owner(s) ∈ W (o) and R(s) ⊇
R(o) and W (s) ⊆W (o)

3 Consistency Problem of SELinux Policies

In this section, we explain the indirect and contradictory rules and the associated
security concern. Consider the following set of rules R:

1 neverallow mozilla t security t:file write;

2 allow mozilla t user home t:file write;

3 allow sysadm sudo t user home t:file read;



4 allow sysadm sudo t security t:file write;

The second rule in R permits mozilla t to write to user home t:file. The
third rule allows sysadm sudo t to read from user home t:file, and the last
rule allows sysadm sudo t to write to security t:file. When actions permit-
ted by the last three rules are performed in that sequence, mozilla t can write
some data into user home t file, and sysadm sudo t can then read this content
and write it into a security t file. As a result, mozilla t can indirectly write
to a security t file which the policy writer intended to prevent using Rule 1.

SELinux enforcement of the policy fails to prevent such accesses because
it only controls individual accesses, and does not take the information flows
caused by these actions into account. Whenever a subject performs an action on
an object, the action results in an information flow between them. The direction
of such flow depends on the nature of the action. In case of a read, information
flows from the object to the subject, whereas in case of a write, flow is from
the subject to the object. When multiple actions are performed, the resulting
information flow lead to unintended accesses.

The main objective of this paper is to identify all potential indirect accesses
caused by chaining legal accesses of a policy. However, not all of them necessarily
lead to a security breach. We focus only on the set of indirect accesses which
have corresponding neverallow rules in the policy similar to the the indirect
access resulted due to rules 2-4 in R which contradicts rule 1. Such rules allow the
accesses explicitly denied by the policy writers and hence are obviously a security
concern and need to be further analysed. We call such rules as contradictory
rules and study their impact on security. Our analysis provides useful feedback
to policy writers which can be used to better understand the impact of their
rules and develop flow secure policies.

4 SELinux Policy Analysis: Our Approach

Our approach has five main steps that are described in detail below:
Step 1: Canonicalization of rules
In practice, a rule may contain sets of domains, types, object classes and per-
missions. In such cases, a single rule corresponds to multiple accesses, one for
each (domain, type, class, permission) combination in the rule. To understand
the effect of each individual access on the information flow, it is necessary to
consider each such combination as a separate rule. So we canonicalize rules such
that each resulting rule corresponds to a single access. It will help us extract
precise information such as the rules responsible for an indirect flow, number of
indirect rules caused by each domain and so on. Further, to clearly differentiate
between objects of same type but different object classes, we use both type and
class to uniquely identify such combinations. In the rest of the paper we use the
term “object type” to refer to this combination unless specified otherwise. We
define a function canonicalize() which takes a policy as input and returns the
set of corresponding canonicalized rules.



Consider the following simplified policy P consisting of set of domains D =
{d1, d2}, set of object types T = {t1, t2}, and permissions r and w which corre-
spond to read and write operations respectively.
Policy Rules in P
1 allow d1 t1 {r, w}
2 allow d2 t2 {r, w}
3 allow d1 t2 {w}

Canonicalized Rules of P
1 allow d1 t1 r
2 allow d1 t1 w
3 allow d2 t2 r
4 allow d2 t2 w
5 allow d1 t2 w

Step 2: Extraction of labels of object types
In our analysis, we consider information flows between domains and object types
in terms of RWFM rules. For this, we first need to assign RWFM labels to the
domains and object types. Since we are working at the granularity of domain/ob-
ject types, we ignore the owner field of the RWFM label. Thus the labels are of
the form (R, W), where R stands for readers and W for writers/influencers.

For extracting readers and writers of any object type, we need to find the set
of domains which have read and write permissions for that object type respec-
tively. We do this by iterating over all the allow rules in the policy. For each
allow rule of the form allow d t r, we add d to R(t) and for allow d t w, we
add d to W (t). This procedure is described in Algorithm 1.

At present, we focus only on read and write permissions in the policy since
they are the high bandwidth channels. Other permissions can be mapped into
either read or write depending on whether they cause outward or inward in-
formation flow. Our implementation is generic and can use such mappings to
consider any permission of interest.

On applying Step 2 on the set of rules obtained from Step 1, t1's label will
be ({d1}, {d1}) and t2's label will be ({d2}, {d1, d2}).

Algorithm 1: LabelObjectTypes

Data: Canonicalized policy rules
Result: Labels (Lot) of all the object

types in the policy

foreach t ∈ T do
R(t) = W (t) = {}

end

foreach rule “allow d t perm” do
if perm = r then

R(t) = R(t) ∪ d
else if perm = w then

W (t) = W (t) ∪ d
end

end

Algorithm 2: LabelDomains

Data: Canonicalized policy rules and
Lot

Result: Labels (Ld)of all the domains
in the policy

foreach d ∈ D do
R(d) = W(d) = D

end
foreach t ∈ T do

foreach d ∈ R(t) do
R(d) = R(d) ∩ R(t)

end
foreach d ∈ W(t) do

W(d) = W(d) ∩ W(t)
end

end

Step 3: Extraction of labels of domains
Once the labels of object types are obtained, we use them to derive labels for
domains in the policy. Algorithm 2 describes this procedure. Here we start with
the universal set of domains for reader and writer sets. For each object type t
which contains d in its reader set, we update the R(d) as the intersection of R(t)
and R(d). Since read operation causes information flow from object to subject,
as per RWFM rule, the label of the domain (subject) should dominate the label



of the type (object). For this, R(d) ⊆ R(t) should hold. Hence we update R(d)
as R(d)∩R(t). Similarly, when a domain d is in writer set of an object type t, we
update W (d) as W (d)∩W (t). On applying this algorithm on the sample policy,
label of d1 will be ({d1}, {d1}) and label of d2 will be ({d2}{d1, d2}).
Step 4: Identification of indirect accesses
Once we have the labels for all the object types and domains in the policy, we
apply the following RWFM access checks on each allow rule in the policy:

d ∈ R(t)⇒ (R(t) ⊇ R(d)) ∧ (W (t) ⊆W (d)) (1)

d ∈W (t)⇒ (R(d) ⊇ R(t)) ∧ (W (d) ⊆W (t)) (2)

These checks help us verify whether the information flows caused due to the
accesses respect the permissions specified in the policy. Algorithm 3 describes
the procedure used for the checks.

Algorithm 3: AccessRuleChecks

Data: Canonicalized policy rules and labels of object types (Lot) and labels of all domains
(Ld)

Result: Set of rules corresponding to indirect flow
IndirectRulesSet = {}
foreach rule “allow d t perm” do

if perm = r AND W (t) 6⊆ W (d) then
foreach d1 ∈ (W (t)−W (d)) do

foreach t1 which has d ∈ W (t1) do
IndirectRulesSet = IndirectRulesSet ∪ {allow d1 t1 w }

end

end

else if perm = w AND R(d) 6⊇ R(t) then
foreach d1 ∈ (R(t)− R(d)) do

foreach t1which has d ∈ R(t1) do
IndirectRulesSet = IndirectRulesSet ∪ {allow d1 t1 r }

end

end

end

end

With the label derivation methods described in Step 2 and 3, we can say
that the conditions R(t) ⊇ R(d) in (1) and W (d) ⊆ W (t) in (2) will always be
satisfied. Hence, we check only the remaining conditions. Failure to satisfy these
conditions imply the presence of indirect flows. i.e if the condition W (t) ⊆W (d)
fails in (1), then all the domains in (W (t)−W (d)) can indirectly write to all the
types that d can write. Similarly, if (R(d) ⊇ R(t) in the above condition fails,
that means that all the domains in (R(t) − R(d)) can read everything that d
can read. We construct allow rules corresponding to these indirect accesses and
store them in IndirectRulesSet. Applying these checks to our sample policy will
show that the check fails at rule 5. Here R(d1) 6⊇ R(t2). Hence d2 can read t1
even though there is no rule granting this permission.

The steps described above can detect only one level of indirection i.e indirect
flows via a single pair of subject and object. However, there can be multiple
levels of indirect flows. For example, if we add rules allow d3 t3 {r, w} and
allow d2 t3 {w} to our example policy, it would lead to a two level indirection.
To find multi-level indirect flows, we first need to add the first level indirect rules
identified i.e rules in IndirectRuleSet to our policy rules and repeat Step 2 to



Step 4. We do this until there are no more indirect flows caused by the rule set.
Algorithm 4 describes this procedure.

Algorithm 4: SELinuxPolicyConsistencyCheck

Data: SELinux policy P
Result: Set of all possible indirect allows
consistent = False
RuleSet = Canonicalize(P)
while not consistent do

Lot = LabelObjectTypes(RuleSet)
Ld = LabelDomains(RuleSet, Lot)
IndirectRuleSet = AccessRuleChecks(RuleSet, Lot, Ld)
if IndirectRuleSet is ∅ then

consistent = True
else

RuleSet = RuleSet ∪ IndirectRuleSet
end

end

For each rule in the RuleSet, along with the rule components, we store the
iteration number in which the rule was generated (Iteration), set of rules causing
the rule (Cause), and whether the rule is contradiction or not (Contradiction).
Step 5: Extraction of crucial information
In this step we extract the following information by using the data collected in
the previous step:
Analysing individual rules: Here we try to understand the impact of each
policy rule on flow security. We count the number of contradictions caused by
each rule in the policy. Higher the number for a rule, larger is its potential to
cause harm.
Analysing Domains: Here we study each domain in the policy and count
the contradictions caused by them. The domains are then ranked based on this
count. This information helps the system developers to understand the priorities
that should be given while developing the processes in those domains.
Analysing indirect accesses: As seen in the earlier sections, a one-level in-
direction between a subject-object pair is caused by chaining of 3 accesses. For
each such indirection, we store the rule corresponding to the second access as
the causing rule. This helps in generating the complete sequence of rules causing
a particular indirection. We can use this procedure recursively to determine a
complete sequence of original policy rules causing any multi-level indirection.
Remarks: Given a general access matrix model [8] along with the assertion
that a certain subject s can acquire a right ‘x’ on object o, it is of interest4 to
generate a command/rule sequence that could lead to the new state from the
original state of the access matrix. From the given access rules, FlowConSEAL
generates the new rights acquired by processes along with the sequence of rules
required for realizing that right.

5 Experimental Analysis and Illustration

We have implemented FlowConSEAL using Python 2.7. Our implementation
and experiments are performed on Ubuntu 16.10 running on a virtual machine

4 Note that it is a specific problem instance rather than the ‘safety problem’



configured with 64GB RAM. We demonstrate the effectiveness of FlowConSEAL
on two policies, the Reference policy (refpolicy- 2.20170805)5 which is the
base policy used by all the Linux distributions for developing their SELinux
policies and the SEAndroid policy provided as part of the Android Open Source
Project (AOSP) tree in Android 7 6.

5.1 Analysis of Policies by FlowConSEAL

Here we provide a brief7 analysis of the above two polices obtained through
FlowConSEAL as depicted in Table 1.
Number of types, object classes and permissions: SELinux doesn’t have
any predefined types whereas object classes and associated permissions are pre-
defined. Policy writers define types based on the resources and services they want
to confine and the overall security goals. Larger number of types help specifying
fine-grained rules. But with increase in types, associated rules also increase dras-
tically and the policy management becomes difficult. As general purpose Linux
systems provide comparatively large number services and resources, naturally,
SELinux Reference policy contains larger number of types, object classes and
permissions than Android’s AOSP policy.
Number of canonicalized allow and neverallow rules: Our tool parses
the policy only once and stores the canonicalized allow and neverallow rules
separately. All further processing is done on these rules. Hence performance of
the tool depends on the number of allow and neverallow rules.

Reference Policy AOSP Policy

Policy size 3.3MB 521.6kB

Number of types 1276 612

Number of object classes 127 63

Number of permissions 447 286

Number of canonicalized allow rules 10374 24418

Number of canonicalized neverallow rules 22893 2369117

Number of iterations 2 1

Number of indirect rules generated 232189 244466

Number of contradictions 1545 11529

%of indirect allows that are contradictions 0.665 4.715

%of neverallows that are contradictions 6.75 0.486

Execution time 41 min 3 min
Table 1. Experimental analysis

Number of iterations: Number of iterations required to generate all possible
indirect rules indicates the levels of indirect flows present in the policy. AOSP
policy conforms to RWFM check in its second iteration i.e., it contains only

5 https://github.com/TresysTechnology/refpolicy
6 https://android.googlesource.com/platform/manifest/
7 A full extended report on FlowConSEAL is available at

http://isrdc.iitb.ac.in/reports/isrdc-tr-2018-rks-rbs-selinux-static.pdf.



single level of indirection. However, note that the Reference policy contains two
levels of indirection.

Number of indirect and contradictory rules: The tool identifies all possible
indirect information flows. As we can see in the table for both the policies, these
rules are in hundreds of thousands in number. In order to avoid false positives and
reduce these rules to a manageable subset, we consider only the contradictory
rules. Larger the number of contradictions, weaker is the security of the policy.
From the table, the Reference policy has lower number of contradictions even
though it has large number of indirect flows.

Percentage of indirect allows that are contradictions: This factor indi-
cates the extent to which indirect rules can be exploited to cause policy vi-
olations. Theoretically, for perfect security, this number should be zero. The
Reference policy with only 0.665% of its indirect allows causing contradiction,
prove to be much more stronger against policy violations using indirect allows.

Percentage of neverallows that are contradictions: This factor indicates
the extent of potential policy violations. Larger the percentage, weaker is the se-
curity. From the table, we can notice that in case of the AOSP policy only 0.486%
of neverallows can be violated using the indirect rules. Hence comparatively,
this is a well written policy with respect to information flow.

Execution time: From the table, we can see that the execution time especially
that for the Reference policy is considerably high. However, considering the large
size of the policy and the size of the meta data being generated (10 GB in case
of the Reference policy), and the fact that this analysis is performed only once,
we can say the tool is quite useful.

Number of contradictory rules generated by each rule: This is useful
for understanding the impact of each rule on the flow security. Tables 2 and
3 show the top 3 allow rules along with the number contradictions that they
cause (Ctdr Count) in the Reference and AOSP policy respectively.

Domain Ranking: Here the number of contradictions caused by each domain
is counted. Using this, we can get the domains which have high potential to be
exploited to gain an unauthorized access. Therefore subjects in these domains
need to be designed and implemented carefully. From our experiments, we no-
ticed that high ranking domains are mostly system processes and daemons which
are trusted by the system. However, considering the large number of policy vi-
olations that we have observed, it is important that these contradictions are
carefully analysed, and the processes running in these domains are thoroughly
verified to be safe against any attacks leading to those contradictions.

Allow Rule in the RuleSet Ctdr Count

systemd tmpfiles t device t:lnk file write 468

udev t device t:lnk file write 468

getty t devlog t:sock file read 146

Table 2. Ctdr count (Reference Policy)



Allow Rule in the RuleSet Ctdr Count

init cgroup:dir read 5166

init urandom device:chr file read 5166

system server cgroup:dir read 927

Table 3. Ctdr count (AOSP Policy)

6 Related Work

Preventing unauthorized information flows (IF) is crucial for ensuring security.
Uzun et al. [9] propose a method for preventing unauthorized IF in access matrix
model based DAC systems. They identify one-step transitive flows and elimi-
nate them by revoking necessary permissions; FlowConSEAL not only identifies
multi-level indirections, but also provides a sequence of rules that lead to each
indirect flow.

Over the years, several tools have been developed to understand and anal-
yse SELinux policies [2]. SETools [10] is one of the commonly used collection of
tools. It provides several tools for searching rules, comparison of policies and, IF
analysis which is limited to listing all the flows between domains specified by the
user. Unlike FlowConSEAL, it does not support verification of flows against a
security model or checking if the indirect flows are contradicting any neverallow

rules. PAL [11] is a logic programming tool that supports SELinux policies by
first translating them into a logic program. The user needs to construct appro-
priate queries to analyse the policy. Thus, the onus is on the user to come up
with properties as queries which is not an easy task. In comparison, FlowCon-
SEAL yields the possible indirect flows, contradictions etc., without any user
intervention.

Gokyo [12] analyses integrity of the “Example policy” using manually speci-
fied high integrity types as Trusted Computing Base (TCB). The tool considers
only one level indirection between TCB types and non-TCB types, and checks
for conflicts between the integrity goal and the policy rules. Similarly, SCIA-
Tool[13] also analyses integrity conflicts between TCB and non-TCB entities
using colored Petri-nets.

Several visualization-based SELinux policy analysis tools [14–16] have been
developed to help policy writers to better understand the policies. Gove [14]
presents a tool for understanding and comparing SELinux/SEAndroid policies
by creating graph representations. SPTrack [16] helps visualize SELinux policies
as well as its attack logs to track IF. SEGrapher [15] generates cluster-based
focus-graphs of policies based on clustering.

Several tools have been developed specifically for SEAndroid policy analysis.
[17], analyses SEAndroid policies from Android 5.0 devices from a number of
OEMs and identify patterns of common problems. SELint [18] is an extensible
tool built to help policy writers in writing secure SEAndroid policies. It's built-in
plug-ins mainly focus on making a policy more compact and readable and identify
potentially dangerous rules by assigning a risk score to each rule. The risk score of
a rule is computed based on the risk level and trust level of the rule components
whose values are policy-dependent and need to be manually configured by the



policy writers. A semi-automated tool to identify potential SEAndroid policy
misconfigurations is presented in [19]. EASEAndroid [20] analyses SEAndroid
policies using large-scale semi-supervised learning.

To sum up, FlowConSEAL provides a succinct analysis of SELinux policies
and enables the user to decide on benign and vulnerable indirect flows. One
distinct characteristic of FlowConSEAL is that it works like a “pushbutton”
tool unlike others that need user supplied abstraction of queries/properties.

7 Conclusions

In this paper, we have presented an efficient method and a tool FlowConSEAL to
analyze information flows in SELinux/SEAndroid policies. Our method verifies
the consistency of the policies in terms of indirect flows and helps in identi-
fying potential vulnerabilities. Furthermore, we also rank the policy rules and
domains based on their potential to misuse information. The tool enables the
policy writers to understand the security loopholes in the policy and handle them
appropriately to protect systems against flawed and malicious applications. The
experimental results demonstrate the effectiveness of the method. One of the
distinct advantage of using RWFM model is its capability to capture all the
influencers succinctly.

References

1. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the
linux operating system. In: USENIX Annual Technical Conference. (2001) 29–42

2. Eaman, A., Sistany, B., Felty, A.P.: Review of existing analysis tools for selinux
security policies: Challenges and a proposed solution. In: MCETECH Proceedings.
(2017) 116–135

3. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux security
modules: General security support for the linux kernel. In: USENIX. (2002) 17–31

4. Kumar, N.V.N., Shyamasundar, R.K.: A complete generative label model for
lattice-based access control models. In: SEFM (2017). Volume LNCS 10469. 35–53

5. Denning, D.E.: A lattice model of secure information flow. CACM 19(5) (1976)
236–243

6. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations.
Technical Report MTR-2547-VOL-1, MITRE CORP BEDFORD MA (1973)

7. Biba, K.J.: Integrity considerations for secure computer systems. Technical Report
MTR-3153-REV-1, MITRE CORP BEDFORD MA (1977)

8. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems.
Communications of the ACM 19(8) (1976) 461–471

9. Uzun, E., Parlato, G., Atluri, V., Ferrara, A.L., Vaidya, J., Sural, S., Lorenzi, D.:
Preventing unauthorized data flows. In: LNCS 10359, DBSEC 2017 41–62

10. TresysTechnology: Setools: Policy analysis tools for selinux. https://github.com/
TresysTechnology/setools Accessed: Nov, 2017.

11. Sarna-Starosta, B., Stoller, S.D.: Policy analysis for security-enhanced linux. In:
WITS Proceedings. (2004) 1–12



12. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in the selinux
example policy. In: USENIX Security Symposium-Volume 12. (2003) 5–5

13. Zhai, G., Guo, T., Huang, J.: SCIATool: a tool for analyzing selinux policies based
on access control spaces, information flows and cpns. In: INTRUST, Springer
(2014) 294–309

14. Gove, R.: V3SPA: A visual analysis, exploration, and diffing tool for selinux and
seandroid security policies. In: IEEE VizSec. (2016) 1–8

15. Marouf, S., Shehab, M.: SEGrapher: Visualization-based SELinux Policy Analysis.
In: Symposium on Configuration Analytics and Automation, SafeConfig. (2011)

16. Clemente, P., Kaba, B., Rouzaud-Cornabas, J., Alexandre, M., Aujay, G.: SPTrack:
visual analysis of information flows within selinux policies and attack logs. In:
Active Media Technology, Proceedings. (2012) 596–605

17. Reshetova, E., Bonazzi, F., Nyman, T., Borgaonkar, R., Asokan, N.: Characterizing
SEAndroid policies in the wild. In: ICISSP. (2016) 482–489

18. Reshetova, E., Bonazzi, F., Asokan, N.: Selint: An seandroid policy analysis tool.
In: ICISSP. (2017) 47–58

19. Chen, H., Li, N., Enck, W., Aafer, Y., Zhang, X.: Analysis of SEAndroid Policies:
Combining MAC and DAC in Android. In: ACM ACSAC. (2017) 553–565

20. Wang, R., Enck, W., Reeves, D.S., Zhang, X., Ning, P., Xu, D., Zhou, W., Azab,
A.M.: EASEAndroid: automatic policy analysis and refinement for security en-
hanced android via large-scale semi-supervised learning. In: USENIX Security
Symposium. (2015) 351–366


