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Abstract. Modern applications of Al systems rely on their ability to
acquire, represent and process expert knowledge for problem-solving
and reasoning. Consequently, there has been significant interest in both
industry and academia to establish advanced knowledge management
(KM) systems, promoting the effective use of knowledge. In this paper,
we examine the requirements and limitations of current commercial KM
systems and propose a new approach to semantic reasoning supporting
Big Data access, analytics, reporting and automation related tasks. We
also provide comparative analysis of how state-of-the-art KM systems
can benefit from semantics by illustrating examples from the life-sciences
and industry. Lastly, we present results of our semantic-based analytics
workflow implemented for Siemens power generation plants.

Keywords: knowledge management, semantic technology, data-access,
analytics, automation

1 Introduction

It is well established today that knowledge is the core element of any Al based
system, be it small robots like roomba [1] or large-scale applications such as IBM
Watson [2]. Consequently, the transition of the global economy towards knowl-
edge economy is an evident and prominent process in our information society.
Even small-scale industries today value knowledge resources and use them for
gaining a competitive edge. From a research and technology view point, much
progress has been made in enabling information systems to leverage knowledge
for decision-making and analysis. The scope of these systems is to construct,
manage, share and process the applicable knowledge for their respective tasks.
For example, KM systems are build to not only manage large repositories of
biomedical data coming in from lab reports, patient records, research papers,
and medical imaging, but also to store and analyze useful patterns and knowl-
edge from them [3]. Nevertheless, implementing such a KM system is complex

* This research is supported by the Optique project with the grant agreement FP7-
318338.
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and incorporates multi-faceted concepts from various disciplines and business
practices. For instance, information scientists consider taxonomies, subject head-
ings, and classification schemes to represent knowledge, whereas consulting firms
actively promote practices and methodologies to capture corporate knowledge
assets and organizational memory. In the biomedical industry, knowledge man-
agement practices often need to leverage existing clinical decision support, infor-
mation retrieval, and digital library techniques to capture and deliver tacit and
explicit biomedical knowledge [3]. Engineers, on the other hand rely on knowl-
edge and data-driven strategies for design, manufacturing and maintenance of
their artifacts. According to KPMG and the Conference Board [4], 80 percent of
the world’s biggest companies have knowledge management efforts under way,
especially in the medical domain. Nevertheless, the full potential of KM sys-
tems is yet to be unlocked. Specifically, the challenges with respect to knowledge
representation, search, integration, data-access and reasoning etc. are well un-
derstood in the research community but existing solutions have rarely resulted
in widely adopted practical implementation. In this paper, we discuss require-
ments and limitations of the existing semantic and non-semantic solutions for
KM and propose a new approach to semantic-based knowledge management that
does not only enhance the feature set and usability but also supports analytics,
reporting workflows, automation and big data infrastructures. In Section 2, we
present the related approaches and further discuss ontology-based KM systems
in Section 3. Section 4 and 5 presents success stories from the healthcare and en-
gineering domain along with their extended requirement set. Section 6 describes
the current challenges for semantic approaches and in Section 7 we propose our
solution along with the results from Siemens Turbo-machinery use-case.

2 Related Approaches

Building and using KM system involves many tasks, see Figure 1. First and fore-
most is knowledge acquisition and representation, into which the scientific com-
munity has invested much time and effort. Knowledge engineering [5] methodolo-
gies for building expert systems have applied knowledge acquisition techniques
(e.g. interviewing, protocol analysis, simulation, personal construct theory, card
sorting, etc.) for eliciting the tacit knowledge from domain experts. Knowledge
acquisition techniques are applied in order to develop knowledge repositories
in knowledge management systems for formally documenting knowledge in a
machine-processable way. To represent knowledge, a knowledge taxonomy and
knowledge mapping are typically constructed for serving as a framework for
building knowledge repositories [5]. Ontologies and ways for representing ac-
quired knowledge (rules, cases, scripts, frames/objects, semantic networks, etc.)
are typically created in the Al field for building expert and other intelligent
systems [6]. Natural language and speech understanding front-ends as interfaces
to knowledge management systems are important additions to enhance search
over and dissemination of knowledge. Data mining and knowledge discovery
techniques are employed to inductively look for trends, relationships, clusters
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Fig. 1. Different facets of knowledge management systems

and possibly new insights and information from knowledge repositories [8]. On-
line communities with a common interest in knowledge management are ways of
sharing and distributing knowledge. Intelligent agents on the other hand are also
applied to analyze the knowledge, email, web pages, and the like and to dissem-
inate appropriate summaries or individual pieces of information and knowledge
to those who should best make use of it [7].

Limitations Most previous works on KM systems has focused on its success fac-
tors [11], [9] and [10]. There are a few studies on challenges or limitations to KM
systems [12], [13], [14]. However, they often offer intrinsic business value but KM
systems do not always improve organizational performance because there exist
some discrepancies between innovation and performance. We classify the require-
ments and limitations into two types: technological factors and social/cultural
factors involving people [15]. Following are the significant weaknesses of current
KM systems:

i) Searching often ignores context in current KM system. Applications
today provide key-word based search functionalities that often retrieve irrel-
evant information when terms have different meaning in different context or
fail to relate different pieces of information into a meaningful context.

ii) Inefficient access and integration of information is a major challenge
in current systems. Human browsing and reading is required to extract and
integrate information from different sources. Existing KM systems rely on
labor intensive extract-transform-load jobs because the automatic agents
do not integrate and possess common sense knowledge required to extract
information from heterogeneous sources.

iii) Maintaining knowledge is the main pain points of the state-of-the-art. It
becomes difficult and time-consuming activity when the knowledge reposito-
ries become large or reach the level of Big Data infrastructures, for instance,
hadoop clusters, teradata warehouse etc. Existing solutions lack transparency
and usability with domain oriented interfaces as well as find it difficult to
keep the knowledge consistent, correct and up-to-date. If the so called ’grain
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size’ of the knowledge representation is chosen properly (i.e. small enough
to be comprehensible but large enough to be meaningful to the domain ex-
pert) then the KM system will allow great flexibility for adding, removing
or changing as well as querying knowledge in the system.

Generation of documents and reports is too cumbersome and slow pro-
cess to execute in any industrial setting. Whereas, automated and context-
aware authoring can be of greater advantage in enabling content according
to user profile or other aspects of relevance. The generation of such infor-
mation presentation would require machine-accessible representations of the
semantics of the information sources.

Lack of shared understanding, is another aspect which involves how
people, organization and KM systems communicate with one another. It is
obvious that each stakeholder has different needs and background context.

2090
(.Y ]

Train

Turbine
% Assembly Turbina /'.‘

\\llllll/

Fig. 2. Different naming but same semantics

Figure 2. represents a real-life example where a diverse set of users use dif-
ferent jargon in different languages to define the same concept or subject
matter, that is Siemens Gas turbine in this case. This lack of shared un-
derstanding leads to disparate modelling methods, paradigm, languages and
software tool which ultimately limits interoperability, reuse and sharing.

Semantic-based Knowledge Management System

The vision of semantic technologies is to provide human-readable artifacts an-
notated with meta-information. This meta-information defines what the artifact
is about in a machine-processable way. Ontologies are at the core of seman-
tic technologies. Ontology is a formal explicit description of concepts, relations
and properties of a domain. Knowledge in ontologies can be formalised using
five kinds of components: classes, relations, functions, axioms and instances [17].
The meta-information together with domain ontologies provides an arena of
knowledge-driven systems and automated services such as information access,
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Fig. 3. Semantic Solution to knowledge management systems

reasoning services etc. It facilitates knowledge sharing and re-use and offers a
wide feature set to support knowledge management capabilities. Figure 3. de-
scribes the unifying semantic architecture where ontologies are used throughout
the knowledge management life cycle.

Ontologies are populated in an automated or semi-automated fashion from
heterogeneous data sources. This serves the purpose of knowledge acquisition.
This utility helps users to relate or map their domain concepts with the data
model underneath and extract relevant information when required without per-
forming cumbersome ETL jobs. As knowledge is acquired, it is then represented
in an ontology language. The ontology language (for example: ontology web lan-
guage - OWL, RDF etc.) is able to represent domain knowledge with a clear
semantics as well as to provide redundancy or inconsistency checks. Knowledge
maintenance is simplified by following standard design and modular approach
to build and manage semantic models. Finally, the knowledge is made avail-
able to the end-user by means of semantic-based search, sharing, summarizing,
visualization and organization.

3.1 Benefits of using ontologies

A key advantage of ontologies over many other knowledge representation for-
malisms is their formally well-defined semantics. They specifically support sub-
sumption relations, multiple view points and hierarchies including partonomies,
and inferred relationships. Ontology inference engines are used to derive implicit
knowledge from explicit statements, detect redundancies and inconsistencies, and
discover relationships that may not have been clear to the author of the ontology
in the first place [17]. Currently, the most commonly used ontology formalism
is OWL and its sub-languages. Some additional characteristics of ontology [22]
addressing key challenges in the KM domain are:

— Ontologies clarifies the structure of knowledge and domain for an effective
KM system.
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— They separate factual knowledge about the domain from problem-solving
knowledge.

— They facilitate sharing and re-using knowledge as well as interoperability of
information resources between humans and software agents.

— They make searching, querying and browsing information more effective. For
instance, a web site or a corporate intranet can organise its content accord-
ing to some ontology which then can be utilised to improve the quality of
searches. For instance, generalisation or specialisation of information can
help in assisting users. It is a short distance from general search applications
to knowledge management applications. One of the big challenges in knowl-
edge management is to find knowledge and information that is relevant, and
here ontologies have a lot of potential.

— They promote ease of maintenance of knowledge models and artefacts in KM
system. The unified semantic solution can keep the information up-to-date
with minimum extra effort, and the link between different types of knowledge
can be examined by means of automated well-defined procedures.

— They provide a layer of abstraction over KM system services and are able to
integrate heterogeneous knowledge resources. Various applications of ontology-
based data access and integration are success stories in many industrial use-
cases.

4 Healthcare Use-Case

Expert systems in the healthcare domain dates back to the early 70s, when the
MYCIN program was developed to support consultation and decision-making.
This expert system relied on expert knowledge in form of IF-THEN rules. Creat-
ing and encoding these rules was a time-consuming and labor-intensive process
[3]. Later, medical terminologies were represented as ontologies along with many
AT techniques such as data-mining, text mining, natural language processing
etc. A prominent development is the construction of SNOMED CT and the gene
ontology. SNOMED CT is a systematic collection of medical terms including
codes, synonyms and definitions used in clinical documentation and reporting
[18]. Tt also includes: clinical findings, symptoms, diagnoses, procedures, body
structures, organisms and other ethologies, substances, pharmaceuticals, devices
and specimens. Such a knowledge model facilitates sharing and aggregation of
patient records and findings, the use of standards, access to heterogeneous data,
ensures quality screening, facilitates treatment and electronic recording.

Figure 4. gives an example of lung disease and its causative agent in SNOMED
CT. The example combines is-a and attribute relationships. Such a represen-
tation of terms in SNOMED ontology helps users in performing subsumption
that is testing pairs of expressions to see whether one is a subtype of the other
and vice versa as well as classification that is to structure a set of expressions
according to their subsumption relationships.

Existing solutions in the healthcare focus on reference terminology applica-
tions where reasoning is often hidden behind the terminological efforts. Though
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Fig. 4. SNOMED ontology example

systems without semantic models would find difficult to detect and repair in-
consistencies in their knowledge repositories. Organizations such as THTSDO,
WHO etc. provide standard terminologies to be used by the industry and thus
the healthcare domain is not much affected by knowledge authoring problems.

5 Engineering Use-Case

The engineering domain is well-defined and deals with known concepts and rela-
tions. Nevertheless, KM systems in the engineering domain often provide limited
capabilities of search, data-access, integration and analytics [19] [20] [21]. The
prime focus of many manufacturing and service industries today is to adopt
data-driven strategies where they aim to move analytics and decision-support
to the data itself. These strategies involve a variety of tasks from data-access,
to integration, to storage, analytics, reporting and automation. Thus, a task
such as data-access does not live in isolation anymore. Information systems are
required to provide workflows with clear semantics to support these strategies
and enable autonomous systems. For example, automatic shut-down of a power
plant in case safety checks are violated.

It is important to realize the utility of semantic reasoning and the benefits it
brings to the engineering applications. Current state-of-the-art applications of
data integration, search and interoperability either use manual intervention of
experts performing complex Extract-Transform-Load jobs or involve managing
large set of configuration files. All these solutions require greater expertise and
consume much time and effort. The existing implementations also lack auto-
mated reasoning capabilities because most of them are not based on logic-based
formalisms. Semantic reasoning can provide better knowledge management ser-
vices. It promotes reuse of models including wide range of ontologies such as
standard sensor network (SSN) ontology * to address the domain requirements.
Figure 5. shows a snapshot of ontology developed for industrial gas and steam

3 https://www.w3.0rg/2005/Incubator/ssn/ssnx /ssn
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turbines. It captures concepts related to compositional structure of the plant, its
processes and configurations. This semantic model helps engineers to infer rela-
tionships about plant configurations, processes and supports multiple hierarchies
to represent part-of and is-a relationships of the related physical entities.
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@ GasTurbineConfiguration

and (hasCoreComponent exactly 1 CombustionChamber) © GasTurbineConfiguration

and (hasCoreComponent exactly 1 Compressor)
and (hasCoreComponent exactly 1 Generator) © GTTripleShaftConfiguration
and (hasCoreComponent exactly 1 InnerTurbineSection) - & GTTwinShaftConfiguration

and (hasCoreCombonent exactlv 1 Rotor)

Fig. 5. Power generation - turbine ontology example

6 Challenges of the Semantic Approach

Although early semantic-based KM approaches have shown the benefits of us-
ing ontologies to support the KM life cycle, there still exist a large number of
challenges from the automation and digitalization of industrial resources. These
have to be addressed in order to make semantic technologies fully functional in
an industrial setting. In this paper, we aim to answer the following questions:

— How to support analytics and make analytical workflows closer to the data?
This new situation demands that semantic paradigm should be able to ad-
just according to the available data sources and make analytics easier to
implement and deploy.
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Fig. 6. Extended turbine ontology

— How to remain ’abstract’? This means that semantic-based interfaces should
not only support data-access and integration but also help end-users in de-
veloping semantic-based analytics and reporting workflows. Thus, an appro-
priate level of abstraction is required over existing data sources, analytical
tools and reporting technologies.

— How to describe analytics outcome? A level of abstraction is required to

define the outcomes from analytics and to use the results for decision-support

tasks and reporting mechanisms.

How to cater Big-Data? Semantic-based solution must adhere to the re-

quirements of big-data architectures, where semantic layer can be adopted

to manage, reuse and share large-scale data.

— How to manage authoring problems? Industries that have shallow standards
and few specialized tools encounter problems with domain modelling and
efficient authoring. Thus, semantic solution should be able to support use of
reporting mechanism, workflows and design templates to understand, find
and display relevant information.

7 Owur Proposed Solution

Figure 7. shows the architecture of our proposed solution. It comprises of sev-
eral components. The Ontology-base data-access (OBDA) middleware provides
an abstraction over the existing data sources including interfaces to very large
data sets such as hadoop clusters or Spark. The OBDA middleware allow users
to formulate their information requirement (i.e. queries) without any knowledge
about the data model or source and retrieve the relevant data automatically. A
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set of mapping is maintained which describes the relationship between the terms
in the ontology and the corresponding terminology in the data source specifica-
tions, e.g. table and column names in the relational database schemas.

The domain ontology is extended to include concepts related to system con-
figurations, failure processes, causality and more. Furthermore, the extension
to analytics and reporting ontology is an important component of our solution.
Knowledge about analytical workflows such as feature set or algorithms to be
used and outcomes from analytics can be represented in terms of ontology to
support automation and integration of knowledge resources for decision-support.
Whereas, reporting ontologies represent different types of reports, content, de-
sign templates to be used and more. For example, ” Give me an analysis report
X for all machines of type Y that had a ‘shut-down’ in last three months”.

Our solution also supports existing analytical and reporting workflows by
exposing a Java-based OBDA node with SPARQL endpoint. This sort of inte-
gration can be made into any analytics environment (such as in KNIME or R
analytics) and leverage the existing analytical models with semantic interfaces.

7.1 Preliminary Results from Siemens Turbo-machinery Use-Case

We setup our solution for Siemens Turbo-machinery use-case where users anal-
yse key performances indicators (KPI) of different gas turbines and compare the
reliability, availability and outages as per different parameters (such as product,
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service region etc.). The difficulty today is that various machines have different
sensors that contribute towards performance, their location within the parton-
omy may also vary and sensor tags are unknown. Today, users enumerate all
sensor tags by hand and formulate customized KPI rules for each machine in-
dividually because they have different sensor type and tags along with different
threshold values. With our solution, we overcome these problems by using on-
tology, OBDA mappings and exposing all this to analytical tool.

Figure 6. shows SSN ontology together with our extended turbine ontology to
exemplify the idea of capturing part of relations between unknown individuals,
sensors, measurable, and sensor meta-data including measurement capabilities.
Use of OBDA mappings (shown in Figure 8.) is to connect the sample data set
against ontology.

Datasource selection
Select datasource: SOBDA 2]

Mapping manager

o Create | = Remove || [] Copy (] selectall || [} Select none
Sensors
<http://www.siemens.de /watchcat/sensor-{id}> a ; ssn:forProperty
<http://www.siemens.de /watchcat/property-{property}> ; ssnsi:sensorLocation
<http://www.siemens.de /watchcat/component-{locationname}> ; rdfs:label {sensor.name}AAxsd:string ; ssn:observes
<http://www.siemens.de/watchcat/property-{property}> ; ssn:onPlatform
<http://www.siemens.de/watchcat/assembly-{assembly.name}> .
select *, location.name as locationname from sensor,sensormetadata,location,assembly where
sensor.id=sensormetadata.tagid and sensormetadata.location=location.id and sensor.assembly=assembly.id

MeasurementCapabilities

<http://www.siemens.de /watchcat/sensor-{tagid}> ssn:hasMeasurementCapability
<http://www.siemens.de /watchcat/capability-{tagid}> .

calamt % fram cancarmatbadatbs

ObservationValue

<http://www.siemens.de /watchcat/sensoroutput-{tagid}-{hashtime}> a ; ssnthasValue
<http://www.siemens.de/watchcat/value-{tagid}-{hashtime}> ; ssnisProducedBy <http:/ /www.siemens.de/watchcat/sensor-{tagid}> .
<http://www.siemens.de /watchcat/value—{tagid}-{hashtime}> a : dul:hasRegionDataValue {value}*Axsd:decimal .

select *, "Timestamp' as hashtime from sensormetadata,measurement where sensormetadata.tagid=measurement.sensor

FeatureOfinterest

<http://www.siemens.de/watchcat/part-{monitoredPart}> a ; rdfs:label {monitoredPart}AAxsd:string ;
ssnchasProperty <http://www.siemens.de/watchcat/property-{property}> .
select * from sensormetadata

Property

<http:/ /www.siemens.de /watchcat/property-{property}> a ; rdfs:label {property}AAxsd:string .
Select * from sensormetadata

Fig. 8. Semantic mappings

As users were well-equipped with KNIME analytics tool, we provided an
integration of our semantic node into this analytics platform. The added-value
of our solution is the automation of KPI calculations across machines by using
single KPI analytical workflow to determine service hours, period hours and
outages.

Figure 9. shows a KNIME # based workflow where the our implemented source
node for turbine semantics is exposed to computational procedure of performance
analysis.

* https://www.knime.org/
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Fig. 9. Semantic node for KNIME-based workflow

Figure 10. shows a detailed view of the SPARQL query that uses terminolo-
gies from the domain ontology to extract data and resulting reports are made
available to the user. Figure 11 shows snapshots of such visualizations.

Dialog - 0:33 - 5P Diagnostic Advice OBDA SPARQL (Turbine Semantics) |. = | 8 P

File

Options | Flow Variables | Memory Policy|

Server: http:/flocalhost: 10214/spargl
Query:

PREFIX po: <http://www.ontologydesignpatterns.org/cp/owl/partof.owl *
PREFIX ssn=i: <http://www.siemens.com/ontology/ssn—sif>

PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schemaf>

PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn¥>

PREFIX watchcat: <http://www.siemens.com/ontology/watchcat-merge/>
Select DISTINCT ?turbine ?sensor ?observationDate ?value ?sensorTag
WHERE {

?zensor a ssn:SensingDevice:

m

=sn:observes ?measurable;

ssn:onPlatform ?turbine ;

ssnsi:sensorLocation ?sensorLocation.
?turbine watchcat:hasDriver ?7dvalue.
?turbine watchcat:hasDrivenUnit ?duvalue.
?turbine watchcat:hasServiceRegion ?svalue.
?turbine watchcat:hasCustomer ?cvalue.

?turbine watchcat:hasSite ?sitevalue. B
?turbine watchcat:hasSiteCountry ?sitecvalue.
?foi ssn:hasProperty ?measurable.
?observation ssn:observationResult ?result;
ssn:observedProperty ?measurable;
=zsn: feature0fInterest ?foi;
=snsi:hasCbservationDate ?PobservationDate.
?result a ssn:Sensorfutput;

4 | 1 | +

[ 0K ] [ Apply ] [ Cancel

Fig. 10. SPARQL query to access turbine data
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Fig. 11. Results from KPI report

8 Conclusion

In order to make effective use of knowledge, it needs to be classified, defined and
related in conventional terminologies. In this paper, we have discussed the ba-
sic requirements and limitations of knowledge management systems along with
existing semantic and non-semantic approaches to knowledge acquisition, repre-
sentation, modelling, discovery and distribution. We have presented results from
the life sciences and engineering where ontology is used for various application
tasks, together with an analysis of the feature set that semantic reasoning brings
to the domain. Furthermore, we have described the current challenges for seman-
tic approach and proposed a new solution to solve for big data-access, analytics,
reporting and automation. Preliminary results have been presented for Siemens
Turbo-machinery use-case where we used the OWL-QL language to define com-
ponents of turbine ontology, and identified axioms involved in entities - and their
interactions to analyse turbine performance indicators. The semantic node was
integrated into analytics platform KNIME to automate the workflow and make
knowledge discovery tasks easy to follow.
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