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Abstract. The Multi-Robot Task Allocation problem (MRTA) is the
situation where we have a set of tasks and robots; then we must decide
the assignments between robots and tasks in order to optimize a certain
measure (e.g. allocate the maximum number of tasks). We present an
effective solution to resolve this problem by implementing a two-stage
methodology: first a global allocation that uses the Firefly Algorithm
(FA), next a local allocation that uses the set theory properties (Power
Set algorithm). Finally, results of the different simulations show that
our solution is efficient in terms of the rate of allocated tasks and the
calculated allocations are locally optimal.

Keywords: multi-robot systems, task allocation, firefly algorithm, set
theory properties, power set algorithm.

1 Introduction

Nowadays, Multi-Robot Systems (MRS) are receiving a great attention and be-
come omnipresent in our daily life. Consequently, intensive researches have been
conducted on them to validate their applicability and adequacy with different
real-life issues. These systems have several advantages that allow them solv-
ing easily various problems, such as: industrial applications, surveillance, target
tracking and rescue missions [1].

It should be noted that the design of MRS must respect the different interac-
tion and coordination aspects between their components (e.g. robots), otherwise
it may produce non-deterministic systems with reduced performances [2]. Thus,
one of the coordination issues that researchers must consider is the Task Allo-
cation (TA) problem, which is intuitively the process of assigning a set of tasks
to some robots [3]. In MRS, the TA problem can be expressed by the following
expression: given a set of robots and tasks, how to select the appropriate robots
to perform the desired tasks? so as to achieve in a cooperative manner the overall
objective of the considered system. Therefore, the goal here is to coordinate the
robot behaviors and find an optimal way for the allocation of different tasks [4].

Mainly, we can find two taxonomies for the categorization of MRTA prob-
lems. In fact, the main objective of these taxonomies is to propose a classification
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of different TA configurations in categories, so that the different problems en-
countered in the real-life can be inserted into one of them (i.a. a mathematical
formulation is generally given).

Authors of [5] have categorized the TA problem by proposing a classification
which is articulated around three axes. The first axis distinguishes robots ac-
cording to their abilities to perform a single task or probably several tasks at a
time {single-task robots (ST), multi-task robots (MT)}. The second axis distin-
guishes tasks according to their needs to be executed by a single robot or several
robots at the same time {single-robot tasks (SR), multi-robot tasks (MR)}. The
third axis distinguishes between tasks that require an instantaneous assignment
without considering future allocations and tasks that require assignments that
consider both current and future allocations {instantaneous assignment (IA),
time-extended assignment (TA)}. Finally, despite its good coverage of the ma-
jority of encountered MRTA problems; however, the authors of this taxonomy
state that it does not capture problems with interrelated utilities and constraints
on tasks [5], hence the need to propose a taxonomy that addresses these limita-
tions.

To remedy the limitations of the previous taxonomy, the authors of [6] have
taken and modified it by adding a higher level. In reality, this level expresses in-
terdependence degrees of utilities between robots and tasks. Thus, this taxonomy
is a hierarchy that has two levels, where in the second one we find the different
classes proposed in the previous taxonomy. On the other hand, in the first level
we find four interdependence degrees, i.e. No Dependencies (ND), In-Schedule
Dependencies (ID), Cross-Schedule Dependencies (XD), Complex Dependencies
(CD).

The rest of the paper is organized as follows. First, we give, in the section 2, an
overview of the related works already done to address the MRTA problem. Then,
we present, in the section 3, the solution that we have proposed to address this
problem and explain its different algorithms. After, we simulate, in the section
4, our solution and discuss the obtained results. Finally, we give, in the section
5, a conclusion and some perspectives.

2 Related works

In this section, we will give some solutions that have been proposed in the
literature to address the MRTA problem. More specifically, these solutions will
be categorized according to the first level of the taxonomy 2, that is to say these
approaches will be divided into four categories. Moreover, the list of approaches
presented bellow is not exhaustive, but shows the most frequently encountered
in the literature [4].

In the first family, we can clearly see that several approaches have been iden-
tified in the literature [5] to address more specifically ND[ST-SR-IA] problems.
For example, we can cite the paper [7] that uses potential fields and the papers
[8,9] that use auction-based methods.
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In the second family, we can find several works devoted to the coordination
in MRS. Generally, these approaches focus on ID[ST-SR-TA| problems. For ex-
ample, we can cite the work exposed in [10] that uses the Traveling Salesman
Problem (TSP) and multiple TSP to model the TA problem. Also, the paper
[11] provides a good solution for the routing problem in MRS using mixed linear
programming. Finally, auction-based approaches [12-15] have been widely used
to resolve this problem, because of their distributed nature which is well suited
to MRS.

In the third family, we can easily identify lot of developed works. For example,
we find the system M+ [16] which addresses the problem of instantaneous allo-
cation of tasks using a market system with supporting precedence constraints.
Also, we cite the work presented in [17] that proposes a solution manipulating
constraints between tasks and adopting a market-economy approach. In addi-
tion, the work exposed in [18] addresses the problem of routing, where some
robot teams must accomplish a set of scientific missions. Besides, we can cite
the work presented in the paper [19], which exposes a solution for the MRTA
problem by using quantum genetic algorithms and reinforcement learning. Also,
in the paper [20], the authors manipulate the case of a simple task scheduling
using the heuristic: the task x must be executed n second(s) before the begin-
ning of the task y. Another way to consider the TA problem is to bring it to
a coalition formation problem [21,22]. Accordingly, the authors of the paper
[23] have taken the works presented in the last two papers and improved the
proposed algorithms by minimizing communications and imposing constraints
on agents capabilities. Likewise, the authors of the papers [24,25] use auctions
and coalitions to address the TA problem. On the other hand, a Framework
has been proposed in [26] that imposes the constraint of shared resources, e.g.
communication mediums and processors. Finally, the papers presented in [27, 28]
address the TA problem, where robots must consider current tasks and future
allocations.

In the fourth family, we can unfortunately make a short list of done works.
In fact, this is due to the high difficulty of these problems and the lack of math-
ematical formulations [6]. However, we can cite the work exposed in [29] which
addresses the TA problem, with time-extended assignment, by managing an en-
vironment hit by a natural disaster. In addition, we can also mention the work
presented in [30] which exposes a task allocation approach using coalitions (this
approach has two versions: centralized version or ASyMTRe and distributed ver-
sion or ASyMTRe-D). Finally, we mention the work given in [31], which is an
improved version of [12], that manipulates the time-extended assignments.

3 Proposed solution

In this section, an auction-based solution (named FA-POWERSET-MRTA for
Firefly Algorithm-Power Set algorithm-Multi Robot Task Allocation) is pre-
sented to address the MRTA problem. In fact, auction-based approaches have
been widely used because of the multiple advantages they offer [32]. In this kind
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of approaches, we consider an auctioneer, a set of bidders and a set of goods.
In a MRTA problems, a particular robot is the auctioneer, the rest of robots
are the bidders and tasks are the goods. In our solution, we use the Contract
Net Protocol (CNP) [33] for exchanging messages between the auctioneer and
bidders.

Algorithm 1: behavior of the auctioneer a

Input : the set of bidders B and the set of unallocated tasks T
Output: allocations between bidders and tasks.

1 while (a is active) do

2 PeriodicBehaviour {n; seconds}

3 if (T # () then

4 foreach b; € B do

5 ‘ sendMessageTo(b;, CHOOSE-TASK,T');
6 end

7 end

8 end

9 CyclicBehaviour
10 message < receiveMessageFrom(b;);
11 if (message.subject = CHOSEN-TASK) then
12 foreach t € T' do

13 if (t is feasible) then

14 compute the allocation;
15 T« T/{t};

16 inform concerned bidders;
17 end

18 end

19 end
20 end
21 end

3.1 Problem configuration and assumptions

In our methodology (i.e. solution), we use a particular robot called auctioneer
and several robots called bidders. The auctioneer must first communicate the
tasks (i.e. goods) to be allocated to the different bidders and receive their offers;
then it must decide the best assignments between robots and tasks; finally, it
notifies bidders of its results. Although the use of an auctioneer can be seen
as a bottleneck for the system (e.g. if it breaks down then the system will be
t00); in fact, this limitation can be omitted, because it decreases considerably
the communication rates and maintains an overall view of different allocations.
Also, the auction-based methods have the advantage of sharing computations
on the different bidders of the system (scalability), which would maintain the
assignment process even if a bidder breaks down (robustness) [32].
Furthermore, the bidders calculate their utilities for the considered tasks
according to the different information they have. So, the overall cost function
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(i.e. fitness) is divided into sub-functions, which are estimated in a decentralized
and independent way by bidders. In our solution, the allocation of a given task
means the presence of the resources it requires. In other words, a given task is
allocated if and only if the resources it requires are all offered. On the other hand,
these resources are offered by bidders, i.a generally these resources are sensors
and actuators. In our solution, we use confusedly the term skill to represent these
sensors and actuators.

Algorithm 2: behavior of a bidder b;
Input : 5;,C;v;.e;,a; and p;.
Output: the chosen task and its costs.

1 while (b; is active) do
2 PeriodicBehaviour {ny seconds}
3 if (T # () then
4 if (state = AVAILABLE) then
5 for k£ < 1 to 1000 do
6 foreach t € T do
7 ‘ move the bidder b; towards the task t;
8 end
9 end
10 t < choose the closest task to the bidder b;;
11 U <+ estimate the costs of the bidder b; for the task t;
12 sendMessageTo(a,CHOSEN-TASK t,U);
13 else
14 ‘ sendMessageTo(a,CHOSEN-TASK, 1, 1);
15 end
16 T + 0;
17 end
18 end
19 CyclicBehaviour
20 message < receiveMessageFrom(a);
21 if (message.subject = CHOOSE-TASK) then
22 ‘ T < message.content;
23 end
24 end
25 end

Now we consider the following assumptions, we assume the class of ST-MR-
IA problems, that is to say that each robot can execute only one task at the same
time, the tasks might be executed by several robots at the same time and the al-
location of tasks to robots is instantaneous. Moreover, we assume two non-empty
sets of bidders B and tasks T'. Also, we consider the both cases where all the
tasks are previously known or gradually inserted into the system. Accordingly,
each bidder b; € B is defined by six variables (S;, C;, vi, e;, a;, p;), where S; is a
vector representing the skills that has the bidder b;, C; is a vector representing
the skill costs of the bidder b; and the rest of variables represent respectively
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the speed, energy level, aging factor and spatial position of the bidder b;. In a
similar way, each task ¢; € T is defined by three variables (S;, d;, p;), where S; is
a vector representing the skills required by the task t; and the rest of variables
represent respectively the execution duration and spatial position of the task
t;. Now, we present and explain the proposed algorithms to address the MRTA
problem.

3.2 Proposed algorithms

The algorithms 1 and 2 show respectively the behaviors adopted by the auction-
eer and bidders to address the TA problem. In fact, we can clearly see that these
algorithms have two sub-behavior types that we have named “PeriodicBehavior”
and “CyclicBehavior”, where in the first one we have put the instructions that
are executed in a periodic manner (i.e. every n seconds) and in the second one
we have put the instructions that are executed immediately after every message
receiving.

Now, we will explain the behaviors (i.e. instructions) of previous algorithms.
To do this, we can resume their working principle in the following three sections.

A. Task announcement

Firstly, the task allocation process begins when the auctioneer announces that
there are tasks that must be allocated (i.e. “PeriodicBehavior” of the algorithm
1, on the page 4) . To do this, the auctioneer broadcasts a message, i.e. to all
bidders, which contains the list of tasks to be allocated, their required skills and
spatial locations.

B. Global allocation

Secondly, when the bidders receive a message from the auctioneer (i.e. “CyclicBe-
havior” of the algorithm 2, on the page 5), each one must choose a task to per-
form, calculate its costs and answer the auctioneer (i.e. “PeriodicBehavior” of
the algorithm 2, on the page 5).

To choose a task, one bidder executes the firefly algorithm [34, 35] on all the
received tasks and converges gradually towards one of them. For the convergence
of a bidder to a given task, we have used the equation adopted by the firefly
algorithm, which is:

Dr = pr + ,8067V(d*t)2(pt —pr) + a(rand — 0.5) (1)

Where p, and p; are the respective locations of the bidder r and a task ¢, B is
a regularization parameter and its value is always 1, the term Boe_'Y(d”)2 (pt—pr)
is called the attraction degree of the robot r by the task ¢, the parameter v char-
acterizes the attraction variation and its value is very important for the conver-
gence speed of the algorithm and the behavior of the robot r (v € [0.01,100]),
the parameter « represents physically the environment noise and its value affects
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the visibility of a task by a robot (a € [0,1]), rand € [0,1] is a random variable
and the d,; represents the weighted distance between the robot r and the task ¢
and it is given by the following equation:

dry = 0llpt — prll + (1 = 6)H(St, Sr) (2)

Where the term |p; — pr|| represents the Euclidean distance between the
locations of the robot r and the task ¢, the term H(S;, S,) represents the Ham-
ming distance between the skill vectors of the robot r and the task ¢ and the
parameter § makes the balance between the two distances.

Once a task has been selected, one bidder must now estimate its costs for
each offered skill to the chosen task. To do this, we have proposed the following
equation:

Uy

U A, 5
e R ®)

Uiea,, = [0¢] + (1 —0)(
Where the term A,; represents the common skills between the robot r and
the task ¢ (i.e. the skills that the robot r offers to the task t), again the parameter
& make the balance between the two costs and the other variables are explained
above.
Finally, the bidder sends its result to the auctioneer. It should be noted that
the symbol | means that the bidder has sent an empty result to the auctioneer
(i.e. it is not able to perform any task: busy or do not have the required skills).

C. Local allocation

Thirdly, when all the responses of bidders are received, now the auctioneer should
estimate an allocation for each selected task (“CyclicBehavior” of the algorithm
1, on the page 4). To do this, first the auctioneer browses the list of the chosen
tasks and considers for each one the set of all skills offered by the bidders,
then it calculates all the useful subparts (the power set algorithm) of this set
of skills (i.e. the concept of a useful subpart will be explained in the following
example), finally the fitness of each useful subpart is estimated and the one with
the smallest fitness value will be considered as an allocation for the considered
task. The fitness value of a given subpart is the sum of cost values of its bidder
skills. At the end of this step, the bidders concerned by the calculated allocations
are notified.

4 Simulation and result discussion

In this section, we simulate the proposed algorithms on some numerical data
and we evaluate the found results. Moreover, we assume that all the tasks are
known in advance; however, our algorithms can also handle the case where tasks
are inserted gradually in the system.
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4.1 Generation of simulation data

In fact, the numerical data that we have used for our simulations are generated
randomly, on a 2D grid of 100 x 100 cells, and the number of used skills is 10. To
simplify things, we suppose that the speed, energy level and aging factor values
are constant for all bidders.

Besides, these simulation data are divided into three different data sets named
“dataset 17, “dataset 2” and “dataset 3”. First, in the “dataset 1”7 there is from
10 to 50 bidders (bidders are incremented by 10) and 100 tasks (this dataset
is created to see the effect of the number of used bidders on allocation perfor-
mances). Second, in the “dataset 2” there is from 10 to 100 tasks (tasks are
incremented by 10) and 10 bidders (this dataset is created to see the effect of
the number of used tasks on allocation performances). Thirdly, in the “dataset
3” there is also from 10 to 100 tasks (the tasks are incremented by 10) and 50
bidders (similarly this dataset is created to see the effect of the number of used
tasks on allocation performances).

4.2 Results and analysis

In the figure 1 (on the page 9), we present in the left sub-figure the allocation
times needed to allocate all tasks and in the right sub-figure the fitness values
found for the “dataset 1”. For this experimentation, we remember that we have
used 100 tasks to be allocated and the number of bidders varies from 10 to 50.

As a first observation, we can clearly notice that the number of used bidders
does not greatly improve the allocation time of all tasks (approximately we have
an allocation time of 20,199 seconds, whatever the number of used bidders);
therefore, the increase in the number of bidders for the allocation of all tasks is
not imperative in our proposed solution, hence its power to allocate the tasks
with a small number of bidders.

In the figure 2 (on the page 10), we present in the left sub-figure the allo-
cation times needed to allocate all tasks and in the right sub-figure the fitness
values found for the “dataset 2” and “dataset 3”. For this experimentation, we
remember that we have used respectively 10 bidders (“dataset 2”) and 50 bid-
ders (“dataset 3”) and the number of tasks to be allocated varies from 10 to 100
in both datasets.

In fact, we can clearly notice again that the number of bidders does not
greatly improve the allocation time, whatever the number of tasks to be allocated
(with 10 or 50 bidders we have approximately the same times). However, the
allocation times increase almost linearly with the increase in the number of
tasks, which is quite natural.

It should be noted that the allocation times shown in the figures 1 (on the
page 9) and 2 (on the page 10) encompass all the possible actions for the allo-
cation of tasks, i.e. sending and receiving messages between the auctioneer and
bidders, selection of tasks by bidders (global allocation) and allocation of tasks
by the auctioneer (local allocation) and the periodicity of the different behaviors.
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Now, we graphically show the impact of the number of used bidders on the
quantity of allocated tasks for each cycle. To do this, in the figure 3 (on the
page 10) we present the approximate number of allocated tasks by iteration,
according to the number of used bidders. For this experimentation, we specify
that we have used 100 tasks to be allocated and the number of bidders varies
from 10 to 50 (from the left to the right).

Finally, we can obviously notice that all considered tasks are allocated to
bidders, whatever the used configuration; therefore, the proposed algorithms are
efficient in terms of the rate of allocated tasks. On the other hand, we can also
say and affirm that the increase in the number of used bidders only enhances
the number of allocated tasks by iteration but does not minimize the allocation
times.
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Fig. 1. measures for the “dataset 1”.

5 Conclusion and perspectives

In this paper, we have exposed a solution to address the MRTA problem. In
fact, this solution uses auctions with two robot types, which are: auctioneer
(with a single instance) and bidder (with several instances). Also, this solution
exploits two allocation types, which are: global done by bidders and local done
the auctioneer. Finally, the discussion section shows that the proposed solution
is effective in terms of the rate of allocated tasks (the rate of allocated tasks
is 100%, whatever the used configuration) and it supports both cases where
the tasks are all known in advance or inserted dynamically in the system. As
perspectives, we expect to improve our solution by imposing temporal and spatial
constraints on tasks to make it more general.
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