N
N

N

HAL

open science

Most Complex Deterministic Union-Free Regular
Languages

Janusz A. Brzozowski, Sylvie Davies

» To cite this version:

Janusz A. Brzozowski, Sylvie Davies. Most Complex Deterministic Union-Free Regular Languages.
20th International Conference on Descriptional Complexity of Formal Systems (DCFS), Jul 2018,

Halifax, NS, Canada. pp.37-48, 10.1007/978-3-319-94631-3 4 . hal-01905640

HAL Id: hal-01905640
https://inria.hal.science/hal-01905640
Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01905640
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Most Complex Deterministic Union-Free Regular
Languages*

Janusz A. Brzozowski' and Sylvie Davies?

! David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, ON, Canada N2L 3G1
brzozoQuwaterloo.ca
2 Department of Pure Mathematics, University of Waterloo
Waterloo, ON, Canada N2L 3G1

sldavies@Quwaterloo.ca

Abstract. A regular language L is unton-free if it can be represented by
a regular expression without the union operation. A union-free language
is deterministic if it can be accepted by a deterministic one-cycle-free-
path finite automaton; this is an automaton which has one final state and
exactly one cycle-free path from any state to the final state. Jiraskova
and Masopust proved that the state complexities of the basic operations
reversal, star, product, and boolean operations in deterministic union-
free languages are exactly the same as those in the class of all regular
languages. To prove that the bounds are met they used five types of
automata, involving eight types of transformations of the set of states
of the automata. We show that for each n > 3 there exists one ternary
witness of state complexity n that meets the bound for reversal and
product. Moreover, the restrictions of this witness to binary alphabets
meet the bounds for star and boolean operations. We also show that the
tight upper bounds on the state complexity of binary operations that take
arguments over different alphabets are the same as those for arbitrary
regular languages. Furthermore, we prove that the maximal syntactic
semigroup of a union-free language has n" elements, as in the case of
regular languages, and that the maximal state complexities of atoms of
union-free languages are the same as those for regular languages. Finally,
we prove that there exists a most complex union-free language that meets
the bounds for all these complexity measures. Altogether this proves that
the complexity measures above cannot distinguish union-free languages
from regular languages.

Keywords: atom, boolean operation, concatenation, different alphabets,
most complex, one-cycle-free-path, regular, reversal, star, state complex-
ity, syntactic semigroup, transition semigroup, union-free

1 Introduction

Formal definitions are postponed until Section

* This work was supported by the Natural Sciences and Engineering Research Council
of Canada grant No. OGP0000871.

2 J. A. Brzozowski, S. Davies

The class of regular languages over a finite alphabet X' is the smallest class
of languages containing the empty language 0, the language {c}, where ¢ is the
empty word, and the letter languages {a} for each a € X', and closed under the
operations of union, concatenation, and (Kleene) star. Hence each regular lan-
guage can be written as a finite expression involving the above basic languages
and operations. An expression defining a regular language in this way is called a
reqular expression. Because regular languages are also closed under complemen-
tation, we may also consider regular expressions that allow complementation,
which are called extended regular expressions. In this paper we deal exclusively
with regular languages.

A natural question is: what kind of languages are defined if one of the op-
erations in the definitions given above is missing? If the star operation is re-
moved from the extended regular expressions we get the well known star-free
languages [10I21I26], which have been extensively studied. Less attention was
given to classes defined by removing an operation from ordinary regular expres-
sions, but recently language classes defined without union or concatenation have
been studied.

If we remove some operations from regular expressions, we obtain the follow-
ing classes of languages:

Union only subsets of {e} U X.

Concatenation only 0 and {w} for each w € X*.

Star only 0, {¢}, {a} for each a € X, and {a}* for each a € X.

Union and Concatenation Finite languages.

Concatenation and Star These are the union-free languages that constitute
the main topic of this paper.

Union and Star These are the concatenation-free languages that were studied

in [15/19].

Union-free regular languages were first considered by Brzozowski [3] in 1962
under the name star-dot regular languages, where dot stands for concatenation.
He proved that every regular language is a union of union-free languages [3]
p- 216, Theorem 9.5]1. Much more recently, in 2001, Crvenkovié¢, Dolinka and
Esik [13] studied equations satisfied by union-free regular languages, and proved
that the class of these languages cannot be axiomatized by a finite set of equa-
tions. This is also known to be true for the class of all regular languages. In 2006
Nagy studied union-free languages in detail and characterized them in terms of
nondeterministic finite automata (NFAs) recognizing them [22], which he called
one-cycle-free-path NFAs. In 2009 minimal union-free decompositions of regular
languages were studied in [I] by Afonin and Golomazov. They also presented
a new algorithm for deciding whether a given deterministic finite automaton
(DFA) accepts a union-free language. Decompositions of regular languages in
terms of union-free languages were further studied by Nagy in 2010 [23]. The
state complexities of operations on union-free languages were examined in 2011
by Jiraskova and Masopust [17], who proved that the state complexities of basic

3 Terminology changed to that of the present paper.

Most Complex Union-Free Languages 3

operations on these languages are the same as those in the class of all regular
languages. It was shown in [I7] that the class of languages defined by DFAs
with the one-cycle-free-path property is a proper subclass of that defined by
one-cycle-free-path NFAs; the former class is called the class of deterministic
union-free languages. In 2012 Jiraskova and Nagy [18] proved that the class of
finite unions of deterministic union-free languages is a proper subclass of the
class of regular languages. They also showed that every deterministic union-free
language is accepted by a special kind of a one-cycle-free-path DFA called a bal-
loon DFA. A summary of the properties of union-free languages was presented
in 2017 in [15].

2 Preliminaries

Let L be a regular language. We define the alphabet of L to be the set of letters
which appear at least once in a word of L. For example, consider the language
L = {a,ab, ac} and the subset K = {a,ac}; we say L has alphabet {a, b, c} and
K has alphabet {a,c}.

A deterministic finite automaton (DFA) is a 5-tuple D = (Q, X, 9, qo, F),
where @ is a finite non-empty set of states, X' is a finite non-empty alphabet,
0: Q x X — @Q is the transition function, qo € Q is the initial state, and F' C
Q@ is the set of final states. We extend § to functions §: Q x X* — @ and
§: 29 x X* — 29 as usual (where 2% denotes the set of all subsets of Q). A DFA
D accepts a word w € X* if §(qp, w) € F. The language accepted by D is the set
of all words accepted by D, and is denoted by L(D). If ¢ is a state of D, then the
language Lq(D) of g is the language accepted by the DFA (Q, X, d, ¢, F). A state
is empty (or dead or a sink state) if its language is empty. Two states p and ¢ of
D are equivalent if L,(D) = Ly(D). A state ¢ is reachable if there exists w € X*
such that 6(qp,w) = ¢. A DFA D is minimal if it has the smallest number of
states among all DFAs accepting L(D). We say a DFA has a minimal alphabet if
its alphabet is equal to the alphabet of L(D). It is well known that a DFA with
a minimal alphabet is minimal if and only if all of its states are reachable and
no two states are equivalent.

A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q, X,6,1, F),
where Q, ¥ and F are asin a DFA, §: Qx X — 29, and I C Q is the set of initial
states. Each triple (p,a,q) with p,q € Q, a € X is a transition if ¢ € d(p, a).
A sequence ((po, a0, qo), (p1,01,q1),s - - (Pk—1,ak—1,9k—1)) of transitions, where
pir1 =q; fori=0,...,k—2is a path in N'. The word aga; - - - arp_1 is the word
spelled by the path. A word w is accepted by N is there exists a path with py € T
and qr—1 € F that spells w. If ¢ € (p,a) we also use the notation p % q. We
extend this notation also to words, and write p — ¢ for w € X*.

The state complexity [20027] of a regular language L, denoted by x(L), is the
number of states in the minimal DFA accepting L. Henceforth we frequently
refer to state complexity simply as complezity, and we denote a language of
complexity n by L,, and a DFA with n states by D,,.

4 J. A. Brzozowski, S. Davies

The state complexity of a regularity-preserving unary operation o on regular
languages is the maximal value of x(L°), expressed as a function of one parameter
n, where L varies over all regular languages with complexity at most n. For
example, the state complexity of the reversal operation is 2"; it is known that
if L has complexity at most n, then x(L¥) < 2", and furthermore this upper
bound is tight in the sense that for each n > 1 there exists a language L,, such
that k(L) = 2", In general, to show that an upper bound on x(L°) is tight, we
need to exhibit a sequence (L, | n > k) = (L, Lg+t1,...), called a stream, of
languages of each complexity n > k (for some small constant k) that meet this
upper bound. Often we are not interested in the special-case behaviour of the
operation that may occur at very small values of n; the parameter k allows us
to ignore these small values and simplify the statements of results.

The state complezity of a regularity-preserving binary operation o on regular
languages is the maximal value of k(L' o L), epxressed as a function of two
parameters m and n, where L’ varies over all regular languages of complexity
at most m and L varies over all regular languages of complexity at most n. In
this case, to show an upper bound on the state complexity is tight, we need to
exhibit two classes (L;, ,, | m > h,n > k) and (Ly,n | m > h,n > k) of languages
meeting the bound; the notation L;, , and L., , implies that L;, , and L, ,
depend on both m and n. However, in most cases studied in the literature, it
is enough to use witness streams (L], | m > h) and (L, | n > k), where L], is
independent of n and L, is independent of m.

For binary operations we consider two types of state complexity: restricted
and unrestricted state complexity. For restricted state complexity the operands of
the binary operations are required to have the same alphabet. For unrestricted
state complexity the alphabets of the operands may differ. See [9] for more
details.

Sometimes the same stream can be used for both operands of a binary oper-
ation, but this is not always possible. For example, for boolean operations when
m = n, the state complexity of L,, U L,, = L,, is n, whereas the upper bound is
mn = n?. However, in many cases the second language is a "dialect" of the first,
that is, it “differs only slightly” from the first. The notion “differs only slightly”
is defined as follows [4J6l8]: Let X' = {a1,...,ar} be an alphabet ordered as
shown; if L C X*, we denote it by L(a1,...,ax) to stress its dependence on X.
A dialect of L,(X) is a language obtained from L, (%) by deleting some letters
of X in the words of L, (%) — by this we mean that words containing these letters
are deleted — or replacing them by letters of another alphabet X’. In this paper
we consider only the cases where X = X’ and we encounter only two types of
dialects:

1. A dialect in which some letters were deleted; for example, L, (a, b) is a dialect
of Ly(a,b,c) with ¢ deleted, and L, (a, —,¢) is a dialect with b deleted. Note
that deleted letters are replaced by dashes, and if the letters {a;,...a} are
all deleted then the corresponding dashes are not shown.

2. A dialect in which the roles of two letters are exchanged; for example, L, (b, a)
is such a dialect of L, (a,b).

Most Complex Union-Free Languages 5

These two types of dialects can be combined, for example, in L,(a, —,b) the
letter ¢ is deleted, and b plays the role that ¢ played originally. The notion of
dialects also extends to DFAs; for example, if D, (a,b,c) recognizes L, (a,b,c)
then D,,(a, —, b) recognizes the dialect L, (a,—,b).

We use @, = {0,...,n—1} as our basic set with n elements. A transformation
of @, is a mapping t: @, — @,. The image of g € Q,, under ¢ is denoted by qt,
and this notation is extended to subsets of @,. The preimage of ¢ € Q,, under
t is the set qt=1 = {p € Q,, : pt = ¢}, and this notation is extended to subsets
of Q,, as follows: St™1 = {p € Q,, : pt € S}. The rank of a transformation ¢ is
the cardinality of Q,t. If s and ¢ are transformations of @Q),,, their composition is
denoted st and we have g(st) = (¢gs)t for ¢ € Q,,. The k-fold composition ¢t - - -t
(with k occurences of t) is denoted t*, and for S C Q,, we define St—* = S(tk)~1.
Let Tg, be the set of all n™ transformations of @,,; then 7g, is a monoid under
composition.

For k > 2, a transformation ¢ of a set P = {qo,q1,--.,qk-1} C Qn is a k-cycle
if got = q1, 1t = g2, ..., qr—2t = qx—1,qx—1t = qo. This k-cycle is denoted by
(go,q1,---,qk—1), and leaves the states in @, \ P unchanged. A 2-cycle (g0, q1)
is called a tramsposition. A transformation that sends state p to ¢ and acts
as the identity on the remaining states is denoted by (p — ¢). The identity
transformation is denoted by 1.

Let D = (Qn, X,6,0,F) be a DFA. For each word w € X*, the transition
function induces a transformation §,, of @, by w: for all ¢ € Q,, ¢d,, = (g, w).
The set Tp of all such transformations by non-empty words is the transition
semigroup of D under composition. Often we use the word w to denote the
transformation ¢ it induces; thus we write qw instead of gd,,. We also write w: ¢
to mean that w induces the transformation .

The size of the syntactic semigroup of a regular language is another measure
of the complexity of the language [4]. Write Xt for X* \ {e}. The syntactic con-
gruence of a language L C X* is defined on YT as follows: For z,y € X+, z~py
if and only if wzz € L < wyz € L for all w, 2 € ¥*. The quotient set X7/~ of
equivalence classes of ~, is a semigroup, the syntactic semigroup Ty, of L. The

syntactic semigroup is isomorphic to the transition semigroup of the minimal
DFA of L [24].

The (left) quotient of L C X* by a word w € X* is the language w 'L = {x :
wz € L}. It is well known that the number of quotients of a regular language is
finite and equal to the state complexity of the language.

The atoms of a regular language are defined by a left congruence, where two
words z and y are congruent whenever ux € L if and only if uy € L forallu € X*.
Thus z and y are congruent whenever € v~ 'L if and only if y € v~ 1L for all
u € X*. An equivalence class of this relation is an atom of L [12]. Atoms can
be expressed as non-empty intersections of complemented and uncomplemented
quotients of L. The number of atoms and their state complexities were suggested
as measures of complexity of regular languages [4] because all quotients of a
language and all quotients of its atoms are unions of atoms [TTIT2/T6].

6 J. A. Brzozowski, S. Davies

3 Main Results

The automata described in [22] that characterize union-free languages are called
there one-cycle-free-path automata. They are defined by the property that there
is only one final state and a unique cycle-free path from each state to the final
state. We are now ready to define a most complex deterministic one-cycle-free-
path DFA and its most complex deterministic union-free language.

The most complex stream below meets all of our complexity bounds. How-
ever, our witness uses three letters for restricted product whereas [17] uses binary
witnesses. The same shortcoming of most complex streams occurs in the case
of regular languages [4]; that seems to be the price of getting a witness for all
operations rather than minimizing the alphabet for each operation.

Definition 1. For n > 3, let D,, = Dy(a,b,c,d) = (Qn, X, ,,0,{n — 1}),
where X = {a,b,c,d}, and d,, is defined by the transformations a: (1,...,n—1),
b: (0,1), ¢: (1 = 0), and d: 1; see Figure[dl Let L, = Ly(a,b,c,d) be the lan-
guage accepted by Dy (a,b,c,d).

Fig. 1. Most complex minimal one-cycle-free-path DFA D, (a,b, ¢, d) of Definition [

The DFA of Definition 1 bears some similarities to the DFA for reversal in
Fig. 6 in [I7, p. 1650]. It is evident that it is a one-cycle-free-path DFA. Let
E = (a(bUcUd)*)" 2a. One verifies that

L, =[(aUcUd)Ub(dUE(DUcUd)*a)*(bUc)]*
b(dUEMBUcUd)*a)*E(bUcUd)*.

Noting that (B4 UE, U ---U Ey)* = (EfE3 --- E})* for all regular expressions
FE;,i=1,..., k, we obtain a union-free expression for L,.

Theorem 1 (Most Complex Deterministic Union-Free Languages). For
each n > 3, the DFA of Definition [l is minimal and recognizes a deterministic
union-free language. The stream (L, (a,b,c) | n = 3) with some dialect streams is
most complex in the class of deterministic union-free languages in the following
sense:

1. The syntactic semigroup of L, (a,b,c) has cardinality n™, and at least three
letters are required to reach this bound.

Most Complex Union-Free Languages 7

o

Each quotient of Ly (a,b) has complexity n.

3. The reverse of Ly(a,b,c) has complexity 2". Moreover, L,(a,b,c) has 2"
atoms.

4. Each atom Ag of L,(a,b,c) has mazimal complezity:

[t if S € {0,Qu);
W8] = 14 SIS, el () (o), 0 C S C Q.

5. The star of Ly(a,b) has complexity 2"~ 1 + 272,
6. (a) Restricted product: (L, (a,b,c)Ly(a,b,c)) = (m —1)2" + 271,
(b) Unrestricted product: k(Ly,(a,b,c)Ly,(a,b,c,d)) = m2™ + 2"~ 1,
7. (a) Restricted boolean operations: For (m,n)#(3,3), k(L (a,b)oL,(b,a)) =
mn for all binary boolean operations o that depend on both arguments.
(b) Additionally, when m # n, k(L (a,b) o L,(a,b)) = mn.
(¢) Unrestricted boolean operations (@ denotes symmetric difference):

k(L (a,b,—,c) o Ly(b,a,—,d)) = (m+1)(n+1) if o € {U, B},
fi(L (a,b, =, ¢) \ Ln(b,)) mn +n,
Ly (a, b)ﬁL (b,a) = mn.

L
L

All of these bounds are mazimal for deterministic union-free languages.

Proof. Only state 0 accepts ba” 2, and the shortest word accepted by state g,
1< qg<n-1,isa™ 179 Hence all the states are distinguishable, and D, is
minimal. We noted above that it recognizes a deterministic union-free language.

1. It is well known that the three transformations a’: (0,...n — 1), b: (0,1),
and c: (1 — 0) generate all n™ transformations of Q,. We have b and ¢ in
Dy, and o' is generated by ab. Hence our semigroup is maximal.

2. This is easily verified.

3. By [12] the number of atoms is the same as the complexity of the reverse.
By [25] the complexity of the reverse is 2™.

4. The proof in [5] applies here as well.

5. We construct an NFA for (L, (a,b))* by taking D, (a,b) and adding a new

initial accepting state s with s - 0 and s LN 1, and adding new transitions

n—2%0andn—125 0; then we determinize to get a DFA. For S C @,
and a € X, the transition function of the DFA is given by

Sq— {SaU{O}, ifn—1¢€ Saq;

Sa, otherwise.

We claim that the following states are reachable and pairwise distinguishable:
the initial state {s}, states of the form {0} U S with S C @, \ {0}, and non-
empty states S with S C @, \ {0,n — 1}, for a total of 2"~ + 2"~2 states.
First consider states {0} U.S with S C @, \ {0}. We prove by induction on
|S] that all of these states are reachable. In the process, we will also show

8

J. A. Brzozowski, S. Davies

that S is reachable when () # S C @, \ {0,n — 1}. For the base case |S| = 0,
note that we can reach {0} from the initial state {s} by a.

To reach {0} U S with S C @, \ {0} and |S| > 0, assume we can reach
all states {0} UT with T C @Q,, \ {0} and |T| < |S|. Let ¢ be the minimal
element of S; then 1 € Sa'~9. More precisely, if S = {q,q1,q2,-..,qx} with
1<g<q<--<qg<n-—1,then Sa' " *={l,¢1 —q+1,...,q0 —q+1}.
Set T = Sa'~4\ {1} and note that |T| < |S|. By the induction hypothesis,
we can reach {0} UT. Apply b to reach either {0,1}UT (if n —1 € T) or
{1}UT (if n —1 ¢ T). Note that the only way we can have n — 1 € T is if
n—1¢€ Sand g = 1. Now apply a?"! to reach either {0}US (ifn—1¢€ S) or
just S (if n —1 ¢ S). In the latter case, we can apply a”~* to reach {0} U S.
This shows that if S C @, \ {0}, then {0} U S is reachable. Furthermore, if
S C Qn\{0,n—1} then S is reachable.

For distinguishability, if S,T C @Q,, and S # T, let ¢ be an element of the
symmetric difference of S and T. If ¢ # 0 then o™~ 1~9 distinguishes S and
T; if ¢ = 0 use ba" 2. To distinguish the accepting state {s} from accepting
states S C @, use b.

To avoid confusion between the states of D,,, and D,,, we mark the states of
Dy, with primes: instead of Q.,, we use @/, = {0,1",2', ..., (m—1)'}. In the
restricted case, we construct an NFA for L,,(a,b,c)L,(a,b,c) by taking the
disjoint union of D,,(a, b, ¢) and D, (a, b, ¢), making state (m — 1)’ non-final,
and adding transitions (m —2)’ % 0 and (m — 1)’ = 0 for ¢ € {b, c}; then
we determinize to get a DFA. The states of this DFA are sets of the form
{¢'}U S, where ¢’ € Q, and S C @Q,,. For a € X, the transition function is
given by

{¢'a,0} U Sa, ifqda=(m-1);

{¢'a} U Sa, otherwise.

({q'} U S)a = {

In the unrestricted case, we use the same construction with D,,(a, b, ¢) and
Dn(a,b,c,d), but there are additional reachable states. In the NFA, if we are
in subset {¢'} U S, then by input d we reach S, since d is not in the alphabet
of D,,(a,b,c). So the determinization also has states S where S C Q.
We claim the following states of our DFA for product are reachable and
pairwise distinguishable:
— Restricted case: All states of the form {¢'} U S with ¢’ # (m —1)" and
S C @y, and all states of the form {(m —1)’,0} U S with S C @, \ {0}.
— Unrestricted case: All states from the restricted case, and all states S
where S C Q.
The initial state is {0’}, and we have

05 11y 2 (= 1),0) % {1,0) % {0/, 1).

m— k
That is, {0’} 22% {0/,1}. For 0 < k < n—2 we have {0, 1} 25 {0/, 14k},
and {0’,1} < {0’,0}. Thus all states of the form {0',q} for ¢ € Q,, are

reachable from {0'}, using the set of words {z, za, za?,--- ,ra" 2, xc} where

Most Complex Union-Free Languages 9

x = ba™~'b. Since all of these words are permutations of Q,, except for zc,

by [14, Theorem 2| all states of the form {0’} US with S C @, are reachable.

To reach {¢'} US with 1 < ¢ < m — 2, reach {0’} U Sa™? and apply a?.

To reach {(m — 1)',0} U S, reach {(m — 2)’} U Sa~! and apply a. In the

unrestricted case, we can also reach each state S from {0’} U S by d.

To see all of these states are distinguishable, consider two distinct states

X US and Y UT. In the restricted case, X and Y are singleton subsets of

'; in the unrestricted case they may be singletons or empty sets. In both
cases S and T are arbitrary subsets of @Q,. If S # T, let ¢ be an element of
the symmetric difference of S and T'. If ¢ # 0 then a"~!79 distinguishes the
states; if ¢ = 0 use ba™ 2. If S = T, then X # Y and at least one of X or

Y is non-empty. Assume without loss of generality that Y is non-empty, say

Y = {¢'}, and assume X is either empty or equal to {p’} where p < q. We

consider several cases:

(i) If 0 € S, then a™~ 179 reduces this case to the case where S # T.

(ii) f0oe Sand 1 € S, and {p,¢'} # {0’,1’}, then b reduces this to case (i).

(iii) If 0,1 € S, and {p’,¢'} # {0’,1'}, then c reduces this to case (ii).
(iv) If {p',¢'} = {0’,1’}, then a reduces this to case (i), (ii) or (iii).

This shows that in both the restricted and unrestricted cases, all reachable

states are pairwise distinguishable.

7. (a) A binary boolean operation is proper if it depends on both arguments.
For example, U, N, \ and & are proper, whereas the operation (L', L) —
L is not proper since it depends only on the second argument. Since the
transition semigroups of D,, and D,, are the symmetric groups S,, and
S, for m,n > 5, Theorem 1 of [2] applies, and all proper binary boolean
operations have complexity mn. For (m,n) € {(3,4),(4,3),(4,4)} we
have verified our claim by computation.

(b) This holds by [2, Theorem 1] as well.

(¢) The upper bounds for unrestricted boolean operations on regular lan-
guages were derived in [9]. The proof that the bounds are tight is very
similar to the corresponding proof of Theorem 1 in [9]. For m,n > 3, let
D! (a,b,—,c¢) be the dialect of D/, (a,b,c,d) where ¢ plays the role of d
and the alphabet is restricted to {a,b,c}, and let D, (b,a, —,d) be the
dialect of D, (a,b, ¢,d) in which a and b are permuted, and the alphabet
is restricted to {a, b, d}; see Figure
Next we complete the two DFAs by adding empty states. Restricting both
DFAs to the alphabet {a, b}, leads us to the problem of determining the
complexity of two DFAs over the same alphabet. In the direct product of
the two DFAs, by [2, Theorem 1] and computation for the cases (m,n) €
{(3,4),(4,3),(4,4)}, all mn states of the form {p’,q}, p’' € Q.,, ¢ € Qn,
are reachable and pairwise distinguishable by words in {a,b}* for all
proper boolean operations. As shown in Figure [the remaining states
of the direct product are reachable; hence all (m + 1)(n + 1) states are
reachable.

The proof of distinguishability of pairs of states in the direct product
for the union, intersection and symmetric difference is the same as that

10 J. A. Brzozowski, S. Davies

Fig. 2. Witnesses D;,(a,b, —, c¢) and Dy (b, a,—,d) for boolean operations.

in [9]. The proof for difference given in [9] is incorrect, but a corrected
version is available in [7]. O

)
o)

© O 0 0

Fig. 3. Direct product for union shown partially.

4 Conclusions

We have exhibited a single ternary language stream that is a witness for the
maximal state complexities of star and reversal of union-free languages. To-
gether with some dialects it also constitutes a witness for union, intersection,

Most Complex Union-Free Languages 11

difference, symmetric difference, and product in case the alphabets of the two
operands are the same. As was shown in [I7] these bounds are the same as those
for regular languages. We prove that our witness also has the largest syntactic
semigroup and most complex atoms, and that these complexities are again the
same as those for arbitrary regular languages. By adding a fourth input inducing
the identity transformation to our witness we obtain witnesses for unrestricted
binary operations, where the alphabets of the operands are not the same. The
bounds here are again the same as those for regular languages. In summary, this
shows that the complexity measures proposed in [4] do not distinguish union-free
languages from regular languages.

References

1. Afonin, S., Golomazov, D.: Minimal union-free decompositions of regular lan-
guages. In: Dediu, A.H., et al. (eds.) LATA 2009. LNCS, vol. 5457, pp. 83-92.
Springer (2009)

2. Bell, J., Brzozowski, J.A., Moreira, N., Reis, R.: Symmetric groups and quotient
complexity of boolean operations. In: Esparza, J., et al. (eds.) ICALP 2014. LNCS,
vol. 8573, pp. 1-12. Springer (2014)

3. Brzozowski, J.A.: Regular Expression Techniques for Sequential Cir-
cuits. Ph.D. thesis, Princeton University, Princeton, NJ (1962),
http://maveric.uwaterloo.ca/~brzozo/publication.html

4. Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found.
Comput. Sc. 24(6), 691-708 (2013)

5. Brzozowski, J.A., Davies, S.: Quotient complexities of atoms of regular ideal lan-
guages. Acta Cybernet. 22, 293-311 (2015)

6. Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideal languages.
Discrete Math. Theoret. Comput. Sc. 18(3) (2016), paper #15

7. Brzozowski, J.A., Sinnamon, C.: Unrestricted state complexity of bi-
nary operations on regular and ideal languages (2016), updated 2017.
http://arxiv.org/abs/1609.04439

8. Brzozowski, J.A., Sinnamon, C.: Complexity of right-ideal, prefix-closed, and
prefix-free regular languages. Acta Cybernet. 23(1), 9-41 (2017)

9. Brzozowski, J.A., Sinnamon, C.: Unrestricted state complexity of binary opera-
tions on regular and ideal languages. Journal of Automata, Languages and Com-
binatorics 22(1-3), 29-59 (2017)

10. Brzozowski, J.A., Szykutla, M.: Large aperiodic semigroups. Int. J. Found. Comput.
Sc. 26(7), 913-931 (2015)

11. Brzozowski, J.A., Tamm, H.: Complexity of atoms of regular languages. Int. J.
Found. Comput. Sc. 24(7), 1009-1027 (2013)

12. Brzozowski, J.A., Tamm, H.: Theory of &tomata. Theoret. Comput. Sci. 539, 13-27
(2014)

13. Crvenkovi¢, S., Dolinka, I., Esik, Z.: On equations for union-free regular languages.
Inform. and Comput. 164, 152-172 (2001)

14. Davies, S.: A new technique for reachability of states in concatenation automata.
In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, Springer (2018),
earlier version at https://arxiv.org/abs/1710.05061

http://maveric.uwaterloo.ca/~brzozo/publication.html
http://arxiv.org/abs/1609.04439
https://arxiv.org/abs/1710.05061

12

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J. A. Brzozowski, S. Davies

Holzer, M., Kutrib, M.: Structure and complexity of some subregular language
families. In: Konstantinidis, S., Moreira, N., Reis, R., Shallit, J. (eds.) The Role of
Theory in Computer Science, pp. 59-82. World Scientific (2017)

Ivan, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. 116(5), 356—
360 (2016)

Jiraskova, G., Masopust, T.: Complexity in union-free regular languages. Int. J.
Found. Comput. Sc. 22(7), 1639-1653 (2011)

Jiraskova, G., Nagy, B.: On union-free and deterministic union-free languages. In:
Baeten, J.C.M., Ball, T., de Boer., F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp.
179-192. Springer (2012)

Kutrib, M., Wendlandt, M.: Concatenation-free languages. Theoretical Computer
Science 679(Supplement C), 83-94 (2017)

Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266-1268 (Russian). (1970), English translation: Soviet Math.
Dokl. 11 (1970) 1373-1375

McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press (1971)
Nagy, B.: Union-free regular languages and 1-cycle-free-path-automata. Publ.
Math. Debrecen 68(1-2), 183-197 (2006)

Nagy, B.: On union complexity of regular languages. In: CINTI 2010. pp. 177-182.
IEEE (2010)

Pin, J.E.: Syntactic semigroups. In: Handbook of Formal Languages, vol. 1: Word,
Language, Grammar, pp. 679-746. Springer, New York, NY, USA (1997)
Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoret. Comput. Sci. 320, 315-329 (2004)

Schiitzenberger, M.: On finite monoids having only trivial subgroups. Inform. and
Control 8, 190-194 (1965)

Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315-328 (1994)

	Most Complex Deterministic Union-Free Regular Languages

