
HAL Id: hal-01905634
https://inria.hal.science/hal-01905634

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Finite Automata with Undirected State Graphs
Martin Kutrib, Andreas Malcher, Christian Schneider

To cite this version:
Martin Kutrib, Andreas Malcher, Christian Schneider. Finite Automata with Undirected
State Graphs. 20th International Conference on Descriptional Complexity of Formal Systems (DCFS),
Jul 2018, Halifax, NS, Canada. pp.212-223, �10.1007/978-3-319-94631-3_18�. �hal-01905634�

https://inria.hal.science/hal-01905634
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Finite Automata with Undirected State Graphs

Martin Kutrib, Andreas Malcher, and Christian Schneider

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,andreas.malcher}@informatik.uni-giessen.de
Christian.Schneider@math.uni-giessen.de

Abstract. We investigate finite automata whose state graphs are undi-
rected. This means that for any transition from state p to q consuming
some letter a from the input there exists a symmetric transition from
state q to p consuming a letter a as well. So, the corresponding language
families are subregular and, in particular in the deterministic case, sub-
reversible. In detail, we study the operational descriptional complexity of
deterministic and nondeterministic undirected finite automata. To this
end, the different types of automata on alphabets with few letters are
characterized. Then the operational state complexity of the Boolean op-
erations as well as the operations concatenation and iteration is inves-
tigated, where tight upper and lower bounds are derived for unary as
well as arbitrary alphabets under the condition that the corresponding
language classes are closed under the operation considered.

1 Introduction

The operation problem for a language family is the question of costs (in terms of
states) of operations on languages from this family with respect to their represen-
tations. More than two decades ago the operation problem for regular languages
represented by deterministic finite automata as studied in [9, 10] renewed the
interest in descriptional complexity issues of finite automata in general. In the
meantime, impressively many results have been obtained for a large number of
language families. A recent survey of the several branches and details can be
found in [2], which is also a valuable and comprehensive source of references.
It seems that the recent studies of operational state complexity focus on sub-
regular languages. Subregular language families of particular interest are the
families of languages accepted by types of reversible finite automata. Reversibil-
ity is a fundamental principle in physics. Since abstract computational models
with discrete internal states may serve as prototypes of computing devices which
can physically be constructed, it is interesting to know whether these abstract
models are able to obey physical laws. The observation that loss of information
results in heat dissipation [7] strongly suggests to study computations without
loss of information. Recent results on reversible finite automata can be found,
for example, in [3–5, 8].

2 M. Kutrib, A. Malcher, C. Schneider

Here, we are interested in a strict form of reversible finite automata, namely,
we do not only require that every state of the automaton has a unique predeces-
sor for a given input letter, but that this predecessor can already be reached by a
forward transition with the same input letter. These automata can be seen as fi-
nite automata whose state graphs are undirected. So, this notion is even stronger
than the concept of time-symmetry studied in [1, 6]. Time-symmetry appears in
physical reality when a system can go back in time by applying the same tran-
sition function as for forward computations after a weak transformation of the
phase-space. For example, in Newtonian mechanics one can go back in time by
applying the same dynamics after a transformation that leaves masses and po-
sitions unchanged but reverses the sign of the momenta. While time-symmetric
machines themselves cannot distinguish whether they run forward or backward
in time, for undirected automata the time directions fade away since they are
both available in the transition.

In the next section, we present the necessary notations and give an introduc-
tory example. Since the definition of undirected finite automata implies strong
restrictions on the possible state graphs and, thus, the possible automata them-
selves, it is possible to characterize the different types of undirected automata
with small alphabets in Section 3. These characterizations are a powerful tool to
derive tight bounds on the operational state complexity of deterministic (Sec-
tion 4) and nondeterministic (Section 5) undirected finite automata. All bounds
obtained are summarized in Table 1. Finally, in Section 6 we discuss open and
untouched problems for future work. We remark that some proofs are omitted
due to space constraints.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. For the number of occurrences of a
symbol a in w we use the notation |w|a. Set inclusion is denoted by ⊆ and strict
set inclusion by ⊂. We write 2S for the power set and |S| for the cardinality of
a set S.

A nondeterministic finite automaton (NFA) is a system M = 〈Q,Σ, δ, q0, F 〉,
where Q is the finite set of internal states, Σ is the finite set of input sym-
bols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q×Σ → 2Q is the transition function.

A finite automaton is deterministic (DFA) if and only if |δ(q, a)| = 1, for all
states q ∈ Q and letters a ∈ Σ. In this case we simply write δ(q, a) = p instead of
δ(q, a) = {p} assuming that the transition function is a mapping δ : Q×Σ → Q.

So, by definition, any DFA is complete, that is, the transition function is total,
whereas it may be a partial function for NFAs in the sense that the transition
function of nondeterministic machines may map to the empty set.

If the state graph induced by some finite automaton is undirected then we
obtain the subclasses of nondeterministic undirected finite automata (NUDFA)

Finite Automata with Undirected State Graphs 3

and deterministic undirected finite automata (DUDFA). Formally, for undirected
finite automata it is required that q ∈ δ(p, a) if and only if p ∈ δ(q, a), for all
p, q ∈ Q and a ∈ Σ. The language accepted by a finite automaton M is

L(M) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ },

where the transition function is recursively extended to δ : Q×Σ∗ → 2Q.
In order to illustrate the definitions we continue with an example.

Example 1. The NUDFA M = 〈{q0, q1, q3}, {a, b}, δ, q0, {q2}〉 whose transition
function is given through the state graph depicted in Figure 1 accepts the lan-
guage {w ∈ {a, b}+ | |w|a mod 2 = 0 }. �

q0 q1 q2

b b b

a astart

Fig. 1. State graph of an nondeterministic undirected finite automaton accepting the
language {w ∈ {a, b}+ | |w|a mod 2 = 0 }.

3 Characterization of Undirected Finite Automata with
Small Alphabets

The definition of undirected finite automata implies strong restrictions on the
possible state graphs and, thus, the possible automata themselves. So, there are
only a very few different types of minimal deterministic undirected finite au-
tomata with a unary or binary input alphabet. The situation for nondetermin-
istic devices is still rather restricted, but there are more types distinguishable.
The following characterizations of possible types of state graphs is used for later
results on the closure properties of the families of accepted languages as well as
their operational state complexity. In the rest of the section, we tacitly assume
Σ = {a} for unary languages and Σ = {a, b} for binary languages.

3.1 Unary Nondeterministic Undirected Finite Automata

We start with unary NUDFAs.

Theorem 2. Let M be a unary NUDFA. Then, language L(M) is of one of the
following types:

1. L1 = ∅,
2. L2 = {λ},

4 M. Kutrib, A. Malcher, C. Schneider

3. L3,k = { an | n ≥ k and n even }, for some k ≥ 0,

4. L4,k = { an | n ≥ k and n odd }, for some k ≥ 0,

5. L5,k,l = { an | n ≥ k and n even for k ≤ n < l }, for some k ≥ 0 and l > k,

6. L6,k,l = { an | n ≥ k and n odd for k ≤ n < l } for some k ≥ 0 and l > k.

Proof. Let M = 〈Q, {a}, δ, q0, F 〉 be an NUDFA with unary input alphabet.
Basically, the type of the accepted language is determined by two numbers (if
they exist) k ≥ 0 and l > k. The number k is defined to be the shortest path
from the initial state q0 to some accepting state q+ ∈ F . If k exists, that is,
if L(M) is non-empty, then l is defined dependent on whether k is even or odd.
If k is even, l is defined to be the shortest path longer than k that leads from
the initial state q0 to an accepting state q′+ and has odd length. If such a path
does not exist, l remains undefined. Similarly, if k is odd then l must be even.

Now, we can determine the type of L(M). If there is no path from q0 to some
accepting state then L(M) = L1 = ∅. Otherwise the number k is defined.

If k = 0 and, thus, q0 ∈ F then λ ∈ L(M). If additionally δ(q0, a) is undefined
then L(M) = L2 = {λ}.

Next, assume that k is defined, δ(q0, a) is defined, and l is undefined. Since M
is undirected we obtain q0 ∈ δ(q0, a

2). We conclude that ak belongs to L(M)
and, for all i ≥ 0, the input ak+2i belongs to L(M) as well. Since l is undefined
there are no words whose parity is different from ak in L(M). Therefore, if k is
even we derive L(M) = L3,k = { an | n ≥ k and n even }. Similarly, if k is odd,
we have L(M) = L4,k = { an | n ≥ k and n odd }.

Finally, let k, δ(q0, a), and l be defined. As before we may conclude that
the input ak+2i belongs to L(M), for all i ≥ 0. On the other hand, since l is
defined and l > k we also have al+2i ∈ L(M), for all i ≥ 0. The parities of k
and l are different. Therefore, all words al+i, for i ≥ 0, belong to L(M). This
implies L(M) = L5,k,l = { an | n ≥ k and n even for k ≤ n < l } if k is even,
and L(M) = L6,k,l = { an | n ≥ k and n odd for k ≤ n < l } if k is odd. ut

Note that the languages { an | n ≥ k } are equal to L5,k,k+1, if k is even, and
equal to L6,k,k+1, if k is odd. Next, we turn to the minimal numbers of states
that are necessary for some NUDFA to accept the languages of different type.

Lemma 3. Let M be a unary NUDFA that accepts a language of type L1 or L2.
Then one state is sufficient and necessary for M .

Lemma 4. Let k ≥ 1 and M be a unary NUDFA that accepts a language of
type L3,k or L4,k. Then k + 1 states are sufficient and necessary for M .

Proof. Since the shortest word accepted has length k, automaton M must have
at least k+ 1 states. Otherwise, L(M) would be empty or a shorter word would
be accepted. The NUDFA depicted in Figure 2 accepts L3,k or L4,k with k + 1
states. ut

Lemma 5. Let k ≥ 0, l > k, and M be a unary NUDFA that accepts a language
of type L5,k,l or L6,k,l. Then l states are sufficient and necessary for M .

The NUDFA depicted in Figure 3 accepts L5,k,l or L6,k,l with l states.

Finite Automata with Undirected State Graphs 5

q0 q1 qk−1 qk· · ·a a a astart

Fig. 2. State graph of a minimal nondeterministic undirected finite automaton accept-
ing the language L3,k or L4,k.

q0 q1 qk−1 qk· · ·

ql−1 ql−2

qk+2qk+1

a a a astart
a

a

a

a

a

a

Fig. 3. State graph of a minimal nondeterministic undirected finite automaton accept-
ing the language L5,k,l or L6,k,l.

3.2 Unary and Binary Deterministic Undirected Finite Automata

The situation for unary deterministic undirected finite automata is straightfor-
ward. The only two possible state graphs are depicted in Figure 4. Any of the
states can be made accepting or rejecting which yields four different languages
that are accepted by unary DUDFAs.

q0 q0 q1

a

start astart

Fig. 4. Possible state graphs of unary deterministic undirected finite automata.

Corollary 6. Let M be a unary DUDFA. Then language L(M) is one of the
following:

1. L1 = ∅,
2. L2 = a∗,

3. L3 = { an | n is even },
4. L4 = { an | n is odd }.

While the family of binary languages accepted by NUDFAs is fairly rich, in
the following the types of possible state graphs of deterministic undirected finite
automata accepting binary languages are analyzed.

6 M. Kutrib, A. Malcher, C. Schneider

Theorem 7. Let M be a minimal binary DUDFA. Then its state graph is of
one of the five types depicted in Figure 5, where m,n ≥ 1, the letters a and b
are interchangeable, x, y ∈ {a, b}, x̄ = a ⇐⇒ x = b, and ȳ = a ⇐⇒ y = b.

1. q0

a, b

start

2. q0 q1
a, bstart

3. q0 q1 q2 qn−1 qn· · ·

a x

b a b x x̄start

4.

q1 q2 qm−1 qm

q0

p1 p2 pn−1 pn

· · ·

· · ·

x

y

a

b a x x̄

b

a b y ȳ

start

5.

q1 q2 q3

q0 q4

qn q5· · ·

a

b a

b

a

ba

b

start

Fig. 5. Possible state graphs of binary deterministic undirected finite automata, where
m,n ≥ 1, the letters a and b are interchangeable, x, y ∈ {a, b}, x̄ = a ⇐⇒ x = b, and
ȳ = a ⇐⇒ y = b.

Finite Automata with Undirected State Graphs 7

4 Deterministic State Complexity

In this section, we investigate the state complexity of DUDFAs. We start with
such automata on unary alphabets. It has been shown in Corollary 6 that in this
case the automata have an easy form which makes it possible to show closure
under the Boolean operations and reversal, and to establish upper and lower
bounds of two states for each of the operations. In the second part of the section,
we investigate the state complexity of the Boolean operations for DUDFAs over
arbitrary alphabets and can establish tight bounds as well.

Theorem 8. For any integers m,n ≥ 1 let A be an m-state and B be an n-state
DUDFA over the same unary alphabet. Then two states are sufficient and neces-
sary in the worst case for a DUDFA to accept L(A), L(A)∩L(B), L(A) ∪ L(B),
or L(A)R.

Now, we turn to arbitrary alphabets and consider first the complementation
of DUDFAs.

Theorem 9. For any integer n ≥ 1 let A be an n-state DUDFA. Then n states
are sufficient and necessary in the worst case for a DUDFA to accept the lan-
guage L(A).

Next, we continue with the intersection operation. To this end, we provide
the following preparatory lemma which is needed to prove a tight lower bound.

Lemma 10. Let m ≥ 4 be an even integer. There are natural numbers x1,
x2, y1, and y2 such that the following equations hold simultaneously. Moreover,
both equations take on the minimal value for x1, x2, y1, and y2.

m− 1 + 2mx1 = 1 + (2m− 2)y1, (1)

m+ 1 + 2mx2 = 2m− 3 + (2m− 2)y2. (2)

Theorem 11. For any integers m,n ≥ 1 let A be an m-state and B be an
n-state DUDFA. Then m · n states are sufficient for a DUDFA to accept the
language L(A) ∩ L(B).

Proof. For the upper bound we use the usual cross-product construction. Let
A = 〈QA, Σ, δA, q0,A, FA〉 be an m-state DUDFA and B = 〈QB , Σ, δB , q0,B , FB〉
be an n-state DUDFA. Then define C = 〈QA ×QB , Σ, δ, (q0,A, q0,B), FA × FB〉,
where δ((q1, q2), a) = (δA(q1, a), δB(q2, a)) for all q1 ∈ QA, q2 ∈ QB , and a ∈ Σ.
Clearly, C is an (m · n)-state DUDFA that accepts L(A) ∩ L(B). ut

Theorem 12. There are infinitely many integers m,n ≥ 1 with n = 2m − 2
such that A is an m-state DUDFA, B is an n-state DUDFA, and m · n states
are necessary for any DUDFA to accept the language L(A) ∩ L(B).

Proof. For the lower bound we consider two minimal DUDFAs A and B, where A
has m states for even m ≥ 4 and B has n = 2m− 2 states. Both DUDFAs have
the form depicted in Figure 6.

8 M. Kutrib, A. Malcher, C. Schneider

q0 q1 q2 qm−2 qm−1· · ·

b b

a b a b astart

q1 q2 q3

q0 q4

qn−1 q5· · ·

a

b a

b

a

ba

b

start

Fig. 6. The DUDFA A (upper automaton) and B (lower automaton) used for proof of
the lower bound.

Now, let C be a minimal DUDFA accepting L(A) ∩ L(B). First, consider
words in L(A)∩L(B) that have the form (ab)`a for some ` ≥ 1. Then the left hand
side of Equation (1) indicates the length of such words that are accepted by A,
whereas the right hand side of Equation (1) indicates the length of such words
that are accepted by B. According to Lemma 10 there are integers x1 = m/2,
x2 = m/2 − 2, y1 = m/2 + 1, and y2 = m/2 − 2 such that Equations (1)
and (2) hold simultaneously while assuming a minimal value. Hence, due to

the equality and the minimality we obtain a word (ab)(m
2+m−2)/2a of minimal

length m2 + m − 1 which belongs to L(A) ∩ L(B). Analogously, considering
words in L(A) ∩ L(B) of the form (ba)`b for some ` ≥ 1 the left hand side and

right hand side of Equation (2) provides a word (ba)(m
2−3m)/2b of minimal length

m2−3m+1 which belongs to L(A)∩L(B) as well. Since both minimal lengths are
different, automaton C has to have two different paths from the initial state to
an accepting state which implies, according to Theorem 7, that C is of type 4 or
type 5. Let us first assume that C is of type 4. Then, in particular the upper path
contains an accepting state f that is entered after reading w = (ab)(m

2+m−2)/2a
and the upper path ends in some state q that ends in a loop. If f = q, then there
is a transition from f to f on input a which implies that input wa is accepted
by C. This is a contradiction, since wa is not accepted by B. If f 6= q, then there
are two possibilities, namely, the remaining path from f to q processes inputs
of the form (ba)kb∗ or of the form (ba)k−1ba∗ for some k ≥ 1. In either case
we can construct a word w′ which is accepted by C, but not by B which gives
the contradiction. In the first case, we consider w′ = w(ba)kb(ab)k and in the
second case we set w′ = w(ba)k−1ba(ba)k−1b. Hence, we conclude that C is of
type 5. This means that C has two different paths which start in the initial state

Finite Automata with Undirected State Graphs 9

and end in the same state. Thus, C has at least m2 + m + m2 − 3m + 2 − 2 =
2m2 − 2m = m(2m− 2) = m · n states. ut

Finally, we study the union operation and obtain the same tight bound as
for intersection. For the upper bound we can again use the usual cross-product
construction as in the proof of Theorem 11.

Theorem 13. For any integers m,n ≥ 1 let A be an m-state and B be an
n-state DUDFA. Then m · n states are sufficient for a DUDFA to accept the
language L(A) ∪ L(B).

Theorem 14. There are infinitely many integers m,n ≥ 1 with n = 2m − 2
such that A is an m-state DUDFA, B is an n-state DUDFA, and m · n states
are necessary for any DUDFA to accept the language L(A) ∪ L(B).

Proof. For the lower bound we consider two DUDFAs A′ and B′ accepting the
complements of the languages accepted by A and B used in the proof of The-
orem 12. Both DUDFAs can be obtained due to Theorem 9 by interchanging
accepting and non-accepting states. The resulting DUDFAs are minimal, have m
and n states, respectively, L(A′) = L(A) and L(B′) = L(B). Now, let C ′ be a
minimal DUDFA accepting L(A′) ∪ L(B′) and assume that C ′ has ` < m · n
states. By applying Theorem 9 we can then construct an `-state DUDFA C such
that L(C) = L(C ′) = L(A′) ∪ L(B′) = L(A′) ∩ L(B′) = L(A) ∩ L(B). This is a
contradiction to the proof of Theorem 12 where it is shown that every DUDFA
accepting L(A) ∩ L(B) needs at least m · n states. ut

5 Nondeterministic State Complexity

In this section, we complement the state complexity results by investigating
NUDFAs. We start again with such automata on unary alphabets. Owing to the
characterization given in Theorem 2 we can show tight bounds by a detailed
case analysis. If the underlying alphabet is at least binary then NUDFAs are
only closed under intersection. However, it is possible to obtain tight bounds as
well. We start with the unary case.

Theorem 15. For any integers m,n ≥ 1 let A be an m-state and B be an
n-state NUDFA over the same unary alphabet. Then max(m,n) + 1 states are
sufficient and necessary in the worst case for an NUDFA to accept L(A)∩L(B).

Proof. According to Theorem 2, L(A) and L(B) belong to one of the types L1,
L2, L3,k, L4,k, L5,k,l, or L6,k,l for some k ≥ 0 and l > k. Hence, we have to
show that each combination leads to an NUDFA with at most max(m,n) + 1
states. The results of all combinations are summarized in the following table,
where k = max(k1, k2), l = max(l1, l2), L7,k1,l1,k2,l2 = L5,max(k1,l2),l1 , if l1 > l2,
L7,k1,l1,k2,l2 = L6,max(k2,l1),l2 , if l1 ≤ l2, and L8,k2

= L2, if k2 = 0, and L8,k2
= L1

otherwise.

10 M. Kutrib, A. Malcher, C. Schneider

∩ L1 L2 L3,k1 L4,k1 L5,k1,l1 L6,k1,l1

L6,k2,l2 L1 L1 L3,max(k1,l2) L4,k L7,k1,l1,k2,l2 L6,k,l

L5,k2,l2 L1 L8,k2 L3,k L4,max(k1,l2) L5,k,l L7,k2,l2,k1,l1

L4,k2
L1 L1 L1 L4,k L4,max(k2,l1) L4,k

L3,k2
L1 L8,k2

L3,k L1 L3,k L3,max(l1,k2)

L2 L1 L2 L8,k1 L1 L8,k1 L1

L1 L1 L1 L1 L1 L1 L1

We will not consider all combinations in detail, but exemplarily discuss two
intersections. First, we consider L3,k1

∩ L6,k2,l2 which is

{an | n ≥ k1 and n even } ∩ {an | n ≥ k2 and n odd for k2 ≤ n < l2} =

{an | n ≥ k1 and n even and n ≥ l2} = L3,max(k1,l2).

Second, we consider L5,k1,l1 ∩ L6,k2,l2 where necessarily l1 is odd and l2 is even.
If l1 > l2,

L5,k1,l1 ∩ L6,k2,l2 = {an | n ≥ k1 and n even for k1 ≤ n < l1} ∩ {an | n ≥ l2}
= {an | n ≥ max(k1, l2) and n even for k1 ≤ n < l1}
= L5,max(k1,l2),l1 .

Otherwise, if l1 < l2,

L5,k1,l1 ∩ L6,k2,l2 = {an | n ≥ l1} ∩ {an | n ≥ k2 and n odd for k2 ≤ n < l2}
= {an | n ≥ max(k2, l1) and n odd for k2 ≤ n < l2}
= L6,max(k2,l1),l2 .

For the upper bound, we can read off the table the following cases. If L1, L2,
or L8,t is obtained, we know that one state is sufficient to accept the lan-
guages. Hence, 1 ≤ max(m,n) + 1 is an upper bound. If L3,t or L4,t is ob-
tained, we know that t + 1 states are sufficient to accept the languages. Now,
we have t ∈ {k1, k2, l1, l2}. Since k1 < l1 = m and k2 < l2 = n, we obtain
that k1 + 1 ≤ m− 1 + 1 ≤ max(m,n) + 1, k2 + 1 ≤ n− 1 + 1 ≤ max(m,n) + 1,
l1 + 1 = m + 1 ≤ max(m,n) + 1, and l2 + 1 = n + 1 ≤ max(m,n) + 1. Thus,
max(m,n) + 1 is an upper bound.

Finally, if L5,t1,t2 or L6,t1,t2 is obtained, we know that t2 states are sufficient
to accept the languages. Now, we have t2 ∈ {l1, l2,max(l1, l2)}. Since l1 = m
and l2 = n, we obtain that l1 = m ≤ max(m,n) + 1, l2 = n ≤ max(m,n) + 1,
and max(l1, l2) = max(m,n) ≤ max(m,n) + 1. Thus, max(m,n) + 1 is an upper
bound also for these cases as well.

For the lower bound, we first consider L3,k1
∩L6,k2,l2 = L3,max(k1,l2). We know

that L3,k1
is accepted with k1 + 1 = m states owing to Lemma 4 and L6,k2,l2 is

accepted with l2 = n states owing to Lemma 5. Moreover, to accept L3,max(k1,l2)

at least max(k1, l2)+1 = max(m−1, n)+1 states are necessary due to Lemma 4.
Second, consider the symmetric case L6,k1,l1 ∩ L3,k2 = L3,max(l1,k2) with m = l1

Finite Automata with Undirected State Graphs 11

and n = k2+1. Then max(m,n−1)+1 states are necessary to accept L3,max(l1,k2).
Altogether, max(max(m− 1, n) + 1,max(m,n− 1) + 1) = max(m,n) + 1 is the
lower bound. ut

Theorem 16. For any integers m,n ≥ 1 let A be an m-state and B be an n-
state NUDFA over the same unary alphabet. Then m+n−1 states are sufficient
and necessary in the worst case for an NUDFA to accept L(A) · L(B).

Since the reversal of a unary language L is the language L again, the following
statement is obvious.

Theorem 17. For any integer m ≥ 1, let A be an m-state unary NUDFA. Then
m states are sufficient and necessary in the worst case for an NUDFA to accept
L(A)R.

Finally, we consider the general intersection operation for NUDFAs.

Theorem 18. For any integers m,n ≥ 1 let A be an m-state and B be an n-
state NUDFA. Then m · n states are sufficient and necessary in the worst case
for an NUDFA to accept the language L(A) ∩ L(B).

The results on the deterministic and nondeterministic state complexity ob-
tained are summarized in Table 1.

unary DUDFA DUDFA unary NUDFA NUDFA

L1 ∪ L2 2 mn — —

L1 ∩ L2 2 mn max(m,n) + 1 mn

L 2 m — —

L1L2 — — m + n− 1 —

L∗ — — — —

LR 2 ? m —

Table 1. Summary of the state complexities of the operations studied in this paper. It
is marked by — if an automata class is not closed under the corresponding operation.

6 Conclusions

In this paper, we have introduced deterministic and nondeterministic finite au-
tomata with undirected state graphs. It was possible to characterize the lan-
guages accepted by such automata in the unary case for deterministic and non-
deterministic automata as well as in the binary case for deterministic automata.
This characterization enabled us to study the deterministic and nondeterministic
operational state complexity in depth and an almost complete picture with tight

12 M. Kutrib, A. Malcher, C. Schneider

bounds could be obtained. The deterministic state complexity of the reversal
operation as well as the question of whether the language class is closed under
reversal are currently open questions. For DUDFAs with one accepting state the
construction of a DUDFA accepting the reversal is straightforward and needs no
additional states. However, the construction cannot directly be generalized to
DUDFAs with more than one accepting state.

Concerning the operational state complexity we have investigated so far only
those operations under which the corresponding language classes are closed.
However, even in the case of non-closure we still obtain regular languages. Thus,
it would clearly be of interest to determine upper and lower bounds for the
remaining operations from this point of view.

Since the language classes accepted by DUDFAs and NUDFAs are subregu-
lar, it would be interesting to devise an effective algorithm that decides, given
an arbitrary finite automaton A, whether or not L(A) could be accepted by an
NUDFA or DUDFA as well. In the positive case, such an algorithm should con-
struct an equivalent NUDFA or DUDFA. Then the determination of the exact
trade-off concerning the number of states between NUDFAs and DUDFAs as
well as arbitrary NFAs and DFAs becomes a challenging task.

References

1. Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. J.
Comput. System Sci. 78, 1115–1126 (2012)

2. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Comb. 21, 251–310 (2016)

3. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite au-
tomata. In: Potapov, I. (ed.) Developments in Language Theory (DLT 2015).
LNCS, vol. 9168, pp. 276–287. Springer (2015)

4. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,
I., Rahaman, H. (eds.) Reversible Computation (RC 2017). LNCS, vol. 10301, pp.
35–51. Springer (2017)

5. Kutrib, M.: Reversible and irreversible computations of deterministic finite-state
devices. In: Italiano, G.F., Pighizzini, G., Sannella, D. (eds.) Mathematical Foun-
dations of Computer Science (MFCS 2015). LNCS, vol. 9234, pp. 38–52. Springer
(2015)

6. Kutrib, M., Worsch, T.: Time-symmetric machines. In: Dueck, G.W., Miller, D.M.
(eds.) Reversible Computation (RC 2013). LNCS, vol. 7948, pp. 168–181. Springer
(2013)

7. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

8. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Weakly and strongly irreversible reg-
ular languages. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, G. (eds.) Automata and
Formal Languages (AFL 2017). EPTCS, vol. 252, pp. 143–156 (2017)

9. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, chap. 2, pp. 41–110. Springer, Berlin (1997)

10. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

