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Cycle Height of Finite Automata

Chris Keeler and Kai Salomaa

School of Computing, Queen’s University, Kingston, Ontario K7L 2N8, Canada
{keeler,ksalomaa}@cs.queensu.ca

Abstract. A nondeterministic finite automaton (NFA)A has cycle height
K if any computation of A can visit at most K cycles, and A has finite
cycle height if it has cycle height K for some K. We give a polynomial
time algorithm to decide whether an NFA has finite cycle height and, in
the positive case, to compute its optimal cycle height. Nondeterministic
finite automata of finite cycle height recognize the polynomial density
regular languages.

1 Introduction

Deterministic and nondeterministic finite automata define the class of regular
languages and have been systematically studied for over 60 years. At the same
time, many important questions on finite automata and regular languages re-
main open [8, 10]. The last decades have seen much work on the descriptional
complexity, or state complexity, of regular languages [4, 6, 7].

In this paper we consider a structural property of finite automata called cycle
height. A nondeterministic finite automaton (NFA) is said to have finite cycle
height if no two cycles overlap. A finite cycle height NFA A has cycle height K if
all computations of A visit no more than K non-equivalent cycles.1 The acyclic
NFAs have cycle height zero and the nearly acyclic NFAs [9] have cycle height
one.

Note that cycle height differs from the notion of cycle rank [5] which counts
the degree of nesting of cycles in an NFA. Also Msiska and van Zijl [12] estimate
the size blow-up of the subset construction by counting how many times a com-
putation passes through a simple cycle. The notion is in some sense related to
cycle height, but their point of view is different because the algorithm modifies
the NFA by removing nested cycles.

A language L has polynomial density if the number of strings of length n
in L is bounded by a polynomial in n. Szilard et al. [15] have shown that a
language recognized by a deterministic finite automaton (DFA) A has polynomial
density if all strings have a certain tiered property with respect to A. The tiered
property is related to our notion of cycle height of NFAs, although in [15] the
tiered words are defined only with respect to a DFA. As noted by Kutrib et
al. [11], from [15] it follows that, for a polynomial density regular language L,

1 By non-equivalent cycles we mean cycles that are not permutations of each other.
The notion will be defined formally in section 2.
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the degree of the polynomial giving the density of L is computable. Using more
advanced techniques, Gawrychowski et al. [3] have shown that for an m-state
DFA A recognizing a polynomial density language the degree of the polynomial
giving the density of the language can be computed in O(m) time, assuming the
alphabet size is constant.

The contributions of this paper are as follows. In section 3 we give a poly-
nomial time algorithm to decide whether an NFA A has finite cycle height and,
in the positive case, to compute the cycle height of A. We show that NFAs
with finite cycle height recognize the polynomial density regular languages, but
an NFA recognizing a polynomial density language need not have finite cycle
height. Based on results from [15] it then follows that a DFA A has finite cycle
height if and only if the language L(A) has polynomial density. Furthermore, if
A has finite cycle height, the degree of the polynomial bounding the density of
A is the cycle height of A minus one. This would give a polynomial time algo-
rithm to compute the density of a language recognized by a DFA, however, the
time complexity is worse than in the known algorithm from Gawrychowski et
al. [3]. Finally in section 4 we study upper and lower bounds for the depth path
width [9] of NFAs with finite cycle height. The depth path width of an NFA A,
roughly speaking, quantifies the overall path expansion in computations of A by
counting the number of complete computations of A on all possible inputs of a
given length.

2 Preliminaries

We assume the reader to be familiar with the basics of formal languages and
finite automata [14]. The set of strings over a finite alphabet Σ is Σ∗, the set
of strings of length m ≥ 0 is Σm and ε is the empty string. The cardinality of a
finite set F is denoted |F | and N is the set of non-negative integers.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F )
where Q is the finite set of states, Σ is the input alphabet, δ : Q×Σ → 2Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
The transition function δ is in the usual way extended as a function Q×Σ∗ → 2Q

and the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}. If
|δ(q, b)| ≤ 1 for all q ∈ Q and b ∈ Σ, the automaton A is a deterministic finite
automaton (DFA). It is well known that the NFAs and DFAs recognize the class
of regular languages.

Unless otherwise mentioned, we always assume that an NFA or a DFA does
not have useless states, that is, states that cannot be used in an accepting com-
putation. Note that we can avoid a DFA having a “useless” dead state because
we allow DFAs to have undefined transitions.

The density of a language L is a function N→ N defined as %L(n) = |L∩Σn|.
A language L is said to have polynomial density if there exists an integer d ≥ 0
such that %L(n) ∈ O(nd). Density is sometimes instead defined as the ratio
|L∩Σn|/|Σn|, with our notion of density instead being referred to as population
[15].
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2.1 Cycle height and depth path width

First we recall some definitions related to computations and cycles of an NFA.
In the following A = (Q,Σ, δ, q0, F ) is always an NFA.

A (state) path of the NFA A with underlying string w = b1b2 · · · bk, bi ∈ Σ,
i = 1, . . . , k, k ≥ 0, is a sequence of states (p0, p1, . . . , pk), where pj ∈ δ(pj−1, bj),
j = 1, . . . k. A path beginning in the start state q0, is a computation of A on the
underlying string w. A computation that ends in an accepting state of F is an
accepting computation. A computation (q0, p1, . . . , p`) is a complete computation
on a string b1b2 · · · bk if ` = k. The set of all computations of A on the string w
is denoted compA(w).

A path (p0, p1, . . . , pk), k ≥ 1, with underlying string b1b2 · · · bk is a cycle if
p0 = pk. A cycle with one transition from a state to itself is called a self-loop.

Cycles that are obtained from each other by a cyclical shift are said to be
equivalent: For 0 < i < k, the above cycle (with p0 = pk) is equivalent to
the cycle (pi, . . . , pk, p1, . . . pi−1, pi) having underlying string bi+1 · · · bkb1 · · · bi.
In the following, unless otherwise mentioned, by a cycle we always mean an
equivalence class of cycles and, thus, by two distinct cycles we mean two non-
equivalent cycles.

We say that an NFA A has finite cycle height if for any distinct cycles C1 and
C2 of A, either C1 is unreachable from C2 or C2 is unreachable from C1. It is easy
to see that an NFA has finite cycle height if and only if no two different cycles
overlap. Additionally, this condition implies a strict ordering on the cycles, since
the reachability between two distinct cycles holds in at most in one direction.

A finite cycle height NFA A has cycle height K ∈ N if no computation of
A can contain states belonging to K + 1 different cycles. Intuitively, this means
that no computation can “pass through” K+ 1 different cycles. Note that since
A has finite cycle height and a strict ordering on its cycles, a computation can
“pass through” a cycle at most once. We say that A has strict cycle height K if
it has cycle height K but not cycle height K− 1. Note that if A has cycle height
K, then there exists a unique 0 ≤ K′ ≤ K such that A has strict cycle height K′.

An acyclic NFA has cycle height zero and a nearly acyclic NFA [9] has cy-
cle height one (by its definition). Since a finite cycle height NFA cannot have
overlapping cycles, the Lemma below is immediate. An n-state NFA with cycle
height n is given in Figure 2.

Lemma 1. The finite cycle height of an n-state NFA is at most n. For each
n ∈ N and K ≤ n there exists an n-state NFA with strict cycle height K.

To conclude this section we recall the notion of depth path width, which
counts the number of complete computations of given length. The depth path
width [9] of A on strings of length ` ∈ N is

DPW(A, `) =
∑
w∈Σ`

|compA(w)|.

The depth path width of the NFAA is defined as DPWsup(A) = sup
`∈N

(DPW(A, `)).

In section 4 we will use the following Lemma.
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Lemma 2. Let A be an NFA and ` ∈ N.

(i) If A′ is an NFA obtained from A by changing the alphabet symbol labeling
one transition, then DPW(A′, `) = DPW(A, `).

(ii) If A′′ is an NFA obtained from A by adding one new transition, then

DPW(A′′, `) ≥ DPW(A, `).

3 Polynomial Time Algorithm for Cycle Height

We present an algorithm which determines whether or not an NFA A has finite
cycle height, and if so, returns the strict cycle height of A.

The idea of Algorithm 1 is as follows: For an NFA A, we first split A into
its strongly connected components (SCCs). We then ensure that A does not
have any nested cycles, which would prevent finite cycle height. This is done by
checking that each SCC is either an acyclic singleton (consisting of only one state
and no transitions) or a simple cycle (where consecutive states are connected by
a unique transition).

After this, the algorithm creates an acyclic graphG = (V,E), V = {v0, . . . , vk−1},
where each vertex represents one of A’s strongly connected components. Each
edge (vi, vj) represents a connection in A between the two SCCs si and sj , for
0 ≤ i < j ≤ k − 1. The weights of these edges represent the type of SCC to
which the edge leads. That is, if (vi, vj) is a 0-weight edge in E, then sj is (and
vj represents) an acyclic singleton. If (vi, vj) is a 1-weight edge in E, then sj is
(and vj represents) a simple cycle SCC.

The algorithm then determines the minimum distance from v0 (the vertex
representing the SCC containing q0) to all other vj . Since each 1-weight edge
leads to a vertex representing a cyclical SCC, the maximum-cost path starting
from v0 will lead through the most vertices representing cyclical SCCs. In fact,
the length of the maximum-cost path in G starting from v0 is the integer K,
such that A has strict cycle height K.

In the algorithm, for states qa and qb of A, the distance from qa to qb is the
length of the shortest string that takes qa to qb. If qb is not reachable from qa
the distance is ∞.

Complexity analysis of Algorithm 1: The input is an NFA (Q,Σ, δ, q0, F ) with m
states. Creating the distance matrix takesΘ(m3) time andΘ(m2) space using the
Floyd-Warshall reachability algorithm [2]. Creating the set of strongly connected
components can be done in Θ(m+ |δ|) time using Tarjan’s SCC algorithm [16].
Checking for the existence of an SCC which is not a simple cycle is naturally
bounded by the number of states and transitions in A. Clearly then, the “if”
part on line 4 is not as computationally hard as the “else” part on line 6. For the
else part, the two for all statements multiply the inner statements’ complexity by
O(
(
m
2

)
), as they enumerate all ordered pairs and there are maximally m SCCs.

Since we know that there is a strict ordering on the cycles, we do not need to
compare all pairs of SCCs, as qi is never reachable from qj when i < j.
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Algorithm 1 Computing the Cycle Height of an NFA

1: Let A = (Q,Σ, δ, q0, F ) be an NFA where |Q| = m.
2: Create a distance matrix M , where M [qa, qb] is the distance from state qa ∈ Q to

state qb ∈ Q.
3: Let s0, s1, . . . , sk−1, k ≥ 1, be the strongly connected components of A.
4: if there exists si, 0 ≤ i ≤ k − 1, such that si is not a simple cycle or acyclic

singleton then
5: return “A does not have finite cycle height”
6: else
7: if the start state q0 is in an acyclic singleton then
8: startBias = 0
9: else

10: startBias = 1
11: end if
12: Create an acyclic graph G=(V,E), V={v0, . . . , vk−1}, E=∅, where each vi rep-

resents the strongly connected component si, for 0 ≤ i ≤ k − 1.
13: for all si, 0 ≤ i < k − 1 select one state qi in si and do
14: for all sj , i < j ≤ k − 1 select one state qj in sj and do
15: if M [qi, qj ] 6=∞ then
16: if sj is an acyclic singleton consisting of state sj then
17: Add a 0-weight edge to E from vertex vi to vertex vj .
18: else
19: Add a 1-weight edge to E from vertex vi to vertex vj .
20: end if
21: end if
22: end for
23: end for
24: Let D be the distances from v0 to all other vertices in V .
25: return max

v∈V
(D[v]) + startBias

26: end if

Determining the reachability between SCCs is done in constant time with the
help of the distance matrix M . We create the shortest-path tree D for G using
the modified Dijkstra’s algorithm given in [13], which takes O(|E|+ |V | · logC)
time, where C is the largest edge value. An upper bound for the runtime of the
algorithm is

Θ(m3 +m+ |δ|+
(
m

2

)
+ |E|+ |V | · logC)

Since 0 and 1 are the only edge values used, the constant C is ignored and the
runtime simplifies to Θ(max(m3, |δ|)).

Using Algorithm 1, we obtain the following two results. Note that Theorem 1
assumes that the input NFA has finite cycle height. This property can be decided
using Theorem 2.

Theorem 1. If A is an NFA with m states, transition function δ and finite cycle
height, then we can compute in time O(max(m3, |δ|)) and space O(max(m2, |δ|))
the strict cycle height of A.
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If we consider the alphabet to be fixed, as is often done, the time bound of
Theorem 1 simplifies to O(m3).

Second, if we modify the algorithm so that the distance matrix M is never
calculated, and the else part on line 6 just returns 1 (instead of lines 10 through
25), then we can decide whether an NFA has finite cycle height just using Tarjan’s
SCC algorithm, checking that each SCC is a simple cycle or an acyclic singleton.

Theorem 2. If A is an NFA with m states and a transition function δ, we can
decide in time O(m+ |δ|) whether or not A has finite cycle height.

3.1 Relationship with Polynomial Density Languages

The cycle height of an NFA A can be related to language classes recognized by A.
It is known that nearly acyclic NFAs, or NFAs of cycle height one, recognize ex-
actly the constant density languages [9]. We recall the following characterization
of polynomial density regular languages from [15].

Proposition 1 ([15]). A regular language is of polynomial density (of degree at
most k) if and only if it can be represented as a finite union of regular expressions
of the form x · y∗1z1 . . . y∗t zt, with each t ≤ k + 1 and x, y1, z1, . . . , yt, zt ∈ Σ∗.

Using the above characterization we can verify that the languages recognized
by finite cycle height NFAs have polynomial density. Note that Szilard et al. [15]
define a notion of a t-tiered string , and this notion is closely related to our notion
of cycle height.2 If all strings are t-tiered with respect to an automaton A then
the language of A has a representation as in Proposition 1. Using this observation
we can extend Proposition 1 for NFAs of given cycle height.

Proposition 2. If A is an NFA with cycle height K, then

L(A) =

r⋃
i=1

xi · [y∗i,1zi,1 · . . . · y∗i,tizi,ti ],

for xi, yi,j , zi,j ∈ Σ∗, and some integers j, ti and r, such that ti ≤ K for all i.

As a corollary, we get an explicit upper bound for the density of a language
recognized by an NFA of cycle height K.

Corollary 1. If A is an NFA with cycle height K, then %L(A)(n) ∈ O(nK−1).

The reverse is not true: an NFA recognizing a polynomial density language
need not have finite cycle height. As a counterexample, we give the NFA in
Figure 1, which does not have finite cycle height, but whose language, L = a∗,
has constant density.

For a DFA A that has strict cycle height K, we can use results of [15] to
strengthen Corollary 1 such that it gives the precise density of L(A).

2 Strictly speaking, the t-tiered words are defined in [15] only with respect to a DFA.
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0 1 . . . m-2 m-1

a

a

a

a

a

a

a

a

a

a

Fig. 1. NFA with language a∗

Lemma 3. Let A be a DFA with strict cycle height K. Then the density of L(A)
is in Ω(nK−1).

Proof. Since A has strict cycle height K, there exists a string w such that the
accepting computation of A on w visits K different cycles. (Here we rely on the
assumption that A has no useless states, which implies that any computation
can be extended to an accepting computation.) This means that w is K-tiered
with respect to A (as defined in [15]) and the claim follows from Lemma 1 of
[15]. ut

From Lemma 3 and Corollary 1 we see that the cycle height of a DFA exactly
characterizes the density of the recognized language. Note that cycle height zero
DFAs recognize finite languages.

Corollary 2. If A is a DFA with strict cycle height K ≥ 1 then the density of
L(A) is Θ(nK−1).

From Theorem 6 of [15] we know that if the density of a regular language
L is non-polynomial, then %L(n) = 2Ω(n). The gap between polynomial and
exponential densities occurs because there do not exist any regular languages
whose density functions contain non-integer exponents, e.g.

√
n, or 2

√
n. Together

with Corollary 2 this gives:

Corollary 3. If the cycle height of a DFA A is not finite then the density of
L(A) is 2Ω(n).

Corollary 2 and Theorem 1 would yield a polynomial time algorithm to com-
pute the exact density of a regular language, however, the time complexity cannot
compete with the algorithm of Gawrychowski et al. [3]. For an m-state DFA over
a fixed alphabet, an algorithm based on our Theorem 1 to compute the degree
of the polynomial giving the density of the language would require O(m3) time.
In comparison, for a DFA A over a fixed alphabet the algorithm given by The-
orem 9 of Gawrychowski et al. [3] works in linear time and, even for an NFA A,
the algorithm of Gawrychowski et al. [3] does the computation in time O(m2),
where m is the number of states of A.
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4 Depth Path Width of Finite Cycle Height NFAs

First we consider bounds for the number of transitions of an NFA with finite
cycle height. The definition of NFAs with strict cycle height m implies that an
NFA of the form given in Figure 2 has the minimal number of transitions among
all NFAs of strict cycle height m.

0 1 . . . m− 2 m− 1

a

a

a

a

a

a

a

a

a

Fig. 2. Unary NFA with strict cycle height m having a minimal number of transitions

For NFAs with strict cycle height K, the following Lemma gives bounds for
the number of cycles and transitions as a function of the number of states.

Lemma 4. If A = (Q,Σ, δ, q0, F ) is an NFA with cycle height K, then K ≤ |Q|,
and |δ| ≤ K + |Σ| ·

(|Q|
2

)
. If A has strict cycle height K, then we have also that

2 · K − 1 ≤ |δ|.

We examine the number of complete computations of a given length of a
unary NFA A with strict cycle height K, that is, the depth path width of A.

Lemma 5. Let AK = (Q, {a}, δ, q0, F ) be a unary NFA with strict cycle height

K. Then DPW(AK, `) ≥
K−1∑
i=0

(
`
i

)
, ` ∈ N.

Next we compute an upper bound for the depth path width of K-state unary
NFAs having strict cycle height K.

Lemma 6. Let AK be a K-state unary NFA with strict cycle height K. Then for
` ∈ N, DPW(AK, `) ≤

(
`+K−1
K−1

)
.

Proof. Since AK has strict cycle height K, each of the K states must be part of
a distinct cycle, that is, each state has a self-loop and no other transition can be
part of a cycle. By Lemma 2 (ii) to get an upper bound for the depth path width,
we can add to AK a maximal number of acyclic transition. That is, without loss
of generality AK is as in Figure 3 (with K = m).

It remains to compute the depth path width of AK. As the base case, we
observe that DPW(A1, `) =

(
`+1−1

0

)
=
(
`
0

)
= 1. Inductively, we assume that the

claim holds for AK and now the inductive claim is that

DPW(AK+1, `) =

(
`+K
K

)
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0 1 . . . m-2 m-1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Fig. 3. An m-state unary NFA with strict cycle height m and maximal number of
transitions

The value DPW(AK+1, `) counts the number of computations of length ` that
are in AK, as well as all of the computations with `− 1 transitions from AK and
one final transition, δ(q, a) = K, for some 0 ≤ q ≤ K − 1. More formally:

DPW (AK+1, `) = DPW (AK, `) +DPW (AK+1, `− 1) (1)

Using our inductive assumption to replace the values in the right hand side of
(1), we get:

DPW (AK+1, `) =

(
`+K − 1

K − 1

)
+

(
`+K − 1

K

)
=

(
`+K
K

)
where the last equality uses Pascal’s triangle recursion rule [17]. ut

Lemma 6 gives an upper bound for the depth path width of a K-state unary
NFA with strict cycle height K. Next we consider the depth path width of unary
NFAs with strict cycle height K that have more than K states.

Lemma 7. Let AK = (Q, {a}, δ, q0, F ) be an K-state NFA with strict cycle
height K (as in Lemma 6). Let BK+nc be AK with one additional state that
is not involved in any cycle. Then DPW (BK+nc, `) ≤ DPW (AK+1, `), ` ∈ N.

Since NFAs with finite strict cycle height will have maximal depth path width
when they have the same number of states and cycles, the result from Lemma
6 is an upper bound for all K-state NFAs with strict cycle height K. Combining
the results from these Lemmas, we observe the following corollary.

Corollary 4. If AK = (Q,Σ, δ, q0, F ) is a K-state unary NFA with strict cycle
height K, then

K−1∑
i=0

(
`

i

)
≤ DPW(AK, `) ≤

(
`+K − 1

K − 1

)
The upper bound also holds for K-state unary NFAs with cycle height K. The
lower bound also holds for K-state non-unary NFAs with strict cycle height K.
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The results of section 4 give upper and lower bounds for the number of
complete computations of NFAs whose number of states matches exactly their
strict cycle height.

If the number of states exceeds the number of cycles, there will naturally
be fewer complete computations. In this case, however, the depth path width
of these NFAs cannot be just a function of the number of cycles, and must
necessarily involve the number of states.

Problem 1. What is the maximum number of complete computations for an m-
state NFA with strict cycle height K, when m > K?

4.1 Experimental Results

To acquire results for the maximum number of complete computations of NFAs
with strict finite cycle height and a non-unary alphabet, we first need the fol-
lowing definition.

Definition 1 ([18]). Pascal’s generalized triangle, denoted PN , is an extension
of Pascal’s triangle, defined as:

PN (0, 0) = PN (x, 0) = PN (0, y) = 1

PN (x, y) = PN (x− 1, y) + PN (x, y − 1) + (N · PN (x− 1, y − 1)),

where PN (x, y) is the yth element in the xth row of the N th generalized triangle,
for x, y ≥ 0. It is obvious that P0 reduces to the normal Pascal’s triangle.

Recalling the result from Lemma 6 for unary machines, we can see easily
that:

DPW (AK, `) = P0(K − 1, `) =

(
`+K − 1

K − 1

)
For NFAs with a binary alphabet we look to P1, which corresponds to the
Delannoy numbers [1], and has the following closed form:

P1(x, y) =

min(x,y)∑
i=0

2i ·
(
x

i

)
·
(
y

i

)

By extrapolating upon the closed form for the Delannoy numbers, we estab-
lished a candidate equation upper bounding the number of complete computa-
tions of NFAs of the form given in Figure 4. Based on experimental testing of
NFAs of this form (for 1 ≤ K ≤ 7, 1 ≤ |Σ| ≤ 8, and 1 ≤ ` ≤ 10), we believe that
the following conjecture captures the number of complete computations as the
length of the computation increases.

The selection of characters used on the self-loops (in the case of Figure 4, c1)
is arbitrary for the purposes of counting computations, and does not have to be
the same for every state.
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0 1 . . . m-2 m-1

c1

c1, . . . , cs

c1, . . . , cs

c1, . . . , cs

c1, . . . , cs

c1

c1, . . . , cs

c1, . . . , cs

c1, . . . , cs

c1

c1, . . . , cs

c1, . . . , cs

c1

c1, . . . , cs

c1

Fig. 4. K-state NFA with strict cycle height K and |Σ| = s

Conjecture 1. Let A
|Σ|
K = (Q,Σ, δ, q0, F ) be a K-state NFA with strict cycle

height K, as in Figure 4. Then

DPW (A
|Σ|
K , `) = P |Σ|−1(K − 1, `) =

min(K−1,`)∑
i=0

|Σ|i ·
(
K − 1

i

)
·
(
`

i

)
(2)

Furthermore, since (2) and the structure of NFAs of the form given in Figure 4
scale down to the unary case, we believe that this is an upper bound on the
number of complete computations of any K-state NFA with strict cycle height
K.

Conjecture 2. Let A
|Σ|
K = (Q,Σ, δ, q0, F ) be a K-state NFA with strict cycle

height K. Then

DPW (A
|Σ|
K , `) ≤

min(K−1,`)∑
i=0

|Σ|i ·
(
K − 1

i

)
·
(
`

i

)
(3)
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