
HAL Id: hal-01875490
https://inria.hal.science/hal-01875490

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Using PageRank to Reveal Relevant Issues to Support
Decision-Making on Open Source Projects

Alessandro Caetano, Leonardo Leite, Paulo Meirelles, Hilmer Neri, Fabio Kon,
Guilherme Horta Travassos

To cite this version:
Alessandro Caetano, Leonardo Leite, Paulo Meirelles, Hilmer Neri, Fabio Kon, et al.. Using PageR-
ank to Reveal Relevant Issues to Support Decision-Making on Open Source Projects. 14th IFIP
International Conference on Open Source Systems (OSS), Jun 2018, Athens, Greece. pp.102-113,
�10.1007/978-3-319-92375-8_9�. �hal-01875490�

https://inria.hal.science/hal-01875490
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Using PageRank to reveal relevant issues to
support decision-making on open source projects

Alessandro Caetano1, Leonardo Leite2, Paulo Meirelles2,3,
Hilmer Neri1,4, Fabio Kon2, and Guilherme Horta Travassos1

1 COPPE – Federal University of Rio de Janeiro
{alessandrocb,gth}@cos.ufrj.br

2 FLOSS Competence Center – University of São Paulo
{leofl,kon}@ime.usp.br

3 Department of Health Informatics – Federal University of São Paulo
paulo@softwarelivre.org

4 UnB Faculty in Gama – University of Brasilia
hilmer@unb.br

Abstract. Software release planning is crucial to software projects that
adopt incremental development. Open source projects depend on their
globally distributed maintainers’ communities who share project infor-
mation, usually described in the software project repository as issues, to
plan the contents and timing of the next releases. This paper introduces
an approach based on software issues to support decision-making regard-
ing open source software development activities such as release planning
and retrospectives. It uses the PageRank algorithm to suggest an impor-
tance ranking of the software issues based on the issues dependencies
topology. When based on a highly connected topology, project leaders
can use this rank as an input to planning activities. The observation of
two open source projects indicates the feasibility of our approach.

Keywords: Open Source Software, Free Software, Issue Management,
Decision-Making, PageRank, Empirical Software Engineering.

1 Introduction

The developers’ community is responsible for managing the next evolutionary
actions in Open Source Software (OSS) projects. Such steps can identify dif-
ferent types of software issues, such as new features, artifacts, improvements,
comments, bug fixes, among others. Collaborative Development Environments
(CDE) [3], such as GitHub and GitLab, provide essential collaboration tools,
such as issue trackers, in addition to their code repositories. An issue tracker
supports the community in registering new issues and discussing them, keeping
track of future work as well as recording the achieved results. Although the con-
cept of “issue” has a broader meaning than the concept of “bug” (a.k.a. software
defect), in some contexts, an issue tracker can be called a “bug tracker” and its
produced report, a “bug report”. An issue tracker can provide essential data



about the software project history and status. Data-driven decisions can con-
tribute to the software development process improvement, helping to the timely
delivery of high-quality software [6].

Researchers have conducted investigations on mining software artifacts to
provide useful insights for the decision-making process on software projects [1].
Codemine [6], for example, collects and analyzes engineering process data from
across a diverse set of Microsoft product teams. Baysal et al. inquire Mozilla
developers about how qualitative dashboards can support real-time developer
decision-making for daily tasks [2]. Robles et al. mine commit history to estimate
effort spent on a project [14]. Borges et al. mine open source GitHub repositories
to predict popularity based on repository properties [4]. In our work, issues are
the software artifacts mined to support decision-making.

An essential input data to planning activities are the history of the project
(past issues) and the set of opened issues. One could consider a set of related
issues as indicating some relevant theme within an OSS community. Open issues
can point to essential topics so far neglected and deserving attention. It is also
possible to use information regarding closed issues to observe where a project
community concentrated its efforts. Thus, looking at the history of the issues is
similar to performing a retrospective study, in which the software development
team can learn from the experiences and plan for future improvements [15]. It
is possible to use the retrospective based on the history of the issues to support
decision-making and the prioritization of activities, and also to help identify most
energy spent by the team during releases. The relevance of observing previously
invested efforts is evident in the research of Robles et al., in which a model
estimates the effort on the OpenStack system based on its commit history [14].

Goyal and Sardana explore issues mining, comparing techniques for assigning
the developer with maximum expertise related to a given bug to resolve it [8].
The match considers various meta-fields of the target bug and the meta-fields
of bugs already solved by the developer. The authors also explore the effect
of knowledge decay over time, a different meta-field weighting strategy, and
developer commits history. Although our analysis target is the same, the bug
report, our perspective is different, since we analyze the relevance of issues for
the community as a whole, and not for specific developers.

Some works handle the summarization of bug reports containing lengthy
conversations, so the reader can quickly grasp what matters in a given bug
report. He et al. focus on summarization improvement based on duplicated bug
reports analysis [10]. They apply the PageRank algorithm in a network in which
nodes are the sentences of a bug report, and the similarity among them defines
the edges, so the rank of sentences defines which ones belong to the summary.
Although we also use PageRank to bug reports, our approach is different since we
apply PageRank to reveal relevant issues from an issue set, and not to summarize
a single bug report.

From another point of view, Steinmacher et al. identified 50 entry barriers
faced by new developers in OSS projects [16]. Among them were i) the lack
of a list of project needs and issues, ii) the organization of the backlog in the



repository, and iii) the access to the tasks. Thus, besides supporting planning
and retrospective activities, the history of the issues is input to newcomers to
know the project better and decide where to focus efforts.

A well-organized project may have hundreds or even thousands of issues.
Considering such significant set of issues is hard for decision-making, one should
analyze every single software issue to produce consistent high-level patterns.
For this reason, OSS communities could benefit from automated approaches to
extract relevant information from the issue tracker to support decision-making
activities.

In the issue tracker facilities provided by the GitHub and GitLab, users can
reference an issue from comments or titles on other software issues, creating a
network of linked issues (see Section 2). Considering such issues network, we
propose in this paper an approach to define the top-ranked software issues from
a given repository, by using the PageRank algorithm [13] to determine the rele-
vance of issues based on their network centrality. Issues with a large number of
references (dependencies) are more likely to be highly relevant, and consequently,
those referenced by relevant issues are more likely to be also highly relevant. This
way, the outcome of the PageRank algorithm (a list of software issues ordered
by relevance) can support retrospective studies, planning activities, and look
for relevant opportunities for newcomers to work out. Therefore, this paper in-
tends to answer the following research question: Can the PageRank algorithm
identify relevant issues on OSS projects to support decision-making?

We used two observational studies with two OSS projects to support the
answering of this question. The observed results indicate that the use of PageR-
ank could be somewhat feasible since some ranked relevant issues presented
terms aligned to the planning documentation, and others were related to effort-
consuming activities.

We organized the remaining of this paper as follows. Section 2 describes some
basic concepts on the model of software issues and the PageRank algorithm. Sec-
tion 3 presents our proposal to determine the relevance order of software issues
according to the PageRank algorithm. In Section 4 we discuss the evaluation
of our approach. Section 5 presents some threats to the validity of this study.
Finally, Section 6 draws our conclusions and future work.

2 Background

In this section, we present how to build a graph representation of software issues
extracted from Github and Gitlab platforms. We also discuss the PageRank, a
link analysis algorithm that we applied to find the top-ranked software project
issues.

2.1 The software issue model

Software issues are used in CDEs such as GitHub and GitLab to organize com-
munity activities. Software issues can have many purposes, such as discussing



new ideas, asking for help, registering desired new features, artifacts improve-
ments, fixes and so forth.

Each software issue has a number, a title, a textual description, and com-
mentaries by its contributors. An issue title or commentary may refer to another
software issue through a short link by using the “#” sign followed by the issue
number. Commit messages can also refer to software issues in this style.

A software issue starts in the “open” state and finishes in the “closed” state.
An issue is closed when it is addressed, rejected, or incorporated by another soft-
ware issue. It may be assigned to a specific member of the software community
and linked to a milestone. In this context, a milestone is a cohesive collection
of software issues, possibly associated with a due date. A milestone, therefore,
represents a project goal in a higher level of abstraction than just one issue.

2.2 The PageRank algorithm

Larry Page and Sergey Brin created the PageRank algorithm in 1999 [13]. It cal-
culates the relative importance of web pages, and it has applications in search
engines, traffic estimates, and web browsing. The premise of the PageRank al-
gorithm is that each web page has some outbound and inbound links and that
pages with a large number of links are more relevant than pages with fewer links.
Besides, the algorithm takes into account the relevance of incoming links to a
page: if the web page has an inbound link that has high relevance, that page
tends to be more important than another one having several links coming from
less relevant pages. The equation used to calculate the rank in the PageRank
algorithm is:

PR(x) = α

(
1

N

)
+ (1 − α)

∑
y∈L(x)

PR(y)

C(y)
, (1)

in which x a web page, PR(x) is the page rank of x. L(x) represents the
pages with links to x, C(y) is the out-degree of y, α represents the probability
of a random jump from one of the links, that is, in a random-surfer model it
represents the probability of the surfer restart the algorithm at any given page,
preventing the algorithm to be stuck in a node with zero out-degree. N represents
the total number of pages analyzed.

3 Using PageRank to reveal relevant software issues

Our approach to analyzing the relevance of issues consists in using the PageRank
algorithm, i.e., applying Equation 1 to software issues rather than to web pages.
So, the first step of our procedure is generating a directed graph based on data
retrieved from the software repository. We retrieve such data using the APIs
provided by GitHub and GitLab. In the generated graph, a vertex represents a
software issue, and a directed edge represents a link from a software issue to
another one, only issues linked using the “#” sign are considered.



Before applying the PageRank algorithm, two transformations are performed
in the graph. The first is to connect all software issues within the same milestone.
We consider this connection because software issues within the same milestone
have a semantic bind that means that all of them must be fulfilled so that a
higher-level objective is achieved. The second transformation eliminates software
issues with no links. A software issue is kept whether it has at least one inbound
link or one outbound link. This transformation is made because software issues
with no links are irrelevant to the analysis and affect the rank scale, so pruning
these software issues generates a result that is easier to interpret.

After the graph is prepared, Equation 1 is applied to the graph with α =
0.85, which is the default value used in NetworkX [9], a library for network
manipulation we used, and the recommended value from the original Pagerank
proposition [5]. The result is the assignment of a real number called “rank” to
each software issue and a list of software issues ordered from the highest to the
lowest rank.

Our implementation source code (including data retrieving, graph prepara-
tion, and PageRank execution) is available at GitLab5. We built the automated
solution in Python. The top-ranked libraries we used are Matplotlib for data
visualization [11]; Scipy6for numerical computing; Pandas7 for data frame ma-
nipulation; NetworkX[9] to generate a digraph and compute the PageRank; and
NLTK8 to find the patterns we were looking for in the issue text.

4 Evaluation

We automated an approach to be used by any project that adopts the GitHub
or GitLab issue trackers to organize the software community activities. We eval-
uated it by observing two OSS projects: Brazilian Public Software portal9, with
its project repository in its own GitLab instance, and Parliamentary Radar10,
which uses Github.com to host its project repositories. We choose these Brazil-
ian software projects because they documented their roadmaps and backlogs,
which enabled us to use this documentation to evaluate the algorithm results.
Moreover, the proximity of our research group to the developers of these two
software projects helped us to perform qualitative assessments regarding our
findings with the project members.

The Brazilian Public Software (SPB) portal is an integrated platform for col-
laborative software development of OSS projects used by the Brazilian public ad-
ministration [12]. It includes facilities for social networking, mailing lists, version
control, and monitoring of source code quality, making it a system-of-systems.

5 https://gitlab.com/AlessandroCaetano/PageRanking
6 https://scipy.org
7 http://pandas.pydata.org
8 http://nltk.org
9 https://softwarepublico.gov.br

10 http://radarparlamentar.polignu.org



The Parliamentary Radar project uses open government data to perform cluster
analysis on bill votes of legislative houses of Brazil.

The input to PageRank algorithm is the software issues graph. Figures 1
and 2 present the generation of the software issues graphs, which is the first
step of our approach, for the SPB Portal and Parliamentary Radar projects.
In these figures, the tiny red circles (altogether forming an ellipse) represent
the software issues, whereas the straight lines represent links between them. In
short, the graphs use a circular layout, as proposed by Doğrusöz et al. [7].

Fig. 1. Software issues circular graph of the SPB Portal project.

Fig. 2. Software issues circular graph of the Parliamentary Radar project.

The SPB graph already contains the transformations to linking the issues
of the same milestone and pruning those with no links. The Radar Parliamen-
tary graph includes the transformation of pruning software issues with no links.
However, since the Parliamentary Radar project does not systematically use
milestones, we did not perform the linkage of software issues of the same mile-
stones to it.

For the SPB portal project, the removal of issues with no links decreased
from 800 to 127 the number of software issues in the graph. After the cut, about



Table 1. The top ten ranked issues of the SPB Portal.

Issue Rank

Moderation of saved resource values of usage report 0.00593

Configure NGINX to serve syslog data 0.00345

Show error message close to the institution field on usage report 0.00345

Run Gitlab 8.5 with the built package 0.00345

Global search improvement 0.00345

White screen on community lateral block edition 0.00345

Portal wiki news import 0.00304

Broken user registration (username: boscojr) 0.00263

Add user e-mail on join community request processing screen 0.00263

Remove SISP question from new institution creation 0.00263

62.5% of them have only one link. Some issues appear with two and three links,
and there are also three issues with four, five and six links each. Using the issues
graph of Figure 1, we performed the PageRank algorithm. Table 1 shows the top
ten ranked issues.

Table 2. The top ten ranked issues of the Radar Parlamentar.

Issue Rank

Import legislative house 0.01242

Controversial polls 0.01242

Highlight party on the chart 0.01242

Duplicated parties and parliamentarians 0.01242

Advanced analysis 0.01242

Filtered polling list refactoring 0.01112

Automatic creation of dumps 0.01047

Solving issues 248, 241 e 250 0.01047

Without party voters on cdep in 1997 0.01047

Creation of Executive Chief Importer 0.01047

The removal of Parliamentary Radar project issues with no links decreased
from 300 to 71 the number of software issues in the graph. After the cut, about
50% of them had just one link. Some issues appear with two, three and four links,
and there is one issue with eleven links. Using the issues graph of Figure 2, we
performed the PageRank algorithm. Table 2 shows the top-ranked issues.

The rank values of SPB project issues varied from 0.002 to 0.0172. The
median is 0.0028 and the mean 0.0040 with a standard deviation of 0.0018.
About half of the issues presented the same rank of 0.002. The histogram in
Figure 3 represents the distribution of the generated ranking. For the Parlia-



mentary Radar project issues, the ranks values varied in a range from 0.0046 to
0.0124. The median is 0.0059 and the mean 0.0063 with a standard deviation of
0.0020. Figure 4 presents the histogram plot for the Parliamentary Radar.

Fig. 3. Histogram of ranks for the SPB Portal issues.

Fig. 4. Histogram of ranks for the Parliamentary Radar issues.

We compared the top-ranked software issues of the SPB portal project to the
planning of the two last releases documented on the SPB wiki. We performed the
comparison looking for the terms present in issue titles, descriptions, and wiki
pages. In the SPB releases documentation, some priority features were “soft-
ware usage report”, “global search improvement”, and “general improvements”.
These terms align with terms found in the top-ranked software issues. We also
conducted an open interview with the SPB Portal coordinator presenting the
ranked list of issues to him, who provided feedback that the ranked list showed
the issues that consumed the most effort from the team at the project end. It
suggests the feasibility of our approach in capturing some of the relevant
issues from the management point of view.



The Parliamentary Radar project maintains its roadmap and backlog orga-
nized in the Wiki at its repository. Its backlog11 describes features desired for
the project. A set of software issues may represent different tasks to implement
a feature. We compare the ranked list of software issues of Parliamentary Radar
project and its roadmap to evaluate the result of our PageRank execution. In
this way, it was possible to align the top-ranked issues with the features pre-
sented in the backlog to indicate if the proposed approach to determining the
software issue relevance gives satisfactory results.

When comparing the Parliamentary Radar ranked software issues list with
the project backlog, we observed that our solution identified software issues that
were prioritized by developers. With this, we also conducted an open interview
with three core developers of Parliamentary Radar and presented the ranked
list of issues to them. We got the feedback that the highly relevant issues list
presented the three issues that consumed the most effort from the team at that
moment, which indicates that our approach was able to identify highly
relevant software issues from the developer point of view.

Moreover, the Parliamentary Radar developers stated that if they had this
suggestion when planning the next release, they could have prioritized other
software issues included in the list instead of some that they preferred to priori-
tize. They also stated that the list of ranked software issues could also be useful
during the team retrospective since it can help developers to identify the most
discussed ones. The Parliamentary Radar developers also proposed that new-
comers can use the list of ranked software issues to have an insight on what the
software community is working on, creating a better way for their engagement
in the software under development.

5 Threats to Validity

An internal validity threat occurs because the Parliamentary Radar roadmap had
not been updated at the time we executed our scripts. So, the roadmap could
not be related to software issues created after the last wiki update. However, the
Parliamentary Radar wiki content had enough information to correlate software
issues terms and planning documentation. Moreover, in the SPB Portal project,
the wiki content was more reliable, so the sound results for both projects support
the applicability of such comparison.

About external validity, we acknowledge that executing our approach with
only two OSS projects imposes barriers to a broader generalization regarding
our approach applicability. However, at least the positive observations of these
two projects are encouraging and can motivate other communities to try out
our proposal. Our approach is limited by how the developers organize the issue
tracker of their projects. Since the algorithm depends on the links of the issues,
it requires a cultural practice for the community to create these links.

In the evaluation process, the main reproducibility problem is the manual
comparison made between terms found on top-ranked software issues and terms

11 https://github.com/radar-parlamentar/radar/wiki/Roadmap



present in the planning documentation. An automated process for such compar-
ison would be more suitable. On the other hand, the planning documentation
for both SPB Portal and Parliamentary Radar projects are relatively small, so
we hope someone trying to reproduce our study might get very similar results.

6 Conclusion

We presented the application of the PageRank algorithm to a network of software
issues retrieved from OSS projects. Its use results in a ranking of issues, which
can support a software community in decision-making activities, such as the
planning of releases, retrospective studies, and helping newcomers to know the
project better.

The presented results showed the feasibility of our approach for the Brazilian
Public Software portal and Parliamentary Radar projects because some of the
top-ranked software issues were also present in their planning documentation.
Furthermore, in open interviews with the coordinators and the core developers of
the projects, they found the software issues rank insightful in both management
and development views. Therefore, we consider that the PageRank algorithm
may be used to extract a small set of relevant issues from OSS repositories to
support decision-making activities regarding retrospective studies, to support
new developers to engage on activities that are currently being worked by the
software community, and to track the effort of the team. However, before gener-
alizing its use for all OSS projects, it is vital to understand peculiarities of the
software community and project that could affect the results.

Answering the question “Can the PageRank algorithm identify relevant issues
on OSS projects to support decision-making activities?”, the obtained results
indicate that our approach can adequately work for those software projects using
the Github or Gitlab software issue trackers and in which the contributors
create a substantial number of links among issues. The issues should
represent activities for the developers, the links between them should represent
the relations between two or more activities, that way the algorithm can rank the
issues helping the developers prioritize them. Given OSS projects following the
specific structures presented in this study, we can answer our research question
positively, since the algorithm was able to reveal a set of relevant issues regarding
both the software projects. However, since we applied our approach to two OSS
projects, more studies are necessary to strengthen this claim.

The adoption of our approach by OSS communities requires a way to inte-
grate the execution and the presentation of results without the need to manually
run scripts. To facilitate more studies based on our approach, we shared a pack-
age with the scripts used in this study on Gitlab, as described in Section 3. Future
studies can evaluate the impact of our graph transformations, i.e., linking soft-
ware issues within the same milestone and pruning those with no links. Finally,
structured interviews with adopters of the approach would allow a better eval-
uation triangulation and broaden its applicability assessment for an extensive
range of OSS projects.



References

1. Abdellatif, T.M., Capretz, L.F., Ho, D.: Software analytics to software practice: A
systematic literature review. In: Proceedings of the First International Workshop
on BIG Data Software Engineering. pp. 30–36. BIGDSE ’15, IEEE (2015)

2. Baysal, O., Holmes, R., Godfrey, M.W.: Developer dashboards: The need for qual-
itative analytics. IEEE Software 30(4), 46–52 (2013)

3. Booch, G., Brown, A.W.: Collaborative development environments. Advances in
Computers, vol. 59, pp. 1 – 27. Elsevier (2003)

4. Borges, H., Hora, A., Valente, M.T.: Predicting the popularity of github reposito-
ries. In: Proceedings of the The 12th International Conference on Predictive Models
and Data Analytics in Software Engineering. pp. 9:1–9:10. PROMISE 2016, ACM
(2016)

5. Brin, S., Page, L.: Reprint of: The anatomy of a large-scale hypertextual web search
engine. Computer Networks 56(18), 3825–3833 (2012)

6. Czerwonka, J., Nagappan, N., Schulte, W., Murphy, B.: CODEMINE: Building a
software development data analytics platform at Microsoft. IEEE Software 30(4),
64–71 (2013)

7. Doğrusöz, U., Madden, B., Madden, P.: Circular layout in the Graph Layout
toolkit, pp. 92–100. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

8. Goyal, A., Sardana, N.: Efficient bug triage in issue tracking systems. In: Proceed-
ings of the Doctoral Consortium at the 13th International Conference on Open
Source Systems. pp. 15–24 (2017)

9. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynam-
ics, and function using NetworkX. In: Proceedings of the 7th Python in Science
Conference. pp. 11–15. SciPy 2008 (2008)

10. He, J., Nazar, N., Zhang, J., Zhang, T., Ren, Z.: PRST: A pagerank-based sum-
marization technique for summarizing bug reports with duplicates. International
Journal of Software Engineering and Knowledge Engineering 27(6), 869–896 (2017)

11. Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing In Science &
Engineering 9(3), 90–95 (2007)

12. Meirelles, P., Wen, M., Terceiro, A., Siqueira, R., Kanashiro, L., Neri, H.: Brazilian
Public Software Portal: An integrated platform for collaborative development. In:
Proceedings of the 13th International Symposium on Open Collaboration. pp. 16:1–
16:10. OpenSym ’17, ACM (2017)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (1999)

14. Robles, G., González-Barahona, J.M., Cervigón, C., Capiluppi, A., Izquierdo-
Cortázar, D.: Estimating development effort in free/open source software projects
by mining software repositories: A case study of OpenStack. In: Proceedings of
the 11th Working Conference on Mining Software Repositories. pp. 222–231. MSR
2014, ACM (2014)

15. Schwaber, K., Sutherland, J.: Sprint retrospective. In: The Definitive Guide
to Scrum: The Rules of the Game. Scrum.Org and ScrumInc (2016), www.

scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf

16. Steinmacher, I., Chaves, A.P., Conte, T.U., Gerosa, M.A.: Preliminary empirical
identification of barriers faced by newcomers to open source software projects. In:
28th Brazilian Symposium on Software Engineering. pp. 51–60. SBES 2014, IEEE
(2014)


