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HMC and DDR performance trade-offs

Paulo C. Santos *, Marco A. Z. Alves, and Luigi Carro

Informatics Institute - Federal University of Rio Grande do Sul
Email: {pcssjunior, mazalves, carro}@inf.ufrgs.br

Abstract. The evolution of main memories, from SDR to the current
DDR, presents multiple technological breakthroughs, but still far from
the requirements of the processors. With the advent of Hybrid Memory
Cube (HMC), a promise of high bandwidth with low energy consump-
tion and less area may provide better efficiency than the traditional DDR
modules. This is especially attractive for embedded systems. In this pa-
per, we perform a comprehensive performance comparison between HMC
and DDR memories, to understand the capabilities and limitations of
both. Simulation results running SPEC-CPU2006 and SPEC-OMP2001
benchmarks show that applications with low memory pressure behave
similarly with HMC or DDR. We make the new observation that HMC
performs better than DDR specially for applications with a high memory
pressure and low spatial data locality. However, for applications with a
streaming behavior, commonly present in the embedded system domain,
our experiments show that current HMC row-buffer specifications do not
take advantage of the spatial locality present in those applications.

Keywords: HMC; DDR; Main Memory; Performance Evaluation;

1 Introduction

Due to increasing requirements from embedded applications, the architectures of
embedded systems are becoming similar to high performance computers in the
sense that performance techniques are being adapted to this new context. Fol-
lowing this trend embedded systems are commonly applying Double Data Rate
(DDR) memories. The evolution of DDR systems brought benefits in terms of
performance, while keeping power consumption levels constant. However, for the
new Hybrid Memory Cubes (HMCs), the trade-off between energy consumption
and performance is more interesting. The industry is predicting that HMC will
provide both higher performance and considerably lower energy consumption
in comparison to the current memory systems [1,20]. However, simulation plat-
forms and evaluation experiments are required to understand the new trade-offs.

In this paper, we aim to understand the performance difference between
the HMC and traditional DDR 3 memories. In addition, we intend to evaluate
what type of application exploits more efficiently each memory architecture. We
also adapt a cycle-accurate simulator to model both memory systems to perform

* We acknowledge the support of CNPq and CAPES.



2 HMC and DDR performance trade-offs

detailed experiments, which are capable of explaining the sources of performance
differences between these two memory systems.

The main contributions of this paper are the following:

HMC simulator: We extended a cycle-accurate simulator to implement a de-
tailed HMC model, considering the internal vaults, the DRAM signal latencies
and the link bandwidth.

DDR and HMC comparison: Using 29 single-threaded and 7 multi-threaded
benchmark applications, we performed an analysis comparing HMC to DDR 3
memories, in order to understand the limits imposed by the number of DDR 3
channels and HMC links, as well as the characteristics that allow each application
to benefit most from each memory system.

Application behavior correlation: In our experiments we show, as expected,
that applications with low memory pressure keep the performance at the same
level when changing between HMC and DDR 3 memories. We make the new
observation that applications with high memory pressure (i.e., memory pressure
higher than 0.5 GB/s) with low spatial memory locality benefits more from the
HMC, because of the closed-row policy and the high bank parallelism. However,
applications with a high memory locality performs better with DDR 3 memories
mainly because of its 8 KB row buffer.

We evaluate the HMC and DDR, 3 memories modeling an Atom-inspired
embedded system consisting of 8 cores with 32 KB L1 and 256 KB L2 caches.
Simulations executing the SPEC-CPU2006 and SPEC-OMP2001 benchmarks
show that HMC with 4 links improves the performance by up to 27% for SPEC-
CPU2006 and up to 109% for SPEC-OMP2001 when compared to the DDR 3
with 4 channels, and improves up to 27% and 50% respectively when compared
to the DDR 3 with 8 channels. Such improvements are observed for those ap-
plications with high memory pressure and non-contiguous data access behavior.
However, for applications with high memory pressure and a contiguous data
access behavior, DDR 3 with 8 channels performed up to 26% better.

2 Technological Constraints of Memory Designs

In this section, we present the architecture of DDR devices and the HMC inter-
nals. For the rest of this paper, we focus on the DDR 3 and HMC specification
version 2.0. The DDR and the HMC systems are presented at a level of abstrac-
tion that is sufficient to understand the terminology and key concepts of this
paper. For a detailed description, we refer the reader to [6,9, 5].

2.1 DRAM and DDR Architectures

Traditional main memory modules are formed by multiple devices that act in a
coordinated way [9]. The highest memory structure level is the module, which
consists of a set of devices. A module may have multiple ranks, each rank con-
sisting of multiple devices, which will operate in synchrony. The devices are
composed of a set of banks, and all the devices in a given rank react to an
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Fig. 1. DDR 3 x8 functional block diagram of a single device. Adapted from [12].

operation signal, always operating in the same bank for a given signal. These
banks are composed of sub-arrays, formed by rows that are accessed per column.
Figure 1 shows a basic schematic of the DDR 3 x8 device.

The DRAM protocol manages these arrays using these 5 basic, simplified
operations: precharge (prepares the arrays and sense amplifiers to read a new
row), row access strobe (reads a specific row using the sense amplifiers into a
SRAM row buffer, with 1 buffer for each bank), column access strobe (bursts
data of a specific column of the row buffer from the DRAM devices to the bus),
column write (receives data from the bus and overwrites the addressed column
of an opened row) and refresh (refresh capacitor charges a row, usually done
automatically by each device).

Since processors have been increasing their throughput demand, DRAM-
based memories have evolved trying to meet the requirements of modern proces-
sors. DDR memories emerged as a major technological breakthrough, providing
the ability of transmitting data at both clock edges. However, its evolutions as
DDR 2, DDR 3, DDR 4 and so forth generally increased the I/O frequency
by increasing the data burst capability and bus operating frequency. However,
the organization of a DDR device in all versions experienced few architectural
modifications. Despite these advancements in memory technology, the operat-
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ing frequency of the basic devices to a certain data width is limited, providing a
lower throughput than what is required by modern processors. Thus, besides the
burst technique, sets of devices are deployed in a module to increase parallelism
and increase data throughput.

To achieve high bandwidth using the DDR memories, the multi-channel tech-
nique is widely adopted. This approach allows accessing multiple memory mod-
ules in parallel and independently, enabling data transfers from more than one
row buffer at same time. Thus, if a system requires large bandwidth, for example,
four channels may be required, using 256 wires in a half-duplex fashion. How-
ever, such a large number of wires in a bus is prohibitive for embedded systems,
mainly because of area and power consumption constraints. To control all the
devices of each channel, the memory controller must issue all the signals to the
devices’s bank. This control also increases with the number of channels [21].

2.2 HMC Architecture

Breaking the traditional way of DDR evolution, HMC is not concerned with
increasing I/O frequency by using burst techniques. Despite using the same
DRAM cell and its restrict accessing times, HMC changes the paradigm by
hiding its device latencies internally, mostly with the aid of 3D integration and
Through-Silicon Via (TSV) technology [13], which enables the integration of a
massive bank parallelism [5, 10, 15].

Basically HMC memories are composed of up to 8 layers of DRAM memory
and one logical layer per vault, all integrated in the same device. Figure 2 illus-
trates the main HMC architectural details. The three main components inside
the HMC are the following:

Memory vaults: HMC memories store data on contiguous row buffers, inter-
leaving throw the memory vaults and then to memory banks inside the vaults.
HMC may have up to 32 vaults, each one can be composed by up to 16 banks,
where each row in the bank has up to 256 bytes. In theory, the HMC can fetch
data from 32 different banks (one per vault) in parallel and copy it to the inter-
nal read buffers. Only after the data is ready in the read buffers, the links may
send it to the processor’s memory controller.

Memory controller: The 3D integration technology enabled the integration
of memory and logic in the same chip on different layers. Thus, an HMC has a
dedicated memory controller attached to each vault, providing great data access
parallelism. In this way, the processor’s memory controller can be simplified to
work with simple data request commands, reducing its complexity, area and
energy consumption.

Serial links: Unlike DDR 3 memories, which transmit 64 bits per channel,
HMC memory uses serialization, to transmit data through 16 full-duplex lanes
per link (each lane is a pair of differential signal lines). However, each link is
not strongly attached to a specific portion of the memory, which means that
any link can be used to transfer data from/to any HMC vault. The adoption of
this communication technique leads to a smaller area for buses. Moreover, these
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links are capable of achieving higher frequencies with less interference during the
transmissions [5, 19].

As mentioned, other differences between HMC and DDR memories are the
row buffer size and the bank parallelism. Typically, DDR memories have row
buffers of 8192 bytes per bank (split among the devices), while HMC specifies
row buffers of up to 256 bytes per bank. Meanwhile, the DDR modules provides
only 8 memory banks which can act in parallel, while the HMC has up to 512
DRAM banks.

Previous work mentions that these architectural differences in the HMC ar-
chitecture may result in up to 70% less energy consumption than DDR3-1333,
and a 15 times theoretical speedup of the system [5, 10, 15]. However, it is not
clear if all applications can benefit from the HMC. In the remainder of this pa-
per, we present the methodology for our experiments and the results showing
the most important aspects of an application to perform better in the HMC
compared to DDR memories.

3 Evaluation Methodology

This section presents the simulation details, the application kernels and the
evaluation methodology, showing how we compare our mechanism to the baseline
embedded system and previous work.

3.1 Modeling DDR and HMC Simulation

To evaluate DDR and HMC memories, we used an in-house cycle-accurate simu-
lator [2, 3]. Simulator of Non-Uniform Cache Architectures (SINUCA) is a trace-
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driven simulator, thus it executes traces generated on a real machine with a real
workload without the influence from the OS or other processes. The traces are
simulated in a cycle-accurate way, where each component is modeled to execute
its operations on a clock cycle basis. SINUCA currently focuses on the x86_32
and x86_64 architectures.

SiNUCA originally offered support only for modeling DDRx memories with
an open-row policy. However, few modifications in the source code were neces-
sary to model HMC, due to SINUCA'’s high parameterization. To model a HMC,
the memory controllers are used as HMC controllers, which are located inside
the HMC device. The channels can be configured to act as memory vaults. How-
ever, changes were made to provide support on closed-row policy and new HMC
instructions. Although HMC-aware compilers are not available yet, synthetic
codes can be evaluated with this version of SINUCA.

3.2 Configuration Parameters and Workload

The simulation parameters are inspired by Intel’s Atom processor with the Silver-
mont Out-of-Order (O0oO) micro-architecture [8]. Table 1 shows the simulation
parameters used for our tests. The Silvermont micro-architecture only supports
2 memory channels. In order to build a possible future scenario for comparison,
we also extrapolate the baseline configuration with up to 8 memory channels.
We apply the same extrapolation idea to the HMC, in order to evaluate the
influence of the number of links to the performance.

As the workloads for our experiments, we chose the 29 serial applications from
the SPEC-CPU2006 [7] and 7 parallel applications from the SPEC-OMP2001 [18]
benchmark suite. The SPEC-CPU2006 benchmark suites (integer and floating
point) were executed using the reference input set, executing a representative
slice of 200 million instructions selected by PinPoints [14]. The SPEC-OMP2001

Table 1. Baseline system configuration.

000 Execution Cores - 2 GHz; 8 cores; Front-end 2-wide; 16 B fetch block size
14 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit);

24-entry fetch buffer, 32-entry decode buffer, 32-entry ROB; 16-entry BOB;

INT: 2-alu, 1-mul. and 1-div.; FP: l-alu, 1-mul. and 1-div. (1-3-20; 5-5-20 cycle);
1-load and 1-store functional units (1-1 cycle); MOB entries: 10-read and 10-write;

Branch Predictor - 1 branch per fetch; 4 K-entry 4-way set-associative BTB;
Two-Level PAs predictor; 16 K-entry BHT, 2-bits prediction;

L1 Data + Inst. Cache - 32 KB, 8-way, 2-cycle; 64 bytes line; LRU policy;
MSHR entries: 10-request, 8-write-back; Stride Prefetcher: 1-degree, 16-strides table;

L2 Cache - 256 KB shared for every 2 cores; 8-way, 4-cycle; 64 bytes line; LRU policy;
MSHR entries: 10-request, 6-write-back; Inclusive LLC; MOESI coherence;
Stream Prefetcher: 2-degree, 16 prefetch distance, 32-streams;

Low Power DDR3-1600 Controller and Interconnection - Bi-directional ring, 1~8-channels;
8 LP-DRAM banks, 8 KB row buffer per bank (1 KB per device), 8 burst length;
Open-row first policy; CAS, RP, RCD, RAS and CWD latency (12-17-14-34-6 cycles);

HMC Module and Interconnection - Bi-directional ring, 1~4-links @ 8 GHz;
32 Vaults, 16 LP-DRAM banks per Vault @ 800 MHz, 256 B row buffer per bank, 2 burst length;
Closed-row policy; CAS, RP, RCD, RAS and CWD latency (12-17-14-34-6 cycles);
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benchmarks were executed using the reference input set as well, executing up to
one time step from its parallel region.

4 Experimental Results

This section presents the results for SPEC-CPU2006 and SPEC-OMP2001 bench-
mark suites when simulating HMC and DDR memories.

4.1 SPEC-CPU2006 Results

The first result regarding the SPEC-CPU2006 benchmark suite shows the aver-
age performance when executing all the applications for each one of the systems,
with DDR 3 varying the number of channels and the HMC varying the number
of links. Figure 3 presents the speedup results over the DDR 3 with 1 channel.

Speedup over
DDR3-1ch

1 Link

2 Links 4 Links

HMC

Fig. 3. Performance results for SPEC-CPU2006.

Memory Usage and Pressure: In order to understand the behavior of the
different applications executing on HMC 4 links and DDR 3 8 channels, we cor-
relate performance compared to the memory footprint and the memory pressure.

Figure 4 presents the SPEC-CPU2006 applications sorted by their perfor-
mance. It shows the speedup of the HMC over the DDR 3, also showing in the
secondary axis the amount of requests per second (pressure) the HMC serviced
on average. On the top of the figure, the memory footprint is presented.

The plot shows some performance difference between DDR 3 and HMC only
for those applications with pressure higher than 0.50 GB/s. This also correlates
with the memory footprint, where applications with more than 32 MB tends to
have some performance difference between DDR 3 and HMC.

Both metrics show insignificant performance change for applications with low
memory footprint and consequently low memory pressure. However, both metrics
(memory footprint and pressure) cannot explain alone if a specific application
will benefit or not from the HMC.

Memory Contiguity: Selecting only the SPEC-CPU2006 benchmarks with
pressure higher than 0.50 GB/s, we obtained the list of applications with a rea-
sonable memory pressure. For those applications, Figure 5 correlates the HMC
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Fig. 4. HMC speedup over DDR 3 and the memory pressure (GB/s) for SPEC-
CPU2006 applications.

speedup with the memory access contiguity observed. The contiguity was ob-
tained for the 8 KB row buffer hit ratio of the DDR 3. Thus, the higher con-
tiguity indicates that more contiguous accesses happened in a short period of
time.
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Fig. 5. HMC speedup and contiguity results for SPEC-CPU2006.

The main aspects from the DRAM architecture that influence the perfor-
mance of contiguous accesses are the row buffer size, and the row buffer policy.
In the case of the DDR 3, the row buffer contains 8 KB of contiguous data,
while for HMC it holds only 256 B. Regarding the row buffer policy, the DDR 3
usually adopts the open-row policy, while the HMC specification describes the
use of closed-row policy.

The HMC uses smaller row buffers compared to DDR 3 mainly to reduce
the energy DRAM array consumption while it also increases the parallelism
between the vaults. Open-row policies makes more sense with large row buffers.
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Considering that smaller row buffers will service less cache misses, the closed-
row policy will close the row buffer as soon as the actual request is serviced.
Performing the early row precharge command improves the performance for
future accesses to different rows, while it can hurt performance if future accesses
map to the recently closed row.

In our experiments, we implemented a smart closed-row policy, which iden-
tifies if multiple requests inside the read/write buffer map to the same row, and
just close the actual row after all the requests have been serviced. However, even
with such scheme, the performance is reduced when contiguous accesses happen.

4.2 SPEC-OMP2001 Results

In order to understand if scenarios with higher memory pressure would change
our conclusions, we evaluated the multi-threaded applications from SPEC-OMP2001.
Figure 6 presents the results when executing the applications with a different
number of threads. The speedup results are normalized to the DDR 3 with 1

channel.
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Fig. 6. Performance results for SPEC-OMP2001.

We can observe that HMC with a single link performed 50% better than
DDR 3 with a single channel. Comparisons considering the maximum commercial
products, HMC with 4 links and DDR 3 with 4 channels, show and average
speedup of 1.75 for HMC. Comparing the best version of the DDR 3 and the
HMC, we can observe that HMC performed 15% better.

Memory Contiguity: To evaluate the speedup change between the HMC and
DDR memories, we took the DDR 3 with 8 channels and HMC with 4 links
execution cycles in order to calculate the speedup between the HMC and its
counterpart with DDR. Figure 7 presents the results with different numbers of
threads, showing the HMC speedup for each application, compared to the same
application with same amount of threads using DDR. In order to observe how
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Fig. 7. HMC speedup over DDR 3 and the contiguity ratio for SPEC-OMP2001 ap-
plications.

contiguous the applications from the SPEC-OMP2001 benchmark suite are, the
figure also presents in the secondary axis the contiguity ratio (8 KB row buffer
hit ratio) for each application with different numbers of threads.

We can observe for SPEC-OMP2001 the same behavior reported previously,
that HMC can perform better than DDR for applications with lower contigu-
ity. In this case, the number of parallel threads influences the contiguity of the
accesses arriving to the main memory. Another factor that influences the perfor-
mance of the multi-threading applications is the higher memory pressure present
in the main memory.

4.3 Summary of Evaluations

As we could observe in the results with single and multi-threaded applications,
the performance improvements when using HMC are for the applications with
high memory pressure and low spatial data locality. For those applications with
low memory pressure, the performance differences between HMC and DDR mem-
ories are negligible. Due to its smaller row buffers and closed-row policy, the HMC
can hurt the performance of applications with contiguous data access behavior.

We can observe that when executing parallel applications, the spatial locality
of the addresses arriving to the main memory reduces. It can be explained by
the domain division per thread, where each thread tends to work in a different
range of addresses. Moreover, with multi-threads generating requests, the mem-
ory pressure rises leading to a better exploration of the multiple HMC vaults.

In our experiments, we showed that applications with low memory pressure
do not benefit from a different memory architecture. In this sense, low-end sys-
tems with very low performance processors may not benefit from HMC memories.
The same can be said for streaming applications with high spatial locality, which
benefit more from the DDR row buffer size. Furthermore, for systems with higher
processing capabilities, the HMC can become more interesting when executing
multi-threaded or multi-programmed workloads, which may create enough mem-
ory pressure with low spatial locality.
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5 Related Work

The work presented in [17] and [16] verifies the maximum HMC memory band-
width achievable, evaluating different high performance computing systems. The
authors used the HMC-Sim simulator [11] varying HMC configurations coupled
to a 16-core x86 processor. The authors only performed the experiments based
on the HMC specification version 1.0 [4], which states a maximum theoretical
bandwidth of 160 GB/s through 256 memory banks.

Fujitsu XIfx [20] introduces the usage of 8 HMC memories coupled to a set
of SPARCG64 processors. The work shows the performance achieved when HMC
memory is adopted replacing DDR 3 memories. The processor coupled with
HMC memories is 3.5 times faster on average, than previous DDR, 3 memories
with 4 channels. Due to the great reduction of the main memory bottleneck with
the adoption of HMC, processor performance is dramatically expanded.

The HMC-Sim [11] is a cycle accurate simulator for HMC memories only, not
modeling the cache hierarchy, interconnections and the processor. We choose to
adapt the SINUCA [3] memory model to support HMC, due to its capabilities
of simulating the full system. Thus, we provide another tool capable to model
HMC, while we can compare the findings with the other simulator.

Previous work explore only high performance processors, leaving it unclear
whether the same behavior presents itself in the embedded system domain. In
this work, we model an embedded system environment comparing the HMC 2.0
specification which supports up to 512 DRAM banks. In our evaluations we show
the performance difference between HMC (with 1~4 links) and DDR 3 (with 1~8
channels), explaining the application behavior behind the performance results.

6 Conclusions and Future Work

Following the trend to move embedded systems closer to the high performance
system domain, several high-end embedded systems are adapting multiple high
performance mechanisms, such as DDR memories. However, the new HMC mem-
ories lack evaluations regarding their trade-offs when compared to DDR memo-
ries, especially in the embedded domain.

In this paper, we present a performance evaluation comparing HMC and
DDR memories, in order to understand the possible speedup scenarios of this new
memory architecture. We point the new finding that applications with streaming
behavior that have high memory access locality perform better on DDR 3 memo-
ries, while sparse accesses are better serviced by the HMC. However, applications
with low memory pressure keep the same performance in both systems.

As future work, we intend to extend the evaluation for the energy consump-
tion domain. We also plan stress different processor parameters that most affect
the memory pressure, such as the number of entries in the Memory Order Buffer
(MOB), and cache Miss-Status Handling Registerss (MSHRs), as well as memory
disambiguation techniques.
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