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Abstract. Air pollution is a significant health risk factor and causes many nega-
tive effects on the environment. Thus, arises the need for studying and assessing 
air-quality. Today, air-pollution assessment is mostly based on data acquired 
from Air Quality Monitoring (AQM) stations. These AQM stations provide con-
tinuous measurements and considered to be accurate; however, they are expen-
sive to build and operate, thus scattered sparingly. To cope with this limitation, 
typically, the information obtained from those measurements is generalized with 
interpolation methods such as IDW or Kriging. Yet, the mathematical basis of 
those schemes defines that pollution extremum values are obtained at the meas-
uring points. In addition, they are not considering the location of the pollution 
source or any physicochemical characteristics of pollutant hence do not reveal 
the real spatial air-pollution patterns. This research introduces a new interpolation 
scheme which breaks the interpolation process into two stages. At the first stage, 
the source of pollution and its estimated emission rate are inferred through a de-
tection procedure which is based on the Hough Transform. At the second stage, 
based on the detected source location and emission, spatial dense pollution maps 
are created. The method requires, for its computation, to assume a dispersion 
model. To this end, any model can be used as sophisticated as it may be. Spatial 
maps created with simplified dispersion models in a computational simulation, 
show that the suggested interpolation scheme manages to create more accurate 
and more physically reasonable maps than the state-of-the-art.  
 

Keywords: Air-quality modeling; Spatial maps; Interpolation; Hough trans-
form; Source detection             

1 Introduction 

Air pollution is a significant risk factor for multiple health situations including eye ir-
ritation, breathing difficulties, lung cancer, heart diseases and respiratory infections [1]. 
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In addition, air-pollution causes many negative effects on the environment like de-
creased visibility, acid rain, global warming, climate change, water quality deteriora-
tion and ecosystems destruction [2]. Thus, arises the need for studying and assessing 
air-quality’s characteristics, dispersion patterns and behavior.  

Today, numerous air-pollution studies are based on data acquired from Air Quality 
Monitoring (AQM) Stations [3]. However, AQM are typically scattered sparingly, 
mainly near main roads, industrial factories, or near highly populated areas [4]. Thus, 
the AQM network has a limited ability to account for spatial variability of pollution 
levels in heterogeneous regions, such as urban areas, which in return, renders exposure 
assessment as a difficult task [5]. To cope with the measurements sparsity, the infor-
mation obtained from those measurements is often generalized with mathematical 
methods to improve the spatio-temporal coverage. To this end, interpolation schemes 
are sought.  

Interpolation is a mathematical method of constructing a continuous function that 
obtains the measured values (or close values) at the measuring point. Environmental 
interpolation is based on the assumption that data attributes are continuous over space 
and spatially dependent [6]. Grossly speaking, interpolation methods can be divided 
into deterministic and geostatistical methods. The first include Inverse Distance 
Weighted (IDW), Nearest Neighbor (NN) and radial basis functions [6], while the latter 
involve, for example, various types of Kriging methods [7]. Next, we focus on IDW 
and ordinary Kriging, owing to their frequent use in spatial maps creation. 

There are many studies in the field of air pollution modeling that used IDW or 
Kriging for creating dense spatial map of air pollution. IDW, for example, was applied 
for examining the ratio between low birth weight and air pollution exposure during 
pregnancy [8]. In that research, the IDW interpolation was utilized for estimating PM10 
levels at future mothers’ home address. Clark et. al [9] examined the effect of early life 
exposure to air pollution on development of childhood asthma. For estimating the av-
erage exposure level of an area, IDW interpolation was applied. Ventura et. al [10] 
introduced multi-objective pollutant AQMs optimization. In their research, they applied 
a Kriging interpolation scheme for creating dense spatial maps. Sarigiannis and Saisana 
[11] used Kriging interpolation method to create pollution maps of CO and O3 as an 
additional input to their multi–objective optimization scheme, which was based on re-
mote sensing satellites. 

IDW and Ordinary Kriging are both well-known and widely used interpolation meth-
ods. However, these methods are not appropriate for creating air-pollution spatial dense 
maps for several reasons: The mathematical basis of those schemes defines that all in-
terpolated values over the study area are essentially a weighted average of the measure-
ments points, thus extremum values cannot be obtained at any other place than the 
measuring points. In addition, these methods do not consider the location of pollution 
sources or any physicochemical characteristics of pollution. Hence, the resulted dense 
pollution maps do fall short in describing accurately the real spatial patterns of pollu-
tion. Regarding these in the interpolation process is expected to result in better and 
more accurate interpolation methods. 

This research introduces a Hough Transform-Based Interpolation (HTBI) method, 
which generates accurate dense pollution maps through finding sources’ locations and 



the utilization of an air pollution dispersion model. The Hough Transform is a mathe-
matical method, originated in image processing, used for detecting geometric shapes, 
like lines, circles or ellipses [12]. The main idea is converting from representing the 
shape in x,y coordinates (Cartesian) system to a parametric space, where the feature of 
interest is best represented. In this research, a feature space, which will represent best 
the source location is devised. 

The method consists of two phases: at first, based on ambient concentration and as-
suming a dispersion model, the HTBI detects the sources’ emission rates and locations. 
Then, using this information, the interpolation scheme builds the continuous pollution 
field. The suggested HTBI scheme applies no constraint on the assumed dispersion 
model. Hence, any dispersion model found in the literature (e.g., [13]–[15]), as sophis-
ticated as it may be, can be incorporated into the suggested scheme. 

2 Methodology 

2.1 Notation  

The following notation facilitate the description of the method. Let {𝑆𝑆} be a set of 
sources of a specific pollutant, with emission rates {𝑄𝑄}. Let 𝐴𝐴 be the specific pollutant’s 
continues signal generated by {𝑆𝑆}, defined over a geographical area Ω. {𝑆𝑆} are located 
at {𝛾𝛾}𝜖𝜖Ω. Let {𝑎𝑎} be a finite set of samples of signal 𝐴𝐴, taken in locations {𝜔𝜔} ⊂ 𝛺𝛺. 
Interpolation aims at estimating 𝐴𝐴 over the entire space Ω, based on the set of samples 
{𝑎𝑎}. This is achieved here by first finding sources’ locations, {𝛾𝛾}.  It is worthwhile not-
ing that the discussion here is limited to a single pollutant interpolation, i.e., the gener-
ation of a dense map of the specific pollutant is based on a set of sparse measurements 
of the same pollutant.  

2.2 Interpolation Scheme  

Each sample 𝑎𝑎𝑖𝑖 ∈ {𝑎𝑎}, represents a measurement in 𝜔𝜔𝑖𝑖. W.L.O.G, if we order {𝑆𝑆}, and 
{𝑄𝑄} is sorted so 𝑄𝑄𝑖𝑖  is the emission rate of source 𝑆𝑆𝑖𝑖; 𝑎𝑎𝑖𝑖 is a weighted combination of 
the contributions from all the sources, 𝑄𝑄��⃗ . Assuming a dispersion model, 𝑀𝑀, so the kth 
element of the vector 𝑀𝑀𝚤𝚤����⃗  is the decay coefficient of source k, 𝑄𝑄𝑘𝑘, in location i; sensor 
i’s measurement, 𝑎𝑎𝑖𝑖, is all sources contributions at i and is given by: 

𝑎𝑎𝑖𝑖 = 𝑀𝑀𝚤𝚤����⃗ ∙ 𝑄𝑄��⃗
𝑇𝑇

 (1) 

Consequentially, forming the set {𝑎𝑎} as a vector, all sensors’ measurements can be rep-
resented by the following matrices multiplication: 

𝑎⃗𝑎 = 𝑀𝑀 ∙ 𝑄𝑄��⃗
𝑇𝑇

 (2) 

Given [𝑀𝑀], we assume that there exists a matrix 𝐸𝐸, which satisfies: 



𝑄𝑄��⃗ = [𝐸𝐸] ∙ 𝑎⃗𝑎𝑇𝑇 (3) 

 
For finding 𝑄𝑄 and 𝛾𝛾, a search on the entire Ω is suggested. To this end, Ω is divided into 
𝑁𝑁 disjoint catchments. We assume that each catchment, 𝐶𝐶𝑛𝑛 ⊆ Ω is small enough so the 
pollution is uniform all over it. For each of the catchments an estimated emission rate 
𝑄𝑄�𝑖𝑖𝑛𝑛 is calculated, based on accepted measurements from single sample 𝑎𝑎𝑖𝑖; where 𝑒𝑒 is 
a single row of 𝐸𝐸: 

𝑄𝑄�𝑛𝑛𝑖𝑖 =  𝑒𝑒 ∙ 𝑎𝑎𝑖𝑖 (4) 

Thus, 𝑄𝑄�𝑖𝑖
𝑛𝑛

 introduces the estimated emission rate from the single source 𝑆𝑆, had it was 
located at 𝐶𝐶𝑛𝑛, based on the single measured sample at 𝑎𝑎𝑖𝑖.  
The same process is applied for all 𝐶𝐶𝑛𝑛 for each of the sensors: 

𝑄𝑄��⃗ 𝑛𝑛 = [𝐸𝐸] ∙ 𝑎⃗𝑎𝑇𝑇 (5) 

Applying Equation (5), results in each 𝐶𝐶𝑛𝑛 having its unique set of  𝑄𝑄��⃗ 𝑛𝑛, one estimate for 
each sensor. Using the standard deviation (STD) of the estimates, the catchment with 
the lowest STD is the approximated location of 𝑆𝑆. Once the source location, 𝛾𝛾, is ob-
tained, the emission rate of 𝑆𝑆 is estimated by the average of the catchment’s estimates: 

𝑄𝑄�𝛾𝛾 =  𝑄𝑄��⃗
�
𝛾𝛾  (6) 

Having the estimated emission rate 𝑄𝑄, of the source 𝑆𝑆, and its estimated location, 𝛾𝛾, 
with the dispersion model 𝑀𝑀, we can now estimate the dense pollution map over Ω: 

 

𝐶𝐶𝑛𝑛 = 𝑀𝑀��⃗ ∙ 𝑄𝑄�  (7) 

The process is illustrated in the simple example of Fig. 1, where three sensors are de-
ployed in a region with one source (see Fig. 1a). While the catchments can assume any 
geographical region and shape, for the sake of simplicity, the region, Ω, is divided into 
squared catchments, forming a squared grid. Sensor 1, which measures a pollution level 
of 33 (i.e. 𝑎𝑎1 = 33), is located at catchment (1,3); Sensor 2, located at (2,4), measures 
29; and Sensor 3, at (3,3) measures a level of 30. Keeping in mind the source’s location, 
𝛾𝛾, is unknown, Fig. 1b demonstrates the execution of Equation (4), where each catch-
ment is assigned with the estimated source’s emission rate if the source was located in 
this catchment, given Sensor 1’s measurement, and an exponential isotropic decay dis-
persion model, with an extinction coefficient 𝜆𝜆.  I.e., for 𝑟𝑟, the Cartesian distance from 
the source, the pollution level at each location on the map is given by [16]: 

𝑎𝑎𝑖𝑖 =  𝑄𝑄 ∙ 𝑒𝑒−𝜆𝜆|𝑟𝑟| (8) 



If the source was located at (2,2), then the estimated emission rate, 𝑄𝑄� , based on Sensor 
1’s measurement, should have been 38. If the source was located at (1,4), then 𝑄𝑄� , ac-
cording to Sensor 1, would be 47.3. Fig. 1c and Fig. 1d are the estimation maps, gen-
erated in the same fashion as b, for Sensor 2 and Sensor 3 respectively. 

Assuming the dense pollution maps are a collection of isolines, the estimated emis-
sion rate values of the three sensors should agree in one grid location [17]. To evaluate 
the agreement, we compute, in each 𝐶𝐶𝑛𝑛,  the three sensors’ estimates’ standard devia-
tion. The lower the STD, the higher the agreement. This is illustrated in Fig. 1e. The 
smallest STD, indeed is obtained at location (1, 1), where, in this example the source is 
located.  

   
(a) (b) (c) 

  

 

(d) (e)  

Fig. 1. Source location identification through HTBI assuming simple radial dispersion model. 

3 Results and Discussion 

3.1 Dispersion Models  

As mentioned earlier, 𝑀𝑀  represents the pollution decay function of the dispersion 
model. The suggested scheme, HTBI, does not apply any constraint on the dispersion 
model used. It can be any model, as long as it allows to compute the expected pollution 
on any given location on the map, given the emission rate 𝑄𝑄 and all other meteorolog-
ical parameters required by the specific model in use. In this research, two models were 
used, the above isotropic decay dispersion model [16] (Equation (8)) , and the well-
known Gaussian Plume Dispersion (GPD) model [18]:  



𝑎𝑎𝑖𝑖(x, y, z) =
𝑄𝑄

2𝜋𝜋𝜎𝜎𝑦𝑦𝜎𝜎𝑧𝑧𝑢𝑢�
exp �−

𝑦𝑦2

2𝜎𝜎𝑦𝑦2
�

∙ �exp(−
(𝑧𝑧 − 𝐻𝐻)2

2𝜎𝜎𝑧𝑧2
) + exp(−

(𝑧𝑧 + 𝐻𝐻)2

2𝜎𝜎𝑧𝑧2
)� 

(9) 

Where x is the downwind, y is the crosswind and z is the vertical distances of 𝑎𝑎𝑖𝑖 from 
the source; 𝑢𝑢�  is the time-averaged wind speed at the hight of release H; and σy and σz 
represent the standard deviations of the crosswind and vertical Gaussian distribution of 
the pollutant concentration, respectively. The model also assumes full reflection from 
the ground.  

3.2 Computational Simulation 

For generating a continuous pollution field, the two types of dispersion models, de-
scribed above were used. Specifications of the models are: 𝑄𝑄 =8 ton/hr; wind speed (for 
the GPD model):4 m/hr; wind direction (GPD model): 285°; effective stack-height: 
120m.  

The continuous fields were sampled by the set of sensors described in Fig. 2 . To 
simulate real conditions, additive white Gaussian noise with Signal to Noise Ratio 
(SNR) of 10% (10 dB) was added to the readings of the sensors. Each sensor is now 
reporting the ambient level in its location as derived from the dispersion model with 
noise added. See Table 1 for ambient data measured in each sensor, for the radial and 
the GPD models.  

Using only the noisy readings obtained from the sensors, {𝑎𝑎}, the source’s location 
is estimated and then the dense pollution maps are created.  

 
 

 

 

 

 

 

 

Fig. 2. A 20 km2 geographical area, Ω. The sensors’ locations are marked with pink circles, 
with a serial number below and the source (which typically its location is unknown) is marked 

by yellow star. Wind direction represented by red arrow. 
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Table 1. Ambient data measured by the sensors (units are in µg/m3) for the radial and the GPD 
dispersion models 

Sensor # Radial GPD 

(1) 0.180 0 
(2) 2.586 0 
(3) 3.359*e-10 6.590*e-30 
(4) 1.606*e-16 282.5981 
(5) 1.659*e-20 6.20*e-17 
(6) 1.233*e-30 1.1097 

 
The results obtained for the radial dispersion model (Equation (8)) are displayed in Fig. 
3. The highest ambient pollution level is located at the source location and exponen-
tially decay as moving away. However, both IDW and Kriging models create a pollu-
tion map in which the maximum pollution level is obtained at the closest sensor to the 
sources' location, and decay as the distance from the source decreases (Fig. 3(a) and (b) 
respectively). HTBI, on the other hand, find the accurate source’s location and then 
computes the accurate dense pollution map (Fig. 3 (c)).   

 
 
 
 
 
 
 
 

   
    (a)          (b)                (c) 

Fig. 3. Dense pollution maps based on the radial dispersion model: (a) IDW; (b) Ordinary 
Kriging; (c) HTBI. Sensors’ locations are marked in pink and the source’s location is marked 

with a yellow star. Pollution level is represented in a blue (low)- to red (high) color scale. 

The interpolation results for the GPD model are presents in Fig. 4. As both IDW and 
Kriging do not consider physicochemical characteristics nor atmospheric conditions, 
the maximum of the dense pollution maps is found at the closest sensor downwind from 
the sources' location (Fig. 4(a) and (b) respectively). Moreover, the created maps 
demonstrate a roughly radial dispersion around this point, which is not the true condi-
tion, due to the wind. HTBI, as presented in Fig. 4(c), does manage to create a dense 
spatial map which complies with the Gaussian plume behavior. This is attributed to the 
fact that the HTBI method does incorporates the Gaussian model, as it can incorporate 
any dispersion model. 



 

   

(a) (b) (c) 

Fig. 4. Spatial maps based on the Gaussian dispersion model: (a) IDW; (b) Ordinary Kriging; 
(c) HTBI. Pollution level is represented in a blue (low)- to red (high) color scale. The red arrow 

represents the wind direction.   

 
The suggested algorithm is deterministic in nature, i.e., for the same input, the system 
will produce the same output. Therefore, the uncertainty in the system stems from the 
uncertainty of the measurements, i.e., measurements noise [19]–[22]. The results of 
Fig. 3 and Fig. 4 were obtained at a noise level of 10%. (SNR, of 10dB). For evaluating 
the robustness of the algorithm, different noise levels were tested with the system. The 
radial model (Equation (8)) showed stability even with up to 50% errors (SNR of 3dB). 
The Gaussian model’s (Equation (7)) robustness showed dependency on the catchments 
size. For larger catchment sizes (e.g., cell size of 40m2), our algorithm showed stability 
up to 10% SNR. However, increasing the spatial resolution to a cell size of 20m2, the 
HTBI showed higher sensitivity to measurement noise and showed the correct source 
location and interpolation maps for noise levels of up to 5% (13 dB). For lower SNR 
values the algorithm faced difficulties in locating the source and consequentially gen-
erating the dense pollution maps. 

4 Conclusions 

IDW and Ordinary Kriging are well-known and commonly-used interpolation methods 
for creating dense spatial maps, however they are not considering the physicochemical 
properties of the pollution characteristics nor the source location, therefore not accurate 
for this task. In this research, we introduced the Hough Transform Based Interpolation 
(HTBI), a two-phase interpolation scheme, which addresses these limitations. At the 
first phase, the HTBI detects sources’ locations and their estimated emission rate. Using 
this information, at the second phase, a dense pollution spatial map is built. The method 
incorporates an air-pollution dispersion model into its calculations. This may be any 
dispersion model that can be found in the literature. Comparing between the dense pol-
lution maps created by the HTBI, IDW and Ordinary Kriging shows that the HTBI 
creates spatial maps, which represents the true pollution maps better and thus, is more 



accurate and sensible interpolation scheme. However, this work showed a computa-
tional simulation of a simple configuration with only one emission source. Implement-
ing the method to a real-word situation is challenging. Air pollution emitted from many 
sources including industrial zones and transportation (line source). Hence, HTBI should 
be adjusted to face with this complex situation of multi sources detection.  
Despite the above, HTBI indeed can be used in its current form, a single source detec-
tion. We can imagine at least two scenarios in which such configuration applies. The 
first is indeed when a single source can be identified. For example, when considering 
SO2 which is emitted mainly from factories, and the study area contains only single 
industrial zone. The second is a case of leaks and we would like to identify the leak’s 
source. In these cases, HTBI will be able to produce better and accurate spatial pollution 
maps than the existing methods.  
Current work, carried out these days, is focusing on the implementation of HTBI in 
exactly such scenarios.  
Another aspect this work sheds light on is the number of sensors and the way they 
scattered in the study area. It is obvious that the higher the number of sensors, the easier 
it will be to locate the source.  There is a need for further research in finding the optimal 
number of sensors in a given area. The parameters that should be considered are the 
size of the study area, the characters of it (an open area is not the same as crowded 
urban area.), the coverage capacity and accuracy of the sensors and more. 
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