
HAL Id: hal-01832536
https://inria.hal.science/hal-01832536

Submitted on 8 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Just-In-Time Proactive Caching For DASH Video
Streaming

Rita Coutinho, Federico Chiariotti, Daniel Zucchetto, Andrea Zanella

To cite this version:
Rita Coutinho, Federico Chiariotti, Daniel Zucchetto, Andrea Zanella. Just-In-Time Proactive
Caching For DASH Video Streaming. 17th Annual Mediterranean Ad Hoc Networking Workshop
(Med-Hoc-Net 2018), Jun 2018, Capri Island, Italy. pp.102-108. �hal-01832536�

https://inria.hal.science/hal-01832536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Just-In-Time Proactive Caching For DASH Video
Streaming

Rita Coutinho*, Federico Chiariotti†, Daniel Zucchetto†, Andrea Zanella†
*Department of Electrical and Computer Engineering,

Instituto Superior Técnico de Lisboa – Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
† Department of Information Engineering, University of Padova – Via Gradenigo, 6/b, 35131 Padova, Italy
Email: ritavccoutinho@gmail.com, {chiariot, zucchett, zanella}@dei.unipd.it

Abstract—Since video traffic has become the major source
of generated mobile traffic worldwide, there has been a strong
interest in new techniques to improve the Quality of Experience
(QoE) of users generating this traffic. Several efforts have been
made to propose adaptive streaming algorithms on the client side
to be able to adjust the quality of the downloaded video segments
to the current network conditions, taking advantage of the
Dynamic Adaptive Streaming over HTTP (DASH) standard. This
study uses this knowledge to propose a pre-fetching proxy cache,
to be placed at the network’s edge, which will predict the quality
that the client will request for the following segment. The proxy
predicts the future network conditions and models the system as
a Markov Decision Process (MDP), in order to find the optimal
decision for the proxy, given the current network conditions.
This Just-in-Time caching technique pre-fetches the segment just
before the client requests it, aiming to decrease the total time
spent by the client downloading the segments, and indirectly
increasing the user’s QoE, as the DASH client will perceive better
network conditions. The study concludes that the predictive
technique improves QoE by increasing the video quality and
decreasing the number of stalling events, in comparison to
solutions that pre-fetch the previously requested quality, and
solutions which do not use any pre-fetching technique.

I. INTRODUCTION

Mobile video traffic has been growing exponentially in the
last years and is currently generating most of the mobile traffic
worldwide. By the end of 2021, mobile data traffic is predicted
to rise to 49 exabytes, with the share of video traffic rising
from 60% (2016) to 78% (2021) [1].

Due to this rapid growth in video traffic, the study of
efficient techniques to enable a faster video transmission in
order to provide a better Quality of Experience (QoE) to the
users is an active field of research with growing interest from
the industry.

Several new technologies have appeared for improvement of
user QoE, by taking advantage of the MPEG Dynamic Adap-
tive Streaming over HTTP (DASH) standard [2]; this standard
enables breaking a video file down into smaller segments,
making several representations of each segment with different
qualities and bitrates available in the DASH server. This allows
the DASH client to select which adaptation to request from
the server for each segment, basing its decision on the network
conditions. If the player implements an intelligent adaptation
logic, it can prevent the video buffer from emptying out and
consequently stopping the playback until more segments have
been downloaded.

Other examples of adaptive bit rate streaming techniques
include Apple’s HTTP Live Streaming (HLS) [3], Microsoft
Smooth Streaming (MSS) [4] and Adobe’s HTTP Dynamic
Streaming (HDS) [5]; however, DASH is the only one which
was not developed by a specific vendor, and is an international
standard. The DASH standard was introduced in 2011 and was
later adopted by two major sources of video streaming, Netflix
and Youtube.

Caching and pre-fetching are also techniques that have been
explored to improve QoE. Caching can be defined as the
temporary storage of an object for future use, and pre-fetching
can be defined as the action of requesting an object that is
expected to be needed in the near future. The introduction
of proxy caches in the network has been studied, along with
various caching strategies. The purpose of this is to make the
network less vulnerable to congestion by making the same
content available in places other than the server, so there are
fewer requests sent directly to the server, and users can get
better performance by streaming the content from the closest
available cache. There have also been some attempts to study
the impact of pre-fetching on user QoE [6], [7]; however, the
cache often needs a considerably large size in order to yield
an acceptable cache hit percentage.

The study of optimal bit rate adaptation algorithms used by
clients is widely saturated, along with the study of caching
and pre-fetching solutions. However, a caching strategy which
involves a pre-fetching technique that predicts the client’s
future behavior is yet to be explored. Therefore, the main
objective of this work is to study the impact on the user QoE
of the introduction of a predictive proxy cache in the edge
of a network, in a connection between a DASH client and a
DASH server.

By placing a cache closer to the requesting client, the Round
Trip Time (RTT) of the connection will decrease, reducing the
time taken by the client to download a video segment. This will
induce the client to perceive a better channel capacity, enabling
it to request segments with higher qualities. The aim of the
proxy cache is to increase the user’s QoE by: i) increasing
the video quality; ii) reducing the amplitude of the variation
in the video quality; iii) reducing the frequency of the video
quality variation; iv) reducing the frequency of stalling events;
v) reducing the duration of stalling events.

Since real caches have a limited storage capacity, there must
be an efficient way to determine which segments to store in
the cache over time. To achieve this, a probabilistic approach
is considered to predict which video segment the client willISBN 978-3-903176-05-8 c© 2018 IFIP

request, given the current network conditions. This prevents
the unnecessary storage of unused video segments as well as
the unnecessary use of bandwidth to pre-fetch these segments
from the server.

The rest of the paper is organized as follows. Sec. II
describes the current state of the art in development of pre-
fetching and caching techniques, while Sec. III details the
system model used in this work, and Sec. IV presents the sim-
ulation parameters and the results. Finally, Sec. V concludes
the paper with some remarks and possible future extensions.

II. STATE OF THE ART

This section describes the most relevant works published in
the literature concerning pre-fetching strategies.

A network awareness study is conducted by Bronzino et
al. [8], where the authors aim to optimally use the available
end-to-end bandwidth by using intermediate nodes to cache
video content closer to the client, thus distributing the traffic
load over time. Ultimately, the solution aims to improve the
QoE for the end user. The proposed solution involves moving
the decision on the segment’s quality into the network, by
introducing a controller and a cache in the edge of the network.
In this study, the client will only request the required video
segment, and will receive that segment with the bitrate pre-
fetched by the controller, which will be stored in the cache.
The study takes advantage of the fact that the available
bandwidth is easier to predict having a general view of the
network infrastructure resources available in the network.
Using the information on the client playback and buffer status,
the controller exploits the available resources and chooses an
appropriate bitrate for the segment it will download to store
in the cache. The bitrate selection algorithm used in this study
chooses a combination of bitrates for the given sequence of
segments to be downloaded at the time (bitrate path). The
chosen bitrates are the ones which lead to the highest QoE,
given the current network conditions. This algorithm runs
within a given time frame, returning the bitrate path with the
highest QoE when the time frame ends.

A limitation that is addressed by this study is that in the
long run, it is possible that when a new time frame begins,
the network conditions will be different from the ones that
were considered in the previous time frame, and this may
lead to a significant QoE drop if the network conditions are
less favorable at this time. Another limitation that can be
seen in this study is the fact that the algorithm must be run
once for every decision that must be made. Even though the
proposed solution introduces some additional costs for the
content provider, the authors claim that the resource costs
are minimal and that the achieved gain in QoE outweighs the
computational costs.

In [6], Liang et al. combine both caching and pre-fetching to
improve the performance in terms of byte-hit ratio and video
bit rates. The architecture of this solution is composed of three
modules: a cache manager, a pre-fetch manager and a request
pool. The cache manager handles all user requests and video
segments received from the content server. If there is a cache-
miss, it sends a request to the request pool, which in turn
forwards the request to the content server. The cache manager
also generates pre-fetch requests for every user request, and

sends those to the pre-fetch manager. It only generates pre-
fetch requests for successive video segments with the same bit
rate as the current request. When the video segment arrives,
if the cache is full, the cache manager makes a decision on
whether to keep or discard the segment, based on its utility.
The pre-fetch manager decides whether the received pre-fetch
request should be sent to the request pool or not, based on its
current usage.

Evaluation is done by comparing to three alternatives: Least
Recently Used (LRU)-based caching approach, a popularity-
based caching approach called Popular Content (PC) which
caches the top 100 most popular in advance, and an aggressive
pre-fetching approach. The study shows that the Average Per-
User Throughput (APUT) is 50% higher compared to LRU
and PC, and 31% higher when compared to the aggressive
pre-fetching, for a cache size of 1GB. In terms of byte-hit
ratio, the architecture improves the performance by nearly 84%
compared to the aggressive pre-fetching, and a performance
gain between 5 and 8 times larger when compared to LRU
and PC. This study, however, does not take into account the
volatile behaviour of the channel, as it always chooses to pre-
fetch the same bit rate as was requested previously.

In [7], Krishnappa et al. investigate the advantages of having
a pre-fetching and caching scheme for Hulu (a free hosting
service of professionally created video for films and TV
shows). The pre-fetching scheme is based on caching the most
popular videos of the week provided by the Hulu website. It
is compared to the conventional LRU caching. Results show
that this yields a hit ratio of up to 77.69% but requires a
storage of 236 GB. When evaluating the performance of pre-
fetching the popular videos list, it is noted that a maximum
hit ratio of 44.2% is obtained when pre-fetching 100 videos,
corresponding to a cache storage of 10GB. For the same
storage space, the LRU caching scheme yields a hit ratio of
45.53%; however, in this case 5767 videos are downloaded,
compared to only 100 when pre-fetching.

Binging is a new trend which has also been studied. Binging
is when a user watches multiple episodes of a television
programme in rapid succession, typically by means of DVDs
or digital streaming. For example, Claeys et al. [9] take
advantage of the recent trend. Studies show that users stream
on average 2.3 episodes per viewing, and so 57% of the
streaming sessions could be announced in advance by a proxy.
If these announcements were to be made, it would enable a
simple prediction for future segment requests and subsequent
episodes could be cached in advance, allowing for an improved
QoE.

The evaluation of this study is based on the byte hit ratio. It
notes an increase in performance of 54% in comparison to the
LRU caching strategy. A limitation on this approach is that it
does not take into account the possibility of the user ending
the session before the episode ends. If this were to happen,
many segments would be stored in cache with no purpose, as
they would not be served to the client. Also, the bandwidth
that would be used to pre-fetch these segments could have
been used to serve other clients.

Zhang et al. [10] present a dependency-aware caching algo-
rithm which takes into account a dynamic network condition.
The study assumes multiple users and multiple requests per

Figure 1. Schematic of the considered scenario.

user, and therefore aims to improve QoE for all users generally
and not for a specific user. The algorithm is based on the profit
of caching a certain segment, which is defined by the increase
in utility of caching that segment. The utility of caching a
segment depends on the available bandwidth, the segment
size, the number of active client sessions and the number of
requests per session. The algorithm decides to cache segments
in descending order of profit, and depending on how full the
cache storage is.

Although pre-fetching is beginning to attract interest from
the research community, to the best of our knowledge there
are no works studying optimal prediction-based pre-fetching
schemes.

III. SYSTEM MODEL

As depicted in Fig. 1, we consider a DASH client streaming
a video by downloading consecutive segments from a server. A
proxy is placed between the client and the server, intercepting
the client’s segment requests and answering them directly if
the chosen segment is present in its cache. We assume that
the proxy proactively tries to predict the next segment that
the client will request and pre-fetches it from the server; if
the proxy pre-fetches and stores the correct adaptation, the
latency the client experiences is far lower, improving the user
QoE.

We denote by ac (n) the adaptation chosen by the client for
the n-th segment, and by ap (n) the one pre-fetched by the
proxy. We can distinguish two different scenarios:
• Cache hit: if ap (n−1) = ac (n), and the proxy has finished

downloading the pre-fetched segment when the client’s
request arrives, the client downloads the segment from
the proxy, which requests the next predicted adaptation
to the server at the same time;

• Cache miss: if ap (n − 1) , ac (n) or the pre-fetching
is not complete, the client’s request is forwarded to the
server, and either the proxy abstains from pre-fetching the
next segment (resulting in another cache miss) or its pre-
fetching will be in direct competition for the link between
server and proxy with the client’s download. In any case,
the client is prioritized with respect to the proxy, so the
latter can only use the bandwidth that is not used by the
client.

We can model the scenario above as a Markov Decision
Process (MDP), a class of Markovian model defined by a state
space S and an action space A, both finite and discrete, a
state transition matrix M whose elements are the transition
probabilities between states sn and sn+1, and a reward function
r (sn, sn+1, ap (n)).

The action space of the problem is represented by the
proxy’s pre-fetching choices ap (n): the solution to the problem
is the policy Π∗ : S −→ A which maximizes the expected
reward function for the next step. Note that, as explained
above, refraining from pre-fetching a segment is a valid action
and should be included in the problem definition. The objective
of the proxy is to maximize the client’s reward function, which
depends on the user QoE for the video; we also assume that
the proxy knows the adaptation logic the client is running and
can then predict the client’s actions in any given situation, in
order to preserve the Markov property. In order to model the
problem as an MDP, we need to define the reward function,
the system state and the transition matrix.

A. Reward function
As discussed in Section II, the QoE of a video client

depends on the visual quality of the current segment, the
quality variation between segments, and the playout freezing
events due to rebuffering. In the following, we introduce a
reward function that captures these aspects and, in turn, can
be used to derive policies that maximize the QoE of video
streaming customers.

In this work, we simply chose the bitrate as a proxy for
picture quality, but the framework supports any objective QoE
metric, which could be pre-computed by the server and served
to the client along with the Media Presentation Description
(MPD) or computed live using an appropriately trained deep
neural network [11].

We finally define the reward function for the pre-fetched
segment n as follows:

r (qn−1, qn, φn) = qn − β‖qn − qn−1‖ − γφn, (1)

where φn is an indicator variable that is equal to 1 in case a
rebuffering event happens. The first term on the right-hand side
accounts for the benefit of a higher quality qn of the video,
while the following two negative terms are penalty factors
due to quality variations in consecutive frames and rebuffering
events, respectively. The coefficients β and γ are weighting
factors that regulate the relative importance of the three penalty
terms. Note that the structure of the reward function (1) was
first proposed and validated by De Vriendt et al. in [12], and
is used as a comprehensive QoE metric by several algorithms
in the literature [13]–[15].

The weights β and γ are here used to select different
points in the trade-off between a high instantaneous quality, a
constant quality level, and a smooth playback. The desired op-
erational point might depend on several factors, including user
preferences and video content, and tuning these parameters is
outside the scope of this work.

We define the optimal policy Π∗ : S −→ A as the policy
that maximizes the expected value E[rn |sn,Π∗] in any state.

B. MDP definition
Since qn is directly involved in the reward calculation, its

value should be included in the state definition in order to fit
the definition of the MDP. Two other parameters indirectly
affect the state transitions and the reward: the buffer level and
the capacity Cn experienced by the client. We denote the buffer
level at the beginning of the n-th segment download as Bn,

and include it in the state definition. The other parameter, the
capacity, is composed of three values: the capacity of the link
between client and proxy CCP (n), the capacity of the link
between proxy and server CPS (n), and an indicator variable
Hn which is equal to 1 in case of a cache hit and 0 otherwise.
If Hn = 1, Cn = CCP (n), while in the cache miss scenario
Cn = min(CCP (n),CPS (n)).

The complete state of the MDP is then a 5-tuple: sn =
(Bn, qn,CCP (n),CPS (n), Hn). We assume here that the policy
implemented by the client is known to the proxy, which should
be able to determine the probability distribution of the client’s
actions in any given state sn.

C. Small-scale model

The definition of an MDP to represent the video streaming
scenario has one major issue: since the download of different
segments in different network conditions will take different
amounts of time, the Markovian assumption can not be justi-
fied without some extra steps.

In order to overcome this problem, we model the capacity of
the links between client and proxy (CCP) and between proxy
and server (CPS) as two independent Markov processes, with
a timestep T which should be far smaller than the average
download time of a segment. If we denote the number of
undelivered bits in the segment at step t as bt , we get:

bt+1 = bt − CtT, (2)

where Ct is the capacity experienced by the client. We
define as Tsetup the number of timesteps that the client needs
to send the request and receive the response from the server or
proxy, during which no useful bits can be downloaded; since
the capacity of the client is Markovian, we can calculate the
probability that an adaptation ac (n) will take N timesteps,
given the initial capacities and the proxy’s action:

P(N (ac (n)) = N |CCP
t ,CPS

t ,Tsetup, Hn, ap (n)) =∑
C

p(C)δ (F (ac (n)),C) , (3)

where F (ac (n)) is the frame size for adaptation ac (n), C is
the vector of channel capacities experienced by the client from
time t+Tsetup+1 to t+N , and C is the sum of all its elements.
The solution to this equation can be computed recursively for
any initial combination (N, F (ac (n)),CCP

t ,CPS
t) and stored

for later use. The time from one client decision to the next is
simply T N (ac (n)).

In order to get a cache hit for segment n + 1, two condi-
tions have to be met: the proxy has to correctly predict the
adaptation the client will require, and it has to download the
segment before the client requests it (i.e., the proxy download
needs to take M < N timesteps). The probability of the latter
can be computed as:

P(M (ap (n)) = M |CPS
t , Hn) =∑

C
p(C)δ

(
F (ap (n)),C

)
, (4)

where C now indicates the vector of proxy-server channel
capacities from time t+Tsetup+1 to time t+M . In this case, the

capacity for the proxy is equivalent to CPS (t) if Hn = 1, and
CPS (n) − min(CCP (n),CPS (n)) otherwise, as it has to share
the link with the client. In the latter scenario, M and N are
not independent, and so must be computed together.

In this way, the large-scale transition from one state
sn = (Bn, qn−1,CCP (n),CPS (n), Hn) to the next sn+1 =
(Bn+1, qn,CCP (n + 1),CPS (n + 1), Hn+1) can be modeled as a
Markov process; the joint computation of all variables yields
the transition matrix of the MDP.

D. Solution
Since the problem has a finite horizon, it is possible to solve

the MDP analytically:

a∗p (sn) = argmax
ap ∈A

∑
sn+1∈S

E [rn+1 |sn+1] P(sn+1 |sn, ap). (5)

The two parts of the equation can be simply determined:

E[Rn |sn] =
∞∑

N=0
r (qn−1, q(ac (n)), u(NT − Bn))

P(N (ac (n) = N |sn), (6)

where u(·) is the stepwise function. The last term can be
calculated using (3), which was derived from the small-scale
channel model. The probability P(sn+1 |sn, ap (n)) is computed
directly from the small-scale model in Sec. III-C. The expected
reward from all the actions in all states can be then computed,
and a simple argmax operation is enough to determine the
optimal policy.

This brute-force policy calculation is computationally fea-
sible for problems of relatively limited size and with a short-
term temporal horizon; for larger and more long-term oriented
problems, solutions such as reinforcement learning can be
considered, but this is beyond the scope of this work and will
be analyzed in a future extension of it.

IV. RESULTS

This section presents a simulative comparison between
the previously described proactive pre-fetching proxy, a pre-
fetching proxy that pre-fetches the next segment having the
same quality as the one previously downloaded by the client,
and the scenario with no proxy. We use a client running the
algorithm described in [15].

A. Simulation scenario
Our simulation scenario is simple: a proxy is placed between

a DASH client and a server, with two independent channels
between the client and the proxy and between the proxy and
the server. The first has an RTT of 50 ms, while the second
has an RTT of 200 ms. As described in Sec. III-C, the two
channels are modeled as independent Markov processes with
transition matrices πC,PS and πC,CP , defined as

πC =



0.9 0.1 0 0 · · · 0 0 0
0.05 0.9 0.05 0 · · · 0 0 0

0 0.05 0.9 0.05 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0.9 0.05 0
0 0 0 0 · · · 0.05 0.9 0.05
0 0 0 0 · · · 0 0.1 0.9



.

2 4 6 8 10 12 14 16 18 20 22 24

Cmax
PS (Mbit/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A
ve
ra
ge

H
it
P
ro
b
ab
il
it
y

Predictive Pre-fetching

Non-predictive Pre-fetching

Figure 2. Average hit probability, with 95% confidence intervals.

The size of this square matrix is different for the client-proxy
and proxy-server channels. In particular, we define the states
to represent the link capacity measured in Mbit/s, starting from
1 up to a maximum channel capacity. The maximum channel
capacity for the client-proxy link is set to Cmax

CP
= 6 Mbit/s, so

the six states for the client-proxy channel model correspond to
available capacities of {1, 2, 3, 4, 5, 6} Mbit/s. The same holds
for the proxy-server link; however, its maximum capacity
Cmax
PS

has been varied from 1 Mbit/s to 24 Mbit/s to explore
different scenarios, including the ones where the proxy-server
link capacity is actually lower than the client-proxy capacity,
which is a challenging setting for a prefetching proxy. The
time step T for the small scale model was set to 100 ms.

In the following simulations we use β = 6 and γ = 10 as
the weighting factors in the reward function in (1).

B. Hit probability

First, we analyze the average cache hit probability when
varying the maximum proxy-server link capacity (Fig. 2).

For very low values of Cmax
PS

it is unlikely that the proxy
is able to pre-fetch segments before the client requests them.
In order to better explain this statement, consider the scenario
where the next segment requested by the client has the same
quality as the currently downloaded one. For the proxy to be
able to successfully pre-fetch the next segment, the proxy-
server bandwidth available to the proxy has to be at least
equal to the client-proxy bandwidth. As soon as a cache
miss happens, since the proxy-server capacity is low, the
client requests the segment from the server using almost
all of the available bandwidth, thus preventing the proxy to
download the correct quality for the next segment. This causes
an avalanche of cache misses, which lower the average hit
probability.

Instead, when the maximum proxy-server link capacity is
high, the hit probability is large, particularly for the predictive
proxy. This proves that the predictive proxy is able to accu-
rately predict the next segment quality even when the number
of states in the channel model, and, therefore, its capacity
variability, is large. As expected, the same quality pre-fetching

2 4 6 8 10 12 14 16 18 20 22 24

Cmax
PS (Mbit/s)

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u
al
it
y
of

E
x
p
er
ie
n
ce

Predictive Pre-fetching

Non-predictive Pre-fetching

No Pre-fetching

Figure 3. QoE, with 95% confidence intervals.

strategy offers an inferior performance. Since the proxy pre-
fetches the different qualities in order of how likely they
are to be requested, as the maximum proxy-server capacity
approaches to infinity, the proxy is able to pre-fetch any
segment quality without considering the capacity limitation,
thus yielding an average hit probability close to 1.

C. Average QoE

In order to measure the overall QoE, we use a metric
proposed in [15]. This metric is a linear combination of the
average video quality q̄ and its standard deviation σq , both
normalized by the maximum available quality qmax, and a
parameter F that models the influence of stalling events.

QoE = 5.67
q̄

qmax
− 6.72

σq

qmax
− 4.95 · F + 0.17 , (7)

with F defined as

F =
7
8

max
(

log(φ)
6
+ 1, 0

)
+

1
8
·

min(ψ, 15)
15

, (8)

where φ is the frequency of stalling events and ψ is their
average duration. Fig. 3 shows a large increase in QoE by
using a caching proxy and, in particular, by using a predictive
pre-fetching strategy.

For low proxy-server maximum capacity, the client, as
explained earlier, is almost always downloading the segment
from the server. With such a low proxy-server capacity, the
channel model has very few states, causing a channel with
low capacity but also low variability. In this scenario, the client
adaptation algorithm is able to predict the channel very well,
thus avoiding quality switches and rebuffering, offering large
QoE even when playing low quality segments.

From there, increasing the proxy-server maximum capacity
brings higher variability to the channel, while still forcing the
download of low quality segments. This decreases the QoE
value up to a point, which in our scenario is Cmax

PS
= 6 Mbit/s,

where the large channel variability is compenstaed by the
possibility to play high quality segments. From there, the QoE
increases with the maximum proxy-server capacity.

2 4 6 8 10 12 14 16 18 20 22 24

Cmax
PS (Mbit/s)

1

1.5

2

2.5

3

3.5

4

4.5
In

it
ia
l
B
u
,
er
in
g
T
im

e
(s
)

Predictive Pre-fetching

Non-predictive Pre-fetching

No Pre-fetching

Figure 4. Initial buffering time, with 95% confidence intervals.

D. Initial buffering time
The time needed to fill the buffer before the actual start

of the playout is not considered in the QoE metric plotted
in Fig. 3. Therefore, for completeness, we show its behavior
in Fig. 4 for different maximum proxy-server capacities. We
consider the playout to start, and therefore the initial buffering
period to end, when the buffer contains the first 3 seconds
of video. We observe that, for Cmax

PS
lower than 9 Mbit/s,

the performance with and without the proxy is the same,
because of the low hit probability which forces the client
to download the segment directly from the server. Instead,
for larger maximum proxy-server capacity values the client
benefits from the presence of a proxy, reducing the initial
buffering time. The initial delay stabilizes for Cmax

PS
≈ 2Cmax

CP
,

since, in this case, the probability of the proxy-server link
being the bottleneck is almost zero.

E. Advantages of the scheme
In conclusion, the benefit of using a pre-fetching proxy

is clear: Fig. 3 shows a significant increase in the QoE for
both pre-fetching schemes. The predictive pre-fetching scheme
increases the QoE only slightly with respect to the simple non-
predictive scheme, but its advantage lies in the significantly
higher hit rate: since every cache miss means that a segment
is downloaded by the proxy but never used by the client,
increasing the hit rate greatly improves the efficiency of the
system. A predictive pre-fetching system, installed before the
“last mile” in a DSL or cellular network, can help improve
end users’ QoE without imposing a significant additional load
on the core network.

V. CONCLUSIONS

In this work, we modeled a DASH video streaming scenario
with the help of a proactive pre-fetching proxy as an MDP,
and found the optimal strategy for the proxy.

Although the benefits in terms of QoE are not huge when
compared to a simpler proxy which pre-fetches the next
segment at the same quality as the one currently streamed by
the client, the combined increase in QoE and cache hit rate

means that the predictive proxy can exploit its better awareness
of the scenario to provide a better quality while wasting less
bandwidth and reducing the load on the server.

Future developments of this work include a thorough testing
with different client algorithms and a more realistic scenario,
as well as the development of a proxy that can maximize the
long-term QoE instead of just the instantaneous one by using
reinforcement learning.

REFERENCES

[1] T. J. Barnett, A. Sumits, S. Jain, and U. Andra, “Cisco
Visual Networking Index (VNI) Update Global Mobile Data
Traffic Forecast,” Vni, pp. 2015–2020, 2015. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.html

[2] I. Sodagar, “ISO/IEC FDIS 23009-4: Dynamic Adaptive Streaming over
HTTP (DASH),” International Organization for Standardization, Geneva,
Switzerland, Standard, 2013.

[3] M. Pantos, “IETF Draft: Apple HTTP Live Streaming (HLS),” Internet
Engineering Task Force, Standard, 2013.

[4] A. Zambelli, “Iis smooth streaming technical overview,” Microsoft
Corporation, vol. 3, p. 40, 2009.

[5] Adobe HTTP Dynamic Streaming (HDS). [Online]. Available:
http://www.adobe.com/devnet/hds.html

[6] K. Liang, J. Hao, R. Zimmermann, and D. K. Y. Yau, “Integrated
prefetching and caching for adaptive video streaming over HTTP,”
Proceedings of the 6th ACM Multimedia Systems Conference
on - MMSys ’15, pp. 142–152, 2015. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2713168.2713181

[7] D. K. Krishnappa, S. Khemmarat, L. Gao, and M. Zink, “On the
feasibility of prefetching and caching for online TV services: A mea-
surement study on hulu,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6579 LNCS, pp. 72–80, 2011.

[8] F. Bronzino, D. Stojadinovic, C. Westphal, and D. Raychaudhuri,
“Exploiting network awareness to enhance dash over wireless,” in 2016
13th IEEE Annual Consumer Communications Networking Conference
(CCNC), Jan 2016, pp. 1092–1100.

[9] M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. La-
tre, and F. De Turck, “An Announcement-based Caching Approach
for Video-on-Demand Streaming,” Network and Service Management
(CNSM), 2015 11th International Conference on, 2015.

[10] C. Zhang, J. Liu, F. Chen, Y. Cui, and E. C. H. Ngai, “Dependency-aware
caching for HTTP Adaptive Streaming,” 2016 Digital Media Industry
and Academic Forum, DMIAF 2016 - Proceedings, pp. 89–93, 2016.

[11] M. Zorzi, A. Zanella, A. Testolin, M. D. F. D. Grazia, and M. Zorzi,
“Cognition-based networks: A new perspective on network optimization
using learning and distributed intelligence,” IEEE Access, vol. 3, pp.
1512–1530, 2015.

[12] J. De Vriendt, D. De Vleeschauwer, and D. Robinson, “Model for
estimating QoE of video delivered using HTTP adaptive streaming,”
in IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2013), Ghent, Belgium, May 2013.

[13] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, “D-DASH: a deep
Q-learning framework for DASH video streaming,” IEEE Transactions
on Cognitive Communications and Networking, vol. PP, no. 99, Oct.
2017. [Online]. Available: https://doi.org/10.1109/TCCN.2017.2758370

[14] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” ACM SIG-
COMM Computer Communication Review, vol. 45, no. 4, pp. 325–338,
2015.

[15] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck, “QoE-
driven rate adaptation heuristic for fair adaptive video streaming,” ACM
Trans. Multimedia Comput. Commun. Appl., vol. 12, no. 2, pp. 28:1–
28:24, Mar. 2016.

