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Sequentializing Cellular Automata

Jarkko Kari1?, Ville Salo1, and Thomas Worsch2

1 University of Turku, Turku, Finland
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. We study the problem of sequentializing a cellular automa-
ton without introducing any intermediate states, and only performing
reversible permutations on the tape. We give a decidable characteriza-
tion of cellular automata which can be written as a single left-to-right
sweep of a bijective rule from left to right over an infinite tape.

1 Introduction

Cellular automata (CA) are models of parallel computation, so when implement-
ing them on a sequential architecture, one cannot simply update the cells one
by one – some cells would see already updated states and the resulting config-
uration would be incorrect. The simplest-to-implement solution is to hold two
copies of the current configuration in memory, and map (x, x) 7→ (x,G(x)) 7→
(G(x), G(x)). This is wasteful in terms of memory, and one can, with a bit of
thinking, reduce the memory usage to a constant by simply remembering a ‘wave’
containing the previous values of the r cells to the left of the current cell, where
r is the radius of the CA.

Here, we study the situation where the additional memory usage can be, in
a sense, dropped to zero – more precisely we remember only the current config-
uration x ∈ SZ, and to apply the cellular automaton we sweep a permutation
χ : Sm → Sm from left to right over x (applying it consecutively to all length-m
subwords of x). The positions where the sweep starts may get incorrect values,
but after a bounded number of steps, the rule should start writing the image of
the cellular automaton. We formalize this in two ways, with ‘sliders’ and ‘sweep-
ers’, which are two ways of formally dealing with the problem that sweeps ‘start
from infinity’.

It turns out that the cellular automata that admit a sliding rule are precisely
the ones that are left-closing (Definition 11), and whose number of right stairs
(see Definition 14) of length 3m divides |S|3m for large enough m. This can
be interpreted as saying that the average movement ‘with respect to any prime
number’ is not to the right. See Theorem 19 and Theorem 25 for the precise
statements, and Section 4 for decidability results.

We introduce the sweeping hierarchy where left-to-right sweeps and right-
to-left sweeps alternate, and the closing hierarchy where left-closing and right-
closing CA alternate. We show that the two hierarchies coincide starting from
the second step. We do not know if the hierarchies collapse on a finite level.

? Research supported by the Academy of Finland grant 296018.
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1.1 Preliminaries

We denote the set of integers by Z. For integers i ≤ j we write [i, j) for {x ∈ Z |
i ≤ x < j} and [i, j] for [i, j) ∪ {j}; furthermore [i,∞) = {x ∈ Z | i ≤ x} and
(−∞, i) = {x ∈ Z | x < i} have the obvious meaning. Thus [0,∞) is the set of
non-negative integers which is also denoted by N0.

Occasionally we use notation for a set M of integers in a place where a list
of integers is required. If no order is specified we assume the natural increasing
order. If the reversed order is required we will write MR.

For sets A and B the set of all functions f : A → B is denoted BA. For
f ∈ BA and M ⊆ A the restriction of f to M is written as f |M or sometimes
even fM . Finite words w ∈ Sn are lists of symbols, e.g. mappings w : [0, n)→ S.
Number n is the length of the word. The set of all finite words is denoted by S∗.

Configurations of one-dimensional CA are biinfinite words x : Z→ S. Instead
of x(i) we often write xi. We define the left shift σ : SZ → SZ by σ(x)i = xi+1.
The restriction of x to a subset (−∞, i) gives a left-infinite word for which we
write x(−∞,i); for a right-infinite word we write x[i,∞). These are called half-
infinite words. Half-infinite words can also be shifted by σ, and this is defined
using the same formula. The domain is shifted accordingly so for x ∈ S[i,∞) we
have σ(x) ∈ S[i−1,∞).

We use a special convention for concatenating words: Finite words ‘float’, in
the sense that they live in Sn for some n, without a fixed position, and u · v
denotes the concatenation of u and v as an element of S|u|+|v|. Half-infinite
configurations have a fixed domain (−∞, i] or [i,∞) for some i, which does
not change when they are concatenated with finite words or other half-infinite
configurations, while finite words are shifted suitably so that they fill the gaps
exactly (and whenever we concatenate, we make sure this makes sense).

More precisely, for w ∈ S∗ and y ∈ S(−∞,i], we have y · w ∈ S(−∞,i+|w|] and
for w ∈ S∗ and z ∈ S[i,∞) we have w · z ∈ S[i−|w|,∞) (defined in the obvious
way). For a word w ∈ S∗ and half-infinite words y ∈ S(−∞,i) and z ∈ S[i+n,∞)

we write y · w · z for the obvious configuration in SZ, and this is defined if and
only if |w| = n.

The set SZ of configurations is assigned the usual product topology generated
by cylinders. A cylinder defined by word w ∈ Sn at position i ∈ Z is the set

[w][i,i+n) = {x ∈ SZ | x[i,i+n) = w}

of configurations that contain word w in position [i, i + n). Cylinders are open
and closed, and the open sets in SZ are precisely the unions of cylinders. We
extend the notation also to half-infinite configurations, and define

[y]D = {x ∈ SZ | xD = y}.

for D = [i,∞) and D = (∞, i], and any y ∈ SD. These sets are closed in the
topology.

Because of a page limit for the submissions only some proofs are included in
the version for the conference proceedings. An extended version with all proofs
can be found on arXiv.org [1].
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2 Sliders and sweepers

A block rule is a function χ : Sm → Sm. Given a block rule χ we want to define
what it means to “apply χ from left to right once at every position”. We provide
two alternatives, compare them and characterize which cellular automata can
be obtained by them. The first alternative, called a slider, assumes a bijective
block rule χ that one can slide along a configuration left-to-right or right-to-
left to transition between a configuration y and its image f(y). The second
alternative, called a sweeper, must consistently provide values of the image f(y)
when sweeping left-to-right across y starting sufficiently far on the left.

We first define what it means to apply a block rule on a configuration.

Definition 1. Let χ : Sm → Sm be a block rule and i ∈ Z. The application of χ
at coordinate i is the function χi : SZ −→ SZ given by χi(x)[i,i+m) = χ(x[i,i+m))
and χi(x)j = xj for all j 6∈ [i, i+ n). More generally, for i1, . . . , ik ∈ Z we write

χi1,...,ik = χik ◦ · · · ◦ χi2 ◦ χi1 .

When m > 1, it is meaningless to speak about “applying χ to each cell simulta-
neously”: An application of χ changes the states of several cells at once. Applying
it slightly shifted could change a certain cell again, but in a different way.

We next define finite and infinite sweeps of block rule applications with a
fixed start position.

Definition 2. Given a block rule χ for i, j ∈ Z, i ≤ j, define χ[i,j] = χj ◦· · ·◦χi;
analogously let χ[i,j) = χj−1 ◦ · · · ◦ χi. For any configuration x ∈ SZ and fixed
i ∈ Z the sequence of configurations x(j) = χ[i,j](x) for j ∈ [i,∞) has a limit
(point in the topological space SZ) for which we write χi+(x).

Analogously, for a block rule ξ the sequence of configurations x(j) = ξ[j,i)
R

(x)
for j ∈ (−∞, i) has a limit for which we write ξi−(x).

It should be observed that in the definition of χi+(x) one has i < j and the
block rule is applied at successive positions from left to right. On the other hand

j < i is assumed in the definition of ξi−(x) and since the
R

in ξ[j,i)
R

indicates
application of ξ at the positions in the reverse order, i.e. i − 1, i − 2, . . . , j, the
block rule is applied from right to left.

The reason the limits always exist in the definition is that the value of x
(j)
i

changes at most m times, on the steps where the sweep passes over the cell i.

Example 3. Let S = {0, 1} and consider the block rule χ : S[0,2) → S[0,2) :
(a, b) 7→ (b, a). For consistency with the above definition denote by ξ the inverse
of χ (which in this case happens to be χ again). Let s ∈ S and y ∈ SZ. We will
look at the configuration x ∈ SZ with

xi =


yi+1, if i < 0

s, if i = 0

yi, if i > 0
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The application of χ successively at positions 0, 1, 2, . . . always swaps state s
with its right neighbor. Since cell j can only possibly change when χj−1 or χj is
applied, each cell enters a fixed state after a finite number of steps; see also the
lower part of Figure 1 starting at the row with configuration x.

ξ0−(x) · · · y−3 y−2 y−1 y0 y1 y2 y3 · · · y
... · · ·

ξ[−3,0)R(x) · · · s y−2 y−1 y0 y1 y2 y3 · · ·
ξ[−2,0)R(x) · · · y−2 s y−1 y0 y1 y2 y3 · · ·
ξ[−1,0)R(x) · · · y−2 y−1 s y0 y1 y2 y3 · · ·

x · · · y−2 y−1 y0 s y1 y2 y3 · · · x

χ[0,1)(x) · · · y−2 y−1 y0 y1 s y2 y3 · · ·
χ[0,2)(x) · · · y−2 y−1 y0 y1 y2 s y3 · · ·
χ[0,3)(x) · · · y−2 y−1 y0 y1 y2 y3 s · · ·

... · · ·
χ0+(x) · · · y−2 y−1 y0 y1 y2 y3 y4 · · · z

Fig. 1. A sequence of configurations with the center cell at position 0. Starting with
configuration x in the middle when going downward the swapping rule χ is applied to
blocks [0, 1], [1, 2], etc., and going from x upward rule ξ = χ is applied to blocks [−1, 0],
[−2,−1] and so on.

Example 4. Let S = {0, 1} and consider the block rule χ : S[0,2) → S[0,2) :
(a, b) 7→ (a+b, b). Then sliding this rule over a configuration x ∈ {0, 1}Z produces
the image of x in the familiar exclusive-or cellular automaton with neighborhood
{0, 1} (elementary CA 102). We will see in Example 21 that the exclusive-or CA
with neighborhood {−1, 0} can not be defined this way.

2.1 Definition of sliders

Definition 5. A bijective block rule χ with inverse ξ defines a slider relation
F ⊂ SZ×SZ by (y, z) ∈ F iff for some x ∈ SZ and some i ∈ Z we have ξi−(x) = y
and χi+(x) = z. We call the pair (x, i) a representation of (y, z) ∈ F .

Note that every (x, i) ∈ SZ × Z is a representation of exactly one pair, namely
(ξi−(x), χi+(x)) ∈ F .

Lemma 6. Let (x, i) be a representation of (y, z) ∈ F under a bijective block
rule χ of block length n. Then x(−∞,i) = z(−∞,i) and x[i+n,∞) = y[i+n,∞).

Proof. Applying block rule χ at positions j ≥ i in x never changes cells at
positions k < i. Therefore xk = (χi+(x))k = zk proving the first part. The
second part follows analogously. ut
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Lemma 7. Let (y, z) ∈ F be fixed. For all i ∈ Z denote

Ri = {x ∈ SZ | (x, i) is a representation of (y, z)}.

For i < j the function χ[i,j) : Ri −→ Rj is a bijection, with inverse ξ[i,j)
R

. All
Ri have the same finite cardinality.

Proof. The claim follows directly from the definition and the facts that

χj+ ◦ χ[i,j) = χi+ and ξj− ◦ χ[i,j) = ξi−, (1)

and that χ[i,j) and ξ[i,j)
R

are inverses of each other.
More precisely, if x ∈ Ri then z = χi+(x) = χj+(χ[i,j)(x)) and y = ξi−(x) =

ξj−(χ[i,j)(x)) so χ[i,j)(x) ∈ Rj . This proves that χ[i,j) maps Ri into Rj . This
map is injective. To prove surjectivity, we show that for any x′ ∈ Rj its pre-

image ξ[i,j)
R

(x′) is in Ri. Composing the formulas in (1) with ξ[i,j)
R

from the

right gives χj+ = χi+ ◦ ξ[i,j)R and ξj− = ξi− ◦ ξ[i,j)R , so as above we get

z = χj+(x′) = χi+(ξ[i,j)
R

(x′)) and y = ξj−(x′) = ξi−(ξ[i,j)
R

(x′)), as required.
The fact that the cardinalities are finite follows from Lemma 6: there are at

most |S|n choices of x[i,i+n) in x ∈ Ri. ut

Lemma 8. A slider relation F ⊂ SZ × SZ defined by a bijective block rule χ is
closed and shift-invariant, and the projections (y, z) 7→ y and (y, z) 7→ z map F
surjectively onto SZ.

Proof. By Lemma 7 every (y, z) ∈ F has a representation (x, 0) at position 0.
Therefore, the relation F is closed as the image of SZ in the continuous map
x 7→ (ξ0−(x), χ0+(x)).

Clearly (x, i) is a representation of (y, z) if and only if (σ(x), i − 1) is a
representation of (σ(y), σ(z)). Hence the relation F is shift-invariant.

The image of F under the projection (y, z) 7→ z is dense. To see this, consider
any finite word w and a configuration x with x[−|w|,0) = w. The pair (x, 0)
represents some (y, z) ∈ F , and because z = χ0+(x) we have z[−|w|,0) = w. The
denseness follows now from shift invariance and the fact that w was arbitrary.
The image of F under the projection is closed so the image is the whole SZ.

The proof for the other projection is analogous. ut

Corollary 9. If F ⊂ SZ × SZ defined by a bijective block rule χ is a function
(that is, if for all y ∈ SZ there is at most one z ∈ SZ such that (y, z) ∈ F ) then
this function f : y 7→ z is a surjective cellular automaton.

Proof. Because the projections (y, z) 7→ y and (y, z) 7→ z are onto, the function
f is full and surjective. Because the relation F ⊂ SZ×SZ is closed, the function
f is continuous. As it is continuous and shift-invariant, it is a cellular automaton.

ut

Definition 10. Let χ be a bijective block rule such that the slider relation it
defines is a function f : SZ −→ SZ. The surjective cellular automaton f is called
the slider defined by χ.
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Example 3 indicates that the slider for the block rule swapping two states
is the left shift. By Corollary 9 every slider is a surjective CA. But not every
surjective CA is a slider. This will follow from an exact characterization of which
cellular automata are sliders below.

2.2 Characterization of sliders

We start by improving Corollary 9, by showing that sliders are left-closing cel-
lular automata.

Definition 11. Two configurations y and y′ are right-asymptotic if there is an
index i ∈ Z such that y[i,∞) = y′[i,∞). They are called left-asymptotic if there

is an index i ∈ Z such that y(−∞,i) = y′(−∞,i). A CA f is left-closing if for

any two different right-asymptotic configurations y and y′ we have f(y) 6= f(y′).
Right-closing CA are defined symmetrically using left-asymptotic configurations.

Lemma 12. A slider is a left-closing cellular automaton.

Proof. Let slider f be defined by a bijective block rule χ : Sm → Sm, so that f
is a surjective cellular automaton. Let ξ be the inverse of χ.

Suppose f is not left-closing, so that there exist two distinct right-asymptotic
configurations y and y′ such that f(y) = f(y′). We may suppose the rightmost
difference in y and y′ is at the origin. Let r be a radius for the local rule of f ,
where we may suppose r ≥ m, and let y[−2r,2r] = w0v, y

′
[−2r,2r] = w1v where

|w1| = |w2| = 2r + 1. We can apply the local rule of f to words, shrinking them
by r symbols on each side, and write F : S∗ → S∗ for this map. Since y and y′

have the same f -image, we have F (w0v) = F (w1v).
Let n be such that 2n > |S|m and for each k ∈ {0, 1}n, define the configura-

tion
yk = ...0000wk1vwk2v · · · vwknv.0000...

where the right tail of 0s begins at the origin. For each yk, pick a point xk
representing (yk, f(yk)) at the origin. By the pigeon hole principle, there exist
k 6= k′ such that (xk)[0,m) = (xk′)[0,m). Let j be the maximal coordinate where
k and k′ differ.

Now, the rightmost difference in yk and yk′ is in coordinate R = −2r − 1−
(4r + 1)(n − j) (the last coordinate of the word wkj ). We have f(yk)[R−r,∞) =
f(yk′)[R−r,∞) by the assumption that j is the rightmost coordinate where k and
k′ differ, and by F (w0v) = F (w1v). Thus we also have (xk)[R−r,0) = (xk′)[R−r,0),
since χ0+(xk) = f(yk) and χ0+(xk′) = f(yk′) and these sweeps do not modify
coordinates in [R− r, 0). Recall that we have (xk)[0,m) = (xk′)[0,m) by the choice
of k and k′, so (xk)[R−r,m) and (xk′)[R−r,m).

Now, we should have ξ0−(xk) = yk and ξ0−(xk′) = yk′ , in particular we
should have ξ0−(xk)R 6= ξ0−(xk′)R. But this is impossible: ξ0−(xk)R is com-
pletely determined by (xk)[R−m+1,m) and similarly ξ0−(xk′)R is determined
by (xk′)[R−m+1,m), but (xk)[R−m+1,m) = (xk′)[R−m+1,m) since (xk)[R−r,m) =
(xk′)[R−r,m) and r ≥ m. ut
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In the rest of this section, we only consider the case when the slider relation
F that χ defines is a function.

Next we analyze numbers of representations. We call a representation (x, i)
of a pair (y, z) simply a representation of configuration y, because z = f(y)
is determined by y. Let R(y, i) be the set of configurations x such that (x, i)
is a representation of y. By Lemma 6 the elements of R(y, i) have the form
x = f(y)(−∞,i) · w · y[i+n,∞) for some word w ∈ Sn where n is the block length
of χ.

By Lemma 7 the cardinality of the set R(y, i) is independent of i. Let us
denote by N(y) this cardinality. It turns out that the number is also independent
of the configuration y.

Lemma 13. N(y) = N(y′) for all configurations y, y′.

Proof. Let n be the block length of rule χ.

(i) Assume first that y, y′ are left-asymptotic. There is an index i ∈ Z such that
y(−∞,i) = y′(−∞,i). Then for any z we have that z(−∞,i)y[i,∞) ∈ R(y, i − n)

if and only if z(−∞,i)y
′
[i,∞) ∈ R(y′, i − n). This gives a bijection between

R(y, i − n) and R(y′, i − n) so that N(y) = |R(y, i − n)| = |R(y′, i − n)| =
N(y′).

(ii) Assume then that y, y′ are right-asymptotic. Also f(y) and f(y′) are right-
asymptotic so there is an index i ∈ Z such that f(y)[i,∞) = f(y′)[i,∞).
Consider z[i,∞) be such that x = f(y)(−∞,i)z[i,∞) ∈ R(y, i). Then χi+(x) =
f(y). Consider then x′ = f(y′)(−∞,i)z[i,∞) obtained by replacing the left
half f(y)(−∞,i) by f(y′)(−∞,i). Because f(y)[i,∞) = f(y′)[i,∞) we have that
χi+(x′) = f(y′). The configuration y′′ represented by (x′, i) is right-asymptotic
with y′ and satisfies f(y′′) = f(y′). Because f is left-closing by Lemma 12, we
must have y′′ = y′. We conclude that f(y)(−∞,i)z[i,∞) ∈ R(y, i) implies that
f(y′)(−∞,i)z[i,∞) ∈ R(y′, i), and the converse implication also holds by a sym-
metric argument. As in (i), we get that N(y) = |R(y, i)| = |R(y′, i)| = N(y′).

(iii) Let y, y′ be arbitrary. Configuration y′′ = y(−∞,0)y
′
[0,∞) is left-asymptotic

with y and right-asymptotic with y′. By cases (i) and (ii) above we have
N(y) = N(y′′) = N(y′).

ut

As N(y) is independent of y we write N for short.
Next we define right stairs. They were defined in [2] for reversible cellular

automata – here we generalize the concept to other CA and show that the
concept behaves well when the cellular automaton is left-closing. A right stair is
a pair of words that can be extracted from two consecutive configurations x and
f(x) that coincide with y and z, respectively, as shown in Figure 2. The precise
definition is as follows.

Definition 14. Let f : SZ −→ SZ be a cellular automaton, and let m be a
positive integer. Let y ∈ S[i+3m,∞) be a right infinite word and let z ∈ S(−∞,i)

be a left-infinite word.
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v
w

y
z

0 m 2m 3m

x
f(x)

v
w

0 m 2m 3m

Fig. 2. A right stair (v, w) of length 3m connecting y and z, confirmed by x at position
i = 0.

– A pair of words (v, w) ∈ S2m×S2m is a right stair connecting (y, z) if there
is a configuration x ∈ SZ such that vy = x[i+m,∞) and zw = f(x)(−∞,i+2m).

– The stair has length 3m and it is confirmed (at position i) by configuration
x.

– We write Ψ3m(y, z) for the set of all right stairs of length 3m connecting
(y, z).

– We write Ψ3m for the union of Ψ3m(y, z) over all y and z.

Due to shift invariance, x confirms (v, w) ∈ Ψ3m(y, z) if and only if σ(x) confirms
(v, w) ∈ Ψ3m(σ(y), σ(z)). This means that Ψ3m(y, z) = Ψ3m(σ(y), σ(z)), so it is
enough to consider i = 0 in Definition 14. In terms of cylinders, (v, w) ∈ Ψ3m if
and only if f([v][m,3m)) ∩ [w][0,2m) 6= ∅.

s

t

0 m 2m

(a) (b)

a

b

v

w

v

w

a c

b d

Fig. 3. (a) An illustration for Lemma 15, and (b) an illustration for Corollary 16(b)
and for Lemma 18.

We need the following known fact concerning left-closing CA. It appears as
Proposition 5.44 in [3] where it is stated for right-closing CA. See Figure 3(a)
for an illustration.

Lemma 15 (Proposition 5.44 in [3]). Let f be a left-closing CA. For all suffi-
ciently large m ∈ N, if s ∈ Sm and t ∈ S2m are such that f([s](m,2m])∩[t](0,2m] 6=
∅ then for all b ∈ S there exists a unique a ∈ S such that f([as][m,2m]) ∩
[bt][0,2m] 6= ∅.

The condition f([s](m,2m]) ∩ [t](0,2m] 6= ∅ is just a way to write that there exists

x ∈ SZ with x(m,2m] = s and f(x)(0,2m] = t. Note that the statement of the
lemma has two parts: the existence of a and the uniqueness of a. We need both
parts in the following.
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A number m is a strong3 left-closing radius for a CA f if it satisfies the claim
of Lemma 15, and furthermore m ≥ 2r where r ≥ 1 is a neighborhood radius
of f . Next we state corollaries of the previous lemma, phrased for right stairs in
place of s and t to be directly applicable in our setup.

Corollary 16. Let f be a left-closing CA. Let m be a strong left-closing radius.

(a) Ψ3m(y, z) = Ψ3m for all y and z.

(b) Let (vc, wd) ∈ Ψ3m for c, d ∈ S and v, w ∈ S2m−1. For every b ∈ S there
exists a unique a ∈ S such that (av, bw) ∈ Ψ3m. (See Figure 3(b) for an
illustration.)

(c) Every (v, w) ∈ Ψ3m(y, z) is confirmed by a unique x.

Proof. (a) Let y, y′ ∈ S[3m,∞) and z, z′ ∈ S(−∞,0) be arbitrary. It is enough to
prove that Ψ3m(y′, z′) ⊆ Ψ3m(y, z). The claim then follows from this and shift
invariance Ψ3m(y, z) = Ψ3m(σ(y), σ(z)).

First we show that Ψ3m(y′, z′) ⊆ Ψ3m(y, z′). Let (v, w) ∈ Ψ3m(y′, z′) be arbi-
trary, so that there exists x′ ∈ [vy′][m,∞) such that f(x′)(−∞,2m) = z′w. Then
(v, w) ∈ Ψ3m(y, z′) is confirmed by the configuration x′′ such that x′′(−∞,3m) =

x′(−∞,3m) and x′′[3m,∞) = y. Indeed, x′′[m,∞) = vy, and because m ≥ r, the radius

of the local rule of f , we also have f(x′′)(−∞,2m) = f(x′)(−∞,2m) = z′w.

Next we show that Ψ3m(y, z′) ⊆ Ψ3m(y, z). Let (v, w) ∈ Ψ3m(y, z′). We start
with finite extensions of w on the left: we prove that for every finite word u ∈ S∗
we have f([vy][m,∞))∩[uw][−|u|,2m) 6= ∅. Suppose the contrary, and let bu ∈ Sk+1

be the shortest counter example, with b ∈ S and u ∈ Sk. (By the assumptions,
the empty word is not a counter example.) By the minimality of bu, there exists
xr ∈ [vy][m,∞) such that f(xr)[−k,2m) = uw. Choose s = xr[−k+m,−k+2m) and

t = f(xr)[−k,−k+2m) and apply the existence part of Lemma 15. By the lemma,

there exists a configuration xl such that xl[−k+m,−k+2m) = xr[−k+m,−k+2m) and

f(xl)[−k−1,−k+2m) = b · f(xr)[−k,−k+2m).

Consider x obtained by gluing together the left half of xl and the right
half of xr: define x(−∞,−k+2m) = xl(−∞,−k+2m) and x[−k+m,∞) = xr[−k+m,∞).

Note that in the region [−k + m,−k + 2m) configurations xl and xr have
the same value. By applying the local rule of f with radius r we also get
that f(x)(−k−1,−k+2m−r) = f(xl)(−k−1,−k+2m−r) = b · f(xr)[−k,−k+2m−r) and
f(x)[−k+m+r,2m) = f(xr)[−k+m+r,2m). Because m ≥ 2r we have −k + 2m− r ≥
−k + m + r, so that f(x)(−k−1,2m) = b · f(xr)(−k,2m) = buw. We also have
x[m,∞) = xr[m,∞) = vy, so that x proves that bu is not a counter example.

Consider then the infinite extension of w on the left by z: Applying the finite
case above to each finite suffix of z and by taking a limit, we see with a simple
compactness argument that there exists x ∈ [vy][m,∞) such that f(x)[−∞,2m) =
zw. This proves that (v, w) ∈ Ψ3m(y, z).

3 The word ‘strong’ is added to distinguish this from the weaker closing radius obtained
directly from the definition by a compactness argument.
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(b) Let (vc, wd) ∈ Ψ3m and let b ∈ S be arbitrary. Let y ∈ S[3m,∞) be ar-
bitrary, and and let z ∈ S(−∞,0) be such that z−1 = b. By (a) we have that
(vc, wd) ∈ Ψ3m(y, z). Let x be a configuration that confirms this, so x[m,∞) =
vcy and f(x)(−∞,2m) = zwd. Let a = xm−1. Because x[m−1,3m−1) = av and
f(x)[−1,2m−1) = bw, configuration x confirms (at position i = −1) that (av, bw) ∈
Ψ3m.

Let us prove that a is unique. Suppose that also (a′v, bw) ∈ Ψ3m. We apply the
uniqueness part of Lemma 15 on s and t where t = wd and s is the prefix of v of
length m. Because (a′v, bw) is a right stair, f([a′v][m−1,3m−1))∩ [bw][−1,2m−1) 6=
∅. Because m − 1 ≥ 2r − 1 ≥ r, the local rule of f assigns f(x)2m−1 = d for
all x ∈ [a′v][m−1,3m−1), so that f([a′v][m−1,3m−1)) ∩ [bwd][−1,2m) 6= ∅. But then
f([a′s][m−1,2m)) ∩ [bt][−1,2m) 6= ∅, so that by Lemma 15 we must have a′ = a.

(c) Suppose x 6= x′ both confirm that (v′, w′) ∈ Ψ3m(y, z). Then x[m,∞) =
v′y = x′[m,∞). Let k < m be the largest index such that xk 6= x′k. Extract

a, a′, b, c, d ∈ S and v, w ∈ S2m−1 from x and x′ as follows: avc = x[k,k+2m] and
a′vc = x′[k,k+2m] and bwd = f(x)[k−m,k+m] = f(x′)[k−m,k+m]. Then (vc, wd) ∈
Ψ3m and (av, bw), (a′v, bw) ∈ Ψ3m. This contradicts (b). ut

Now we can state another constraint on sliders.

Lemma 17. Let f be a slider. Let m be a strong left-closing radius, and big
enough so that f is defined by a bijective block rule χ : Sn −→ Sn of block length
n = 3m. Let N be the number of representatives of configurations (independent
of the configuration) with respect to χ. Then

N · |Ψn| = |S|n.

In particular, |Ψn| divides |S|n.

Proof. Fix any y ∈ S[3m,∞) and z ∈ S(−∞,0). Denote A = {x ∈ SZ | x[3m,∞) =
y and f(x)(−∞,0) = z}. Consider the function A −→ Ψ3m(y, z) defined by x 7→
(x[m,3m), f(x)[0,2m)). It is surjective by the definition of Ψ3m(y, z), and it is in-
jective by Corollary 16(c). Because Ψ3m(y, z) = Ψ3m by Corollary 16(a), we see
that |A| = |Ψ3m|.

For each w ∈ S3m define configuration xw = zwy. Representations (x, 0) of
y ∈ A are precisely (xw, 0) for w ∈ S3m. Because each y has N representations
and there are |S|3m words w we obtain that N · |Ψ3m| = |S|3m. ut

Now we state the converse: the constraints we have for sliders are sufficient.
This completes the characterization of sliders.

Lemma 18. Let f be a left-closing cellular automaton, let m be a strong left-
closing radius, and assume that |Ψn| divides |S|n for n = 3m. Then f is a slider.

Proof. LetN = |S|n/|Ψn| and pick an arbitrary bijection π : Ψn×{1, 2, . . . , N} −→
Sn. Let floc : S2m+1 −→ S be the local rule of radius m for the cellular automa-
ton f .
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Let us define a block rule χ : Sn+1 −→ Sn+1 as follows (see Figure 3).Consider
any c ∈ S, any k ∈ {1, 2, . . . , N} and any (av, bw) ∈ Ψn where a, b ∈ S and
v, w ∈ S2m−1. Let d = floc(avc). We set χ : π((av, bw), k) ·c 7→ b ·π((vc, wd), k)).
This completely defines χ, but to see that it is well defined we next show that
(vc, wd) is a right stair. By Corollary 16(a) we have that (av, bw) ∈ Ψn(cy, z)
for arbitrary y, z so there is a configuration x such that x[m,∞) = avcy and
f(x)(∞,2m) = zbw. The local rule floc determines that f(x)2m = floc(avc) = d.
It follows that (vc, wd) ∈ Ψn(y, zb), confirmed by x at position i = 1.

Now that we know that χ is well defined, let us prove that χ is a bijec-
tion. Suppose π((av, bw), k) · c and π((a′v′, b′w′), k′) · c′ have the same image
b · π((vc, wd), k)) = b′ · π((v′c′, w′d′), k′)). We clearly have b = b′, and because
π is a bijection, we have v = v′, c = c′, w = w′, d = d′ and k = k′. By
Corollary 16(a) we also have that a = a′.

As χ is a bijective block rule, it defines a slider relation F . We need to prove
that for every configuration y, the only z such that (y, z) ∈ F is z = f(y).
Therefore, consider an arbitrary representation (x, i) of (y, z) ∈ F . Write x =
z(−∞,i) · π((av, bw), k) · c · y[i+n+1,∞) for letters a, c, b ∈ S words v, w ∈ S2m−1

and k ∈ {1, 2, . . . , N}. This can be done and as π is surjective and all items in
this representation are unique as π is injective. We have (av, bw) ∈ Ψn(cy, z) so
by Corollary 16(c) there is a unique configuration x′ that confirms this. Then
x′[i+m,∞) = avc · y[i+n+1,∞) and f(x′)(−∞,i+2m) = z(−∞,i) · bw. Associate x′ to

(x, i) by defining g(x, i) = x′.
Let us show that g(χi(x), i+ 1) = g(x, i). By the definition of χ we have

χi(x) = z(−∞,i) · b · π((vc, wd), k)) · y[i+n+1,∞)

where d = floc(avc). To prove that g(χi(x), i + 1) = x′ = g(x, i) it is enough
to show that x′ confirms (vc, wd) ∈ Ψn(y, zb). But this is the case because
x′[i+m+1,∞) = vc · y[i+n+1,∞) and f(x′)(−∞,i+2m+1) = z(−∞,i) · bwd. The fact

that f(x′)i+2m = d follows from x′[i+m,i+3m] = avc and d = floc(avc).

By induction we have that for any j ≥ i holds g(χ[i,j)(x), j) = x′. Moreover,
pair (χ[i,j)(x), j) represents the same (y, z) ∈ F as (x, i). Therefore, x′[j+n+1,∞) =

y[j+n+1,∞) and f(x′)(−∞,j) = z(−∞,j) for all j ≥ i. Let us look into position
p = i + n + m + 1. Using any j > p we get f(x′)p = zp and using j = i we
get x′[p−m,p+m] = y[p−m,p+m]. This means that zp = floc(y[p−m,p+m]), that is,

zp = f(y)p. Because i was arbitrary, p is arbitrary. We have that z = f(y), which
completes the proof. ut

By Corollary 16, for a left-closing cellular automaton f the limit

λf = lim
m→∞

|Ψ3m|
|S|3m

(2)

is reached in finite time, namely as soon as m is a left-closing radius, and thus
λf is rational for left-closing f . In [2] it is shown that the map f 7→ λf gives a
homomorphism from the group of reversible cellular automata into the rational
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numbers under multiplication. For a prime number p and an integer n, write
vp(n) for the largest exponent k such that pk|n. For prime p and rational r =
m/n, write vp(r) = vp(m)− vp(n) for the p-adic valuation of r.

Theorem 19. The function f is a slider if and only if f is a left-closing cellular
automaton and vp(λf ) ≤ 0 for all primes p.

Example 20. Let A = {0, 1}× {0, 1, 2} and write σ2 and σ3 for the left shifts on
the two tracks of AZ. Then consider f = σ2 × σ−13 . For this CA we have by a
direct computation |Ψ3| = 22 · 34 so λf = 22 · 34/63 so v3(λf ) = 1 > 0, and thus
f is not a slider. Similarly we see that σ3 × σ−12 is not a slider.

Example 21. Let S = {0, 1} and consider the exclusive-or CA with neighborhood
{−1, 0}, i.e. f(x) = x+ σ−1(x). Then f is left-closing but a direct computation
shows v2(λf ) = 1 > 0, so f is not a slider. Compare with Example 4.

2.3 Definition of sweepers

An alternative approach not requiring bijectivity of χ is specified in the following:

Definition 22. A block rule χ defines a sweeper relation F ⊂ SZ × SZ by
(y, z) ∈ F iff some subsequence of χ0+(y), χ−1+(y), χ−2+(y), . . . converges to z.

Lemma 23. The projection (y, z) 7→ y on the first component maps a sweeper
relation F surjectively onto SZ. The relation F is a function f if and only if for
each configuration y the limit limi→−∞ χi+(y) exists and equals f(y).

Definition 24. Let χ be a block rule such that for each configuration y the limit
z = limi→−∞ χi+(y) exists. The function y 7→ z is called the sweeper defined
by χ.

Compared to definition 10 the advantage of definition 24 is that it does not
require χ to be bijective. But as long as χ is bijective, there is in fact no difference.

Theorem 25. Let χ be a bijective block rule and f a one-dimensional CA. The
slider relation defined by χ is equal to f if and only if the sweeper relation it
defines is equal to f .

While the slider and sweeper relations defined by a block rule are equal
when at least one of them defines a cellular automaton, sweeper relations can
also define non-continuous functions.

Example 26. Let S = {[ 00 ] , [ 01 ] , [ 10 ] , [ 11 ]} and define χ : S2 → S2 by χ([ 10 ] [ 00 ]) =
[ 00 ] [ 01 ], χ([ 00 ] [ 01 ]) = [ 10 ] [ 00 ], and χ(ab) = ab for ab /∈ {[ 10 ] [ 00 ] , [ 00 ] [ 01 ]}.

We claim that limi→−∞ χi+(x) is well-defined for all x ∈ SZ, so that the
sweeper relation χ defines is a function. Let x ∈ SZ be arbitrary, and let n ∈ Z.
We need to show that χi+(x)n converges.

Suppose first that for some k < n, we have xk = [ 1a ] for a ∈ {0, 1}. Then
for all i < k, the value χi+(x)n is independent of the values xj ≤ k, since
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χ[i,k−1](x)k = [ 1a ], meaning that the sweep is synchronized (in the sense that
whatever information was coming from the left is forgotten and the sweep con-
tinues the same way) and χi+(x)n is determined by x[k,n] for all i < k. Thus, in
this case χi+(x)n converges.

Suppose then that for all k < n, xk = [ 0a ] for some a ∈ {0, 1}. If xk = [ 00 ]
for some k < n, then since xk−1 6= [ 10 ] we also have χ[i,k−2](x)k−1 6= [ 10 ].
Thus, the value at k does not change when χ is applied at k − 1, and as in the
previous paragraph, the sweep is synchronized at this position. Again χi+(x)n
is determined by x[k,n] for all i < k, so χi+(x)n converges.

In the remaining case, xk = [ 01 ] for all k < n. Then since χ([ 01 ] [ 01 ]) = [ 01 ] [ 01 ],
the rule is not applied in the left tail of x, and thus certainly χi+(x)n converges.

The function defined by the sweeper relation is not continuous at [ 01 ]
Z

since

χZ([ 01 ]
Z
) = [ 01 ]

Z
while for any n ∈ N we have

χZ(... [ 00 ] [ 00 ] [ 00 ] [ 01 ]
n
. [ 01 ]

N
) = ... [ 00 ] [ 00 ] [ 10 ] [ 10 ]

n
. [ 10 ]

N

3 Realization of bi-closing CA using LR and RL sliders

In the definition of a slider we use a left-to-right slide of the window to realize
the CA transition. Of course, one can analogously define right-to-left sliders and
state a characterization via right-closing CA. We can also alternate these two
types of rules, and obtain a ladder-shaped hierarchy analogous to the Borel,
arithmetic and polynomial hierarchies.

Definition 27. Let R denote the set of CA definable as slider relations with
the “left to right” definition as in Definition 10. Analogously let L denote the
set of CA definable as right-to-left slider relations. Denote ∆ = L ∩R. Let now
L0 = R0 = {id}, and for all k ∈ N0 let Lk+1 = L ◦Rk and Rk+1 = R◦Lk. For
all n, write ∆n = Ln ∩Rn.

Note that in Ln, there are n sweeps (slider applications) in total, and the last
sweep goes from right to left. We have L1 = L, R1 = R, ∆1 = ∆. See Figure 4.

∆1

L1

∆2

R1

L2

∆3

R2

L3

∆4

R3

L4

∆5

R4

· · ·

· · ·

Fig. 4. The sliding hierarchy.

In Theorem 30 below we will show a close relation between this “slider hier-
archy” and a “closingness hierarchy” defined as follows, exactly analogously. Let
Lcl denote the set of left-closing CA and Rcl the set of right-closing CA. Define
Lcl
0 = Rcl

0 = {id} and for all k, Lcl
k+1 = Lcl ◦ Rcl

k and Rcl
k+1 = Rcl ◦ Lcl

k .
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As always with such hierarchies, it is natural to ask whether they are infinite
or collapse at some finite level. We do not know if either hierarchy collapses, but
we show that after the first level, the hierarchies coincide. The main ingredients
for the theorem are the following two lemmata.

Lemma 28. Let f be a left-closing CA. For all n large enough, |Ψn| divides
some power of |S|.

Lemma 29. Let f be a left-closing CA. Then for any large enough n, we have
σn ◦ f ∈ R.

Theorem 30. For each k ∈ N with k ≥ 2 we have Lk = Rcl
k and Rk = Lcl

k .

A cellular automaton f is bi-closing if it is both left-closing and right-closing,
i.e. f ∈ ∆cl

1 . Such cellular automata are also called open, since they map open
sets to open sets. By the previous result, every bi-closing CA can be realized by
a left-to-right sweep followed by a right-to-left sweep by bijective block rules:

Theorem 31. Each bi-closing CA is in ∆2.

4 Decidability

In this section, we show that our characterization of sliders and sweepers shows
that the existence of them for a given CA is decidable. We also show that given a
block rule, whether it defines some CA as a slider (equivalently as a sweeper) is
decidable. We have seen that sweepers can also define shift-commuting functions
which are not continuous. We show that this condition is also decidable.

Lemma 32. Given a cellular automaton f : SZ → SZ, it is decidable whether
it is left-closing, and when f is left-closing, a strong left-closing radius can be
effectively computed.

Lemma 33. Given a left-closing cellular automaton f : SZ → SZ, one can
effectively compute the rational number λf defined in Equation (2) on page 11.

Theorem 34. Given a cellular automaton f : SZ → SZ, it is decidable whether
f is a slider (resp. sweeper).

We now move on to showing that given a block rule, we can check whether
its slider or sweeper relation defines a CA.

In the rest of this section, we explain the automata-theoretic nature of both
types of rules, which allows one to decide many properties of the slider and
sweeper relations even when they do not define cellular automata. As is a com-
mon convention in automata theory, all claims in the rest of this section have
constructive proofs (and thus imply decidability results), unless otherwise spec-
ified.

We recall definitions from [4] for automata on bi-infinite words. A finite-state
automaton is A = (Q,S,E, I, F ) where Q is a finite set of states, S the alphabet,
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E ⊂ Q×S×Q the transition relation, I ⊂ Q the set of initial states and F ⊂ Q
the set of final states.

The pair (Q,E) can be naturally seen as a labeled graph with labels in S.
The language of such an automaton A the set L(A) ⊂ SZ of labels of bi-infinite
paths in (Q,E) such that some state in I is visited infinitely many times to the
left (negative indices) and some state in F infinitely many times to the right.
Languages of finite-state automata are called recognizable.

In the theorems of this section, note that the set SZ × SZ is in a natural
bijection with (S2)Z.

Proposition 35. Let χ : Sm → Sm be a bijective block rule. Then the corre-
sponding slider relation F ⊂ (S2)Z is recognizable.

Lemma 36. Given a recognizable set X ⊂ (S2)Z, interpreted as a binary rela-
tion over SZ, it is decidable whether X defines a function.

The following is a direct corollary.

Theorem 37. Given a block rule, it is decidable whether it is the sliding rule of
a CA.

We now discuss sweeping rules.

Proposition 38. Let χ : Sm → Sm be a block rule. Then the corresponding
sweeper relation F ⊂ (S2)Z is recognizable.

The sweeping relation need not be closed, as shown in Example 26. However,
whether it is closed is decidable.

Lemma 39. Given a recognizable X ⊂ SZ, it is decidable whether X is closed.

Theorem 40. Given a block rule, it is decidable whether the sweeping relation
it defines is a CA.

5 Future work and open problems

To obtain a practical computer implementation method for cellular automata,
one would need much more work. The radius of χ should be given precise bounds,
and we would also need bounds on how long it takes until the sweep starts pro-
ducing correct values. Future work will involve clarifying the connection between
the radii m of local rules χ : Sm → Sm and the strong left-closing radii, the
study of non-bijective local rules, and the study of sweeping rules on periodic
configurations.

On the side of theory, it was shown in Section 3 that the hierarchy of left- and
right-closing cellular automata corresponds to the hierarchy of sweeps starting
from the second level. Neither hierarchy collapses on the first level, since there
exists CA which are left-closing but not right-closing, from which one also obtains
CA which are in L1 but not R1.
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Question 41. Does the hierarchy collapse on a finite level? Is every surjective
CA in this hierarchy?

As we do not know which cellular automata appear on which levels, we do not
know whether these levels are decidable. For example we do not know whether
it is decidable if a given CA is the composition of a left sweep and a right sweep.

It seems likely that the theory of sliders can be extended to shifts of finite
type. If X is a subshift, say that a homeomorphism χ : X → X is local if its
application modifies only a (uniformly) bounded set of coordinates. One can
define sliding applications of such homeomorphisms exactly as in the case of SZ.

Question 42. Let X ⊂ SZ be a transitive subshift of finite type. Which endo-
morphisms of X are defined by a sliding rule defined by a local homeomorphism?

In [2], block representations are obtained for cellular automata in one and two
dimensions, by considering the set of stairs of reversible cellular automata. Since
stairs play a fundamental role for sliders as well, it seems natural to attempt to
generalize our theory to higher dimensions.
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