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Abstract. A major problem in software engineering is assuring the cor-
rectness of a distributed system. A certifying distributed algorithm (CDA)
computes for its input-output pair (z,0) an additional witness w — a for-
mal argument for the correctness of (¢,0). Each CDA features a witness
predicate such that if the witness predicate holds for a triple (z, 0, w), the
input-output pair (i,0) is correct. An accompanying checker algorithm
decides the witness predicate. Consequently, a user of a CDA does not
have to trust the CDA but its checker algorithm. Usually, a checker is
simpler and its verification is feasible. To sum up, the idea of a CDA is to
adapt the underlying algorithm of a program at design-time such that it
verifies its own output at runtime. While certifying sequential algorithms
are well-established, there are open questions on how to apply certifica-
tion to distributed algorithms. In this paper, we discuss distributed check-
ing of a distributed witness; one challenge is that all parts of a distributed
witness have to be consistent with each other. Furthermore, we present a
method for formal instance verification (i.e. obtaining a machine-checked
proof that a particular input-output pair is correct), and implement the
method in a framework for the theorem prover CoQ.

Keywords: Certification - Distributed algorithm - Formal instance verification

1 Introduction

A major problem in software engineering is assuring the correctness of distributed
systems. A distributed system consist of computing components that can com-
municate with each other. An algorithm that is designed to run on a distributed
system is called a distributed algorithm. The correctness of a distributed algo-
rithm usually relies on subtle arguments in hand-written proofs. Consequently,
these proofs can easily be flawed. While complete formal verification is often too
costly, testing is not sufficient if the system is of critical importance. Runtime
verification tries to bridge this gap by being less costly than complete verification
while still using mathematical reasoning.

We investigate certifying distributed algorithms. A certifying distributed al-
gorithm (CDA) computes for its input-output pair (¢,0) additionally a witness



w — a formal argument for the correctness of the input-output pair (¢,0). Each
CDA features a witness predicate such that if the witness predicate holds for a
triple (¢, 0,w), the input-output pair (i,0) is correct. A “correct” CDA always
computes a witness such that the witness predicate holds. However, the idea
is that a user of a CDA does not have to trust the algorithm. That is why,
an accompanying checker algorithm decides the witness predicate at runtime.
The user of a CDA has to trust neither the implementation nor the algorithm
nor the execution. However, the user has to trust the checker to be sure that if
the checker accepts on (i, 0, w), the particular input-output pair (¢, 0) is correct.
Usually, a checker is simple and its verification feasible. By combining a CDA
with program verification (e.g. verifying the checker), we gain formal instance
correctness (i.e. a machine-checked proof that a particular input-output pair is
correct). To sum up, the idea of a CDA is to adapt the underlying algorithm of
a program at design-time such that it verifies its input-output pair at runtime.
Hence, using a CDA is a formal method and a runtime verification technique.

While certifying sequential algorithms are well-established [19], there are
open questions on how to apply certification to distributed algorithms [29]. In
particular, there are various ways of applying the concept of certification to dis-
tributed algorithms. For instance, one question is whether to verify the input-
output pair of a component or the distributed input-output pair of the system.
Another question is whether the witness is checked by a distributed or sequential
checker.

In this paper, we introduce a class of CDAs which features distributed check-
ing of a distributed witness that verifies the correctness of a distributed input-
output pair. Particularly, we discuss the challenge that all parts of a distributed
witness have to be consistent with each other (Section . Moreover, we present
a method for formal instance verification where we integrate the notion of con-
sistency. We implement the method in a framework for the theorem prover CoQ
such that a verified distributed checker can be deployed on a real distributed sys-
tem (Section . Our Coq formalization is on GITHUBEI Moreover, we discuss
related work (Section7 as well as our contributions and future work (Section.

2 Certifying Terminating Distributed Algorithms

A distributed algorithm is designed to run on a distributed system, e.g. a net-
work. We assume networks that are asynchronous, static and id-based. We model
the topology of a network as a connected undirected graph G = (V, E) with
V = {1,2,...,n}: a vertex represents a component and an edge a channel. A
distributed algorithm consists of an algorithm for each component such that all
components together solve one problem (e.g. leader election or coloring) [I7I25].
Components communicate with each other by sending messages via the channels.
A distributed algorithm can be either designed to terminate or to run continu-
ously (e.g. a communication protocol). In this paper, we focus on terminating
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distributed algorithms. Thus, we deal with verifying a distributed input-output
pair. In contrast, for a non-terminating algorithm, we would verify a behavior
during the execution.

The rest of this Section is organized as follows. We start by defining the
interface of a CDA. (Section . Moreover, we give a small example of a CDA
to illustrate our formalization (Section . Subsequently, we define a witness
predicate (Section and a consistent witness (Section [2.4). For distributed
checking of the witness predicate, we discuss how to decide a set of predicates for
each component (Section . Finally, we define a class of CDAs (Section [2.6))
and present the accompanying distributed checker of such a CDA (Section [2.7)).

2.1 Interface of a CDA

The input of a distributed algorithm is distributed over the network in the way
that each component gets a part of it. A terminating distributed algorithm com-
putes an output in the way that each component computes a part of it. We call
the algorithm of a component a sub-algorithm of the distributed algorithm, and
a component’s part of the (distributed) input/output its sub-input/sub-output.
As usual when considering distributed algorithms, we abstract from distributing
the input and collecting the sub-output.

Analogously to the computation of the output, a CDA additionally computes
a distributed witness. We then call the algorithm of a component a certifying
sub-algorithm of the CDA, and a component’s part of the witness its sub-witness.
We distinguish between a witness and a potential witness. While a witness is a
proper correctness argument, a potential witness is an artifact computed by an
untrusted algorithm. We formally define a witness in Section [2.3]

For our formalization, we assume that an input assigns values to variables,
and analogously, for an output and potential witness. A variable gets assigned
exactly one value for a sub-input. An input is composed of all sub-inputs, and
thus, in contrtast, the same variable may get assigned multiple values. That is
why, we distinguish two types of assignments for our formalization. For sets A
and B, a function f: A — B is an assignment of A in B. A relation r C A x B
is a weak assignment of A in B. We denote the set of all assignments of A in B
as [A] and the set of all weak assignments of A in B as [A] (assuming B from
the context).

Let I, O and W be finite sets of variables for the input, the output and the
potential witness, respectively. For readability, we use different sets even though
they do not have to be disjoint. We assume subsets I, C 1,0, COand W, C W
of variables for each component v € V' such that I = U,cy I, O = Uyey O, and
W = Uy,eyW,. Let Val be a set of values. For each v € V, let the sets of
assignments [I,], [O,] and [W,] in Val be the sets of sub-inputs, sub-outputs,
and sub-witnesses. Let the sets of weak assignments [I], [O] and [W] in Val be
the sets of inputs, outputs and potential witnesses. The following holds for an
input: if we have a sub-input ¢, € [I,] for each v € V, then the weak assignment
1 = Uyeviy is the according input. The same holds each for an output and a
potential witness.



In the sequel, we fix

— the graph G as the network topology,

— the set Val as a domain,

— the sets of weak assignments [I], [O] and [W] in Val as inputs, outputs
and potential witnesses,

— and the sets [I,], [O,] and [W,] in Val for each v € V as sub-inputs, sub-
outputs, and sub-witnesses of v.

Moreover, we assume the minimal sub-input of a component is its own ID and
the IDs of its neighbors in the network graph. Hence, the minimal input is the
network itself.

2.2 Example: Witness for a Bipartite Network

As an example, consider distributed bipartite testing [5] where the components
decide together whether the underlying network graph is bipartite (i.e. its ver-
tices can be divided into two partitions such that each edge has a vertex in each
partition). The input is the network itself presented by the sub-input of each
component: the component’s ID and the IDs of its neighbors in the network. In
the case of a bipartite network, the sub-output of each component is "true’. While
in the case of a non-bipartite network, some components have the sub-output
'false’ and the other components ’true’. In either case, the output is composed
of those sub-outputs.

We consider a certifying variant of distributed bipartite testing. It follows
from the definition of bipartiteness that a bipartition of the network’s compo-
nents is a witness for a network being bipartite. The witness is distributed in the
way that each component has a bipartition of its neighborhood as a sub-witness.
For the more sophisticated witness of a non-bipartite network, see [28].

For a better understanding of the formalization, consider the concrete net-
work shown in Figure Where e.g. the sub-input i3 € [I3] of component 3 assigns
the value {6} € P(V) to the variable nbrss € I5. In the remainder of this Section,
we refer to this example to illustrate concepts.

2.3 Witness Predicate

For the problem to be solve by a terminating distributed algorithm, we assume a
specification given as a precondition ¢ C [I] and a postcondition 3 C [I] x [O].
In the following, we fix the specification over input-output pairs as

Vi € [I],0 € [O] : ¥(i,0) V —¢(i)

We define a witness predicate over inputs, outputs and potential witnesses for
the ¢-1 specification, and define the notion of a witness:

Definition 1 (witness predicate, witness, complete).



network: G: 1 2 3 sub-input, sub-output,

G=(V,E) sub-witness for...
3l

CDA interface: is={(ids,3),(nbrs3,{6})}
Val=P(V)u{true,false} o;={(bipartite,true)}

u{black,white} ws={(colors,black), (colorg,white)}
I={id,|vEV}u{nbrs,|vEV}
O={bipartite} .6
W={color,|veV} ig={(idg,6),(nbrsg,{2,3})}
for all veV: 4 5 6 og={(bipartite,true)}
I,={id,}u{nbrs,} we={(colorg,white), (color,,black),
O,={bipartite} (colors,black)}

W,={color,}u{color,|u is a neighbor of v}

Fig. 1. Example of a bipartite network with the CDA interface and the sub-input,
sub-output and sub-witness of components 3 and 6. P(V) denotes the power set of V.

(i) A predicate I' C [I] x [O] x [W] with the witness property
Vi € [I],0 € [O],w € [W] : I'(i,0,w) — (¥(i,0) V = (7))

s a witness predicate for a ¢-i specification.
(i7) If (i,0,w) € I', w is a witness for the correctness of (i,0).
(iii) I' is a complete witness predicate if additionally holds

Vi € [I],0 € [O],w € [W] : I'(,0,w) +— ((i,0) V =(7))

Note that an algorithm computes a potential witness w since it may be that
(i,0,w) ¢ I'. However, if clear from context, we simply say witness from now on.
The witness predicate of the bipartite example states that the witness is a
bipartition in the network. Its witness property follows by the definition of bipar-
titeness. Since the witness predicate holds with a biimplication, it is complete.

2.4 Consistency of a Distributed Witness

In the bipartite example, a sub-witness contains the colors of the neighbours — a
bipartition of the neighborhood. Note that the sub-witnesses of neighbors have
some common variables. In the example shown in Figure |1} the components 3
and 6 have the variable colors in common. Consequently, in order to form a
bipartition in the network, the common variables have to be consistent in their
assignment.

In the general case, all sub-witnesses have to be consistent with each other
in order to form a proper argument for the correctness of an input-output pair.

Definition 2 (consistent). Let w € [W] be a witness.

(i) For u,v € V: sub-witnesses w, C w and w, C w are counsistent if and only
if for all a € Wy, N W, holds wy(a) = w,(a).
(i) w is consistent if and only if w € [W].



In the example of bipartite testing (Figure , the sub-witnesses of components
3 and 6 have common variables: W3 N Wg = {colors, colorg}. Since ws(colors) =
black = wg(colors) and ws(colorg) = white = we(colorg), the sub-witnesses ws
and wg are consistent.

A witness is trivially consistent if for all u,v € V pairwise holds W, "W, = 0.
However, having a trivially consistent witness is often only possible by having a
trivial distribution of the witness, since the witness is basically centralized, i.e.
W, = W for one v € V and holds W, = () for all other u € V. For instance, in
the bipartite example, one component v € V' has to have the whole bipartition
of the network and network topology as a sub-witness then. Assume there is
one other component u that has a part of the bipartition and the topology as
its sub-witness. Then the two bipartitions presented in w, and w, have to be
related to each other. Otherwise, the two bipartitions together may not form a
bipartition. Hence, W, NW,, # () — a contradiction to the witness being trivially
consistent. As a consequence, there are usually some components u,v € V with
common variables in their sub-witnesses, i.e. W,, N W, # (.

Lemma 1. A witness is consistent if and only if all of its sub-witnesses are
pairwise consistent.

Proof. Let w € [W] be a consistent witness. Then for all a € W there is a unique
value w(a). Thus, for all u,v € V with w,,,w, € w holds wy(a) = w(a) = wy(a)
if a € W,, N W,,. Consequently, all sub-witnesses are pairwise consistent.

For the other direction, assume all sub-witnesses of w € [W] are pairwise
consistent. For all a € W, there is a at least one component, w.l.o.g. v € V, with
a € W, since W = U,cyW,,. For every component u € V with a € W, holds
wy(a) = wy(a). Hence, w € [W] is consistent.

The need for consistency arises because the witness is distributed. Hence,
certifying sequential algorithms do not have to deal with consistency (c.f. [19]).
As a consequence, checking becomes more challenging for certifying distributed
algorithms. To avoid checking consistency of all sub-witnesses pairwise, we re-
strict ourselves to a connected witness. We define a connected witness over all
a-components:

Definition 3 (a-component). If a € W, for a component v € V, then v is an
a-component.

Definition 4 (connected). A witness w € [W] is connected if for alla € W,
the sub-graph induced by the the a-components is connected.

In the example shown in Figure [I} the witness is connected. For instance, the
components 2, 3 and 6 are the colorg-components and they induce a connected
sub-graph.

As an example for a witness that is not connected, assume a bipartite net-
work where components belonging to the same partition solve one task together.
Moreover, assume a part of this task is agreeing on some choice with one consent



(i.e. a consensus problem [I7]). In order to verify that all components of one par-
tition agree on their choice, the sub-witness of a component consists of its own
choice and of the choices of the components in 1-hop-distance — components that
share a neighbor are in 1-hop-distance. For example in Figure [1} component 3
is in 1-hop-distance of component 2. The components in 1-hop-distance always
belong to the same partition. The witness predicate is satisfied if each compo-
nent agrees on its choice with the components in a 1-hop-distance. The witness
is not connected since only components of the same partition share variables in
their sub-witnesses, and therefore do not induce a connected subgraph.

Lemma 2. Let I' C [I] x [O] x [W] be a predicate. For every triple (i,0,w) € I'
where w is not connected, there is a triple (i,0,w) € I where w’ is connected.

Proof. Since w € [W] is not connected, there are components u,v € V with
a € W, N W, such that there is no path p = (u, 21,2, ..., s, v) between u and
v with all components x; on the path having a € W, for [ =1,2,..,m.

We construct a connected witness w’ from w. We add for each such outlined
pair of components u,v on one path between u and v the missing variables a €
W.NW,. W.lo.g. let this path be p = (u, 21, 22, ..., Zm, v). For each component
xy for [ =1,2,...,mis W, := W, U{a}. It follows that w’ is connected.

To ensure (i,0,w’) € I', we construct the sub-witnesses wj, by adding the
assignments of u (or analogously v): wy, = ws, U {(a,wy(a))|la € W  \ Wy}
foralll =1,2,...,m. Since w and w’ are the union of the sub-witnesses, it holds
w = w’, and therefore (i,0,w’) € I'.

For a connected witness, it is sufficient to check the consistency in each
neighborhood.

Definition 5 (consistent neighborhood). Let w € [W] be a witness. v € V
has a consistent neighborhood if and only if for all neighbors u of v holds the
sub-witnesses w, C w and w, C w are consistent.

Theorem 1. Let w € [W] be a connected witness. w is consistent if and only
if the neighborhood is consistent for all v € V.

Proof. If w is consistent, then it follows from Lemmall] that all sub-witnesses of
w are pairwise consistent. Thus, for each v € V' the neighborhood is consistent.

For the other direction, let u,v € V with a € W,, N W,,. From the definition
of a connected witness follows, there exists a path between the a-components
u and v over a-components. Since on this path all neighboring components are
consistent, it follows by transitivity that « and v are consistent. Thus, the witness
w is consistent.

For some CDAs, a sub-witness of a component v holds variables of the sub-
output of a component w, c.f. [30/2928]. Revisit the example where the com-
ponents of one partition in a bipartite network solve a consensus problem. The
sub-output of a component is its own choice. Part of the sub-witness of a compo-
nent is the choices of the components in 1-hop-distance. Hence, the sub-witness of



a component consists partly of sub-outputs of other components. For the shared
variables, the sub-outputs and sub-witnesses have to be consistent in their as-
signments. Since we do not want to check the consistency between sub-witnesses
and sub-outputs or sub-inputs, we define a complete witness:

Definition 6 (complete). A witness w € [W] is complete if for all u,v € V
and all a € Wy, holds if a € I, U O, then a € W,,.

Note that if for all v € V holds i, € w, and o, C w,, then the witness is
complete.

2.5 Distributable Witness Predicate

In Section we present a distributed checker that decides the witness pred-
icate. However, the Definition [I] of the witness predicate is defined over the
input, output and potential witness of a CDA and does not take into account
sub-inputs, sub-outputs and sub-witnesses of the components. For distributed
checking of the witness predicate, we define predicates that are decided for
each component over the sub-input, sub-output and sub-witness, and are then
combined to decide the witness predicate (c.f. [28]). A witness predicate is dis-
tributable in a network if some predicates hold for all components while others
hold for at least one:

Definition 7 (distributable, completely).

(i) Let i € [I] be an input and its sub-inputs i, € [I] for v € V such that
i = Upeviy, let o € [O] be an output and its sub-outputs o, € [O] for
v € V such that o = Uyevo,, and let w € [W] be a potential witness and
its sub-witnesses w, € [W] for v € V such that w = Uyeyw,. A predicate
I C[I] x [O] x [W] is distributable if one of the following holds:
1. I is universally distributable with a predicate v C [I] x [O] x [W] if:
(Viy € [I], 00 € [Oy), wy € [Wy] : Y(in, 0y, wy)) —> I'(i,0,w).
2. I' is existentially distributable with a predicate v C [I] x [O] x [W] if:
(Fiy € [I], 00 € [Oy], wy € [Wy] : (iw, 0y, wy)) — (3,0, w).
3. There exist distributable predicates Iy, I5 such that
(I (i,0,w) A Is(i,0,w)) — I'(i,0,w).
4. There exist distributable predicates I'y, I's such that
(I (3, 0,w) V I3, 0,w)) — I'(i,0,w).
(ii) If the implications of - |4 are also bitmplications, then I' is completely
distributable.

The predicates I7 and I3 “divide” the witness predicate in universally or ex-
istentially distributable predicates that are linked together by a conjunction or
disjunction. We call the predicates I and I% the distribution-predicates of I,
and a predicate v a sub-predicate of a universally or existentially distributable
predicate.

Revisit the example of bipartite testing (Section , the witness predicate
holds if the witness is a bipartition of the network. This witness predicate is



universally distributable with a distribution-predicate that is satisfied if there is
a bipartition of the neighborhood for all components, and a sub-predicate stating
that the sub-witness of component is a bipartition of the neighborhood. For an
example of a not simply universally distributable witness predicate, see [28].

Note that not every predicate is distributable since we allow only conjunction
and disjunction of distributable predicates (see rules[3[and . As a consequence,
we cannot form a nesting of quantifiers for instance. However, the chosen restric-
tions enable us to decide the sub-predicates y for each component independently,
and to evaluate distribution-predicates in the whole network by using a spanning
tree (c.f. Section . A more complex structure than a spanning tree would be
needed to evaluate nested quantification in the network.

2.6 A Class of Certifying Distributed Algorithms

We define a class of certifying distributed algorithm that terminate and verify
their distributed input-output pair at runtime by a distributed witness such that
the distributable witness predicate is decided by a distributed checker:

Definition 8 (Certifying Distributed Algorithm). A certifying distributed
algorithm solving a problem specified by a ¢-1p specification computes for each
input i € [I] an output o € [O], and a witness w € [W] in the way that each
component v € V' computes for a sub-input i, € [I], a sub-output o, € [O] and
a sub-witness w, € [W] such that i = Uyeyiy, 0 = Uyey 0, and w = Uycywy,.
Let I' C [I] x [O] x [W] be a complete witness predicate for a ¢-1 specification.
The following holds:

(i) (i,0,w) €I,
(i) I' is completely distributable,
(i) w is consistent,
(iv) w is complete with i, C w, and o, C w, for allv €V , and
(v) w is connected.

From (i) follows the correctness of the input-output pair (i,0). With (ii), we
enable distributed checking of I'. Usually, there are some components u,v € V'
with common variables in their sub-witnesses, i.e. W,, N W, # 0. Hence, the
distributed witness has to be consistent as stated in (iii). By having a complete
and connected witness as stated in (iv) and (v), we enable distributed checking
of the consistency of the witness. Note that a connected witness is no restriction
on the kind of possible correctness arguments following from Lemma

Remark 1. For every distributed algorithm solving a problem specified by ¢ and
1, there is a certifying variant belonging to the outlined class. A terminating
distributed algorithm can always compute a witness for a correct input-output
pair, e.g. the history of computation and communication for each component.
The witness predicate then is satisfied if the computation and communication is
in accordance with the algorithm.



However, proving the witness property then becomes complete verification of
the distributed algorithm. Hence, a challenge is to find a “good” witness (c.f. [19]
for certifying sequential algorithms). Finding a witness is a creative task just like
developing an algorithm. However, design patterns such as using characterizing
theorems or a spanning tree help.

There are two perspectives on a CDA: the one of the developer and the one
of the user. The developer proves the correctness of his/her algorithm. By the
definition of a CDA, the developer has for instance to prove that the algorithm
computes a witness for all input-output pairs. For the user, however, it is enough
to be convinced that his/her particular input-output pair is correct. To this end,
the user has to understand the witness property of the witness predicate and to
understand that the witness predicate is distributable. The user does not have
to understand that the witness predicate is complete or that it is completely
distributable. If the witness predicate is satisfied, the particular input-output
pair is correct; if not, the output or the witness is not correct. Consequently,
using a CDA comes at the expense of incomplete correctness.

Since for a satisfied witness predicate, the user still has to trust in the witness
property, we discuss machine-checked proofs for a reduced trust base in Section 3}

2.7 Distributed Checker of a Distributed Witness

Let I be a distributable witness predicate with distribution-predicates I'1, I'5, .., I';
and according sub-predicates v;, j = 1,2, .., k. For distributed checking of I', each
component has a sub-checker that checks the completeness of its sub-witness, the
consistency of the sub-witnesses in the neighborhood, decides the sub-predicates
for its component, and plays its part in checking the connectivity of the wit-
ness, and in evaluating the witness predicate. We assume a sub-checker gets a
trusted copy of the sub-input (c.f. [I9]). After termination is detected (e.g. as
in [25]), a sub-checker receives the sub-output and sub-witness of its component,
and starts checking. We assume a spanning tree as a communication structure
in the network. This spanning tree is either reused or computed as discussed in
Section [Bl

Completeness. For each v € V| let the predicate comp, denote whether w,
is complete: i,, C w,, and 0,, C w,,. The sub-checker of v decides comp,, (i, 0y, w,).

Connectivity. For each variable a € W in each connected subgraph of a-
components, the components select the a-component with the smallest ID as a
leader: First, each component v suggests itself as a leader for all its variables
a € W, to its neighbors. If a component receives a message containing a sug-
gestion of a smaller leader for one of its variables, it updates the leader and
forwards the message to all neighbors. After detection of termination, each com-
ponent v holds a list associating the according leader ID with each variable:
((a1,v1), (az,v2), ..., (@m, Um)) with a; € W, v; € V and j = 1,2,...,m. Note
that a component v does not forward a message if it receives a suggestion for a
leader of a variable a ¢ W,,. Thus, if there are two different leaders for the same
variable @ in the network, then the subgraph of a-components is unconnected
and thereby the witness is not connected. Deciding whether there are multiple



leaders for one for one variable can be done by using a spanning tree. Since we
use a spanning tree as well for deciding the witness predicate, we describe this
step as part of the evaluation.

Consistency. For each v € V, let the predicate cons, C [W,] x [Wy1] X
[Waa] X ... x [Wy] denote whether the neighborhood of v is consistent with
neighbors ul,u2,...,ul € V. We assume the sub-checkers of neighbors can com-
municate with each other. It follows from Theorem that the consistency of
a connected witness can be decided by a distributed algorithm where a compo-
nent only once exchanges messages with its neighbors. Each sub-checker sends
the sub-witness of its component to the neighboring sub-checkers. Subsequently,
a sub-checker of each component v compares the sub-witness w, with each
of the received sub-witnesses: If for all a € W, N Wy;, wy(a) = wy;(a), then
CONSy (Wy, W1, Wy2, - Wy ) holds.

Sub-Predicates. Each sub-checker of a component v € V' decides each sub-
predicate 1, ¥2,..., Yk for the triple (i,,0,,w,). Finally, the sub-checker holds a
k-tuple containing the according evaluated sub-predicates.

communication communication
with neighbors with neighboring
Uy,..., u sub-checkers

S 1 P T N

f ; certifying output o, ;
input i, subfy g output oy o “ g Y2(iv,0,,W,),

algorithm Sub- > Checker 1 )
witness w, Yictlu, Oy, W)y
v * comp,(iy,0y,Wy),
cons,(Wy,Wy1,...,Wy),

((@y,va),(a2,v2),....(@m:Vim)))

Fig. 2. A certifying sub-algorithm of v € V' and its sub-checker.

Evaluation. Figure [2 shows a component with its sub-checker: Each sub-
checker of a component v with neighbors ul,u2,...,ul € V holds a k + 3-tuple
consisting of k evaluated predicates, the evaluated predicates comp, and cons,,
and the list of associated leaders for each a € w,. To evaluate the witness pred-
icate, the sub-checkers combine their tuples by using the rooted spanning tree:
Starting by the leaves, each sub-checker gets the tuple of each child and com-
bines it with its own tuple: if the j-th sub-predicate is universally distributable,
then the j-th position of both tuples is combined by logical conjunction; other-
wise the j-th sub-predicate is existentially distributable and logical disjunction
is used instead. Let the predicate Comp denote whether each sub-witness is
complete and the predicate Cons denote whether a witness w is consistent in
the network; hence, both predicates are treated as universally distributable. For
the connectivity, each component compares the chosen leaders of itself and its
children. If a variable has multiple leaders, the component sends ’false’ to its par-
ent otherwise a list with the so far chosen leaders. If a component receives false
from a child, it just sends ’false’ to its parent. Finally, the root creates the tu-



ple (I (i, 0,w), I'5(i,0,w), .., [k (i, 0,w), Comp(w), Cons(w), Con(w)) where the
predicate C'on is fulfilled if there are no multiple leaders for a variable — hence
the witness is connected. The root evaluates the witness predicate by combining
the distribution-predicates accordingly. The evaluation terminates when root re-
ceives a message from all its children; if the witness is complete, connected and
consistent, and the witness predicate satisfied, the root accepts. All sub-checkers
together build a distributed checker of I'. From the definition of a CDA and the
outlined distributed checker follows: if the distributed checker accepts on a triple

(7,0,w), then (i,0) € ¢ or (i) & ¢.

3 Framework: Formal Instance Verification

We present a method for formal instance verification for CDAs (c.f. [29]). While
formal verification establishes the correctness for every input-output pair at
design-time, formal instance verification establishes the correctness for a par-
ticular input-output pair at runtime. In analogy to formal verification, formal
instance verification requires a machine-checked proof. Hence, we have formal
instance correctness for a particular input-output pair if there is a machine-
checked proof for the correctness of this pair. While formal verification is often
too costly, formal instance verification is often feasible but at the expense of not
being complete.

To achieve formal instance correctness, we combine CDAs with theorem prov-
ing and program verification. We give an overview of the proof obligations to
solve (Section . We implement the method in a framework for the proof
assistant CoQ (Section [3.2).

3.1 Proof Obligations for Formal Instance Verification

Using a CDA comes with a trust base: for example we have to trust that the
witness predicate has the witness property or that the distributed checker algo-
rithm is correct. According proofs have to be provided by the developer of the
CDA but usually only exist on paper. Even if a distributed checker algorithm
is correct on paper, the implemented distributed checker program could still be
flawed. Assume a CDA with a witness predicate I, we have to solve the following
proof obligations (PO) to obtain formal instance correctness:

PO I The implemented termination detection is correct.
PO II Witness predicate I" has the following properties:
(i) I" has the witness property (c.f. Section [2.3))
(ii) I is distributable (c.f. Section [2.5).
PO III The Theorem (1] for distributed checking of consistency (c.f. Sec-
tion .
PO IV The implemented distributed checker is correct (c.f. Section [2.7)):
(i) Each sub-checker checks if its sub-witness is complete.
(ii) Each sub-checker takes part in checking if the witness is connected.



(iii) Each sub-checker checks the consistency sub-witnesses in the neigh-
borhood.

(iv) Each sub-checker decides the sub-predicates for its component.
(v) Each sub-checker takes part in evaluation of I'.

By solving these proof obligations, it follows: If the distributed checker accepts
on an input, output and witness, we have a machine-checked proof that the
particular input-output pair is correct. Note that the computation of the output
is not mentioned in the proof obligations; the CDA is treated as a black box.

According to the concept of certifying algorithms the verification of the
checker should be easier than verifying the actual algorithm. We note that for
our class of CDA the checker has to perform five tasks making it seemingly com-
plex. Note that, except for PO IV(iv), each task only needs to be verified once
for the outlined class of CDA. As a consequence, the verification effort for each
certifying algorithm is the same in the distributed setting as in the sequential
setting.

3.2 Overview of the Framework

We use the proof assistant CoqQ [14] for theorem proving and program verifi-
cation. CoqQ provides a higher-order logic, a programming language, and some
proof automations. Even though CoQ’s programming language is not turing-
complete (since every program halts), COQ implements a mechanism to extract
programs to functional programming languages like OCAML. To model a net-
work in CoQ, we use the graph library GRAPH BAsICS [§] for the topology, and
the framework VERDI [31] for the communication. By using VERDI, we extract
a distributed checker that can be deployed on a real network.

The framework is illustrated in Figure [3] The network model and the CDA
model are fundamental for all proof obligations. The network model consists of
a formalization of the network’s topology and communication. The CDA model
consists of the CDA Interface — a formalization of the sub-input/output/witness
and witness-predicate of a particular CDA — and a verified termination detection
algorithm. We use theorem proving to show for the witness predicate I' that it
has the witness property and that it is distributable (PO II) as well as for the
proof of Theorem [1] (PO III). We use program verification for the termination
detection algorithm (PO I) as well as for the distributed checker (PO IV). Some
proof obligations have to be proven for each CDA (indicated by an arrow), others
have to be proven only once for the outlined class of CDAs. In this paper, we
focus on the latter ones. Note that computation of a spanning tree is an implicit
part of termination detection (PO I) and evaluation PO IV(v). Hence, it makes
sense to verify the computation once and then to reuse the spanning tree. Verified
CoQ programs can be extracted to verified OCAML programs.

We formalized the network model and CDA interface, and solved the proof
obligations that deal with the consistency of the witness (PO IIT and PO IV (iii)).
We formalized the notion of consistency and solved PO III (proof of Theorem ()
in CoQ. The formalization follows the definitions and the proof in Section [2.3]
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Fig. 3. A Coq framework for formal instance verification using CDAs.

tightly. We forgo giving details in this paper. In the remainder of this section,
we explain the network model and CDA interface (Section [3.3]). We discuss the
verification of the distributed consistency check (Section and describe its
extraction such that it runs on a real network (Section [3.5). PO IV (i), PO IV (ii),
PO IV(v) follow the same approach as the distributed consistency check and are
work-in-progress.

3.3 Network Model and CDA Interface

Topology. Since GRAPHBASICS offers a connected graph, the representation of
a network is straightforward. We assume that a component and its checker are
two logical components which are co-located on one physical component. A vertex
of the connected graph Component represents the physical component.
Communication. We model the communication between a component and
its sub-checker, and between sub-checkers. To implement the communication of
the distributed checker, we specify the following definitions given by VERDI: The
type of a sub-checker (Name), the set of sub-checkers (Nodes), the state each
sub-checker maintains (Data) and a function to initialize this state (initData).
VERDI distinguishes between internal (Input and Output) and external mes-
sages (Msg): While internal messages are exchanged between logical components
running on the same physical component, external messages are exchanged across
the network. We use internal messages for the communication between a compo-
nent and its sub-checker, and external messages for the communication between
sub-checkers. For the behaviour of a sub-checker, we implement the functions
InputHandler and NetHandler. The InputHandler runs if a sub-checker
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receives an internal message and the (NetHandler) runs if a sub-checker re-
ceives an external message. For our network model, we assume reliable commu-
nication.

Inductive Name := Checker : Component -> Name.
Definition Nodes : list Name := (map Checker (CV_list v a g)).
Inductive Msg := Checkermessage : Certificate -> Msg.

Inductive Input : Type :=
| Checkerknowledge —-> Input
| Checkerinput -> Input

Record Data := mkDataf{
myCertificate : Certificate;
variables: list A;
nbrslist : list Component;
consistent : bool ;
initialized : bool;

(...)
}.

Definition initData (n: Name) := mkData
[1 [] (neighbors g (name_component n)) false false (...).

Definition InputHandler (me : Name) (c : Input) (state: Data) :=
match me,c with
| Checker x, Checkerknowledge => if (initialized == false) then
variables := Checkerknowledge. (variables)
(...)
| Checker x, Checkerinput => if (initialized == false) then
myCertificate := Checkerinput. (certificate)
sendToAllNeighbors (mycertificate)
(...)

Definition NetHandler (me : Name) (src: Name) (m : Msg) (state: Data) :=
match m with

| Checkermessage certificate => if (initialized == true) then
nbrslist := remove src state. (nbrslist)
consistent := state. (consistent) &&

Consistency_Nbr (certificate)

Fig. 4. Outline of the implementation of the consistency check of a sub-checker.

Combining Verdi and Graph Basics. VERDI does not offer to specify the
topology of a network. However, to reason about properties such as consistency
in a neighborhood, we have to specify the underlying topology of a network. That
is why, we combine VERDI with GRAPH Basics. To this end, we instantiate the
set of Nodes in the network with the vertices of the topology graph.

CDA Interface. We abstract from the actual computation of a CDA. How-
ever, as a sub-checker needs to process sub-input, sub-output and sub-witness,
we have to formalize them. The CDA interface consists of a formalization of
the sub-input, sub-witness and sub-output as well as the structure of the wit-
ness predicate (i.e. if the distribution-predicates of the witness predicate are
universally or existentially distributable). The latter is used by a sub-checker to
perform the distributed evaluation of the witness predicate.



Initialization of a Sub-Checker. A sub-checker needs knowledge about
its neighborhood; we implement the initData function (Figure [4]1. 19) such
that each sub-checker is initialized with the IDs of its neighbors. Furthermore a
sub-checker is initialized with the CDA Interface. We divide the CDA interface
into two parts: The first part is independent from the actual computation of the
CDA and contains the minimal sub-input and structure of the witness predicate.
To this end, we define the internal message Checkerknowledge. The second
part contains additional sub-input, the sub-output and sub-witness. To this end,
we define the internal message Checkerinput. We define the InputHandler
of a sub-checker such that it initializes the sub-checker’s state with the values
obtained from Checkerknowledge and Checkerinput (Figure[d1. 20-28).

3.4 Checking Consistency in the Neighborhood

To check the consistency of a witness, each sub-checker checks the consistency
in its neighborhood (Theorem [I)). In our implementation the state of each sub-
checker contains a list of its neighbors (nbrslist). We use nbrslist to keep
track of the messages received from the neighbors. Additionally, the state con-
tains the boolean initialized which indicates if the sub-checker is initialized
as described in the previous section, and the boolean consistent which in-
dicates if the sub-witness of the component is consistent with all sub-witnesses
received so far (Figure [4]1. 10-17). When a sub-checker receives a sub-witness
from a neighbor, it removes the neighbor from its nbrslist. As a result, if
nbrslist is empty, a sub-checker received a sub-witness from each of its neigh-
boring sub-checkers. Subsequently, a sub-checker calls the function Consis-
tency_Nbr which takes two sub-witnesses as an input and returns true if they
are consistent. If Consistency_Nbr returns true, the checker sets consis—
tent to true. After being set to false once, the value of consistent cannot
become true again. If the consistency check fails for at least one neighborhood,
the witness is inconsistent.

Verification of the Consistency Check. For the verification of the consis-
tency check, we show that if the consistency check succeeds, the neighborhood of
each sub-checker is consistent. After initialization, if a sub-checker s received and
processed a sub-witness from each neighboring sub-checker and consistent is
true, consistency in the neighborhood of s holds:

Theorem 2 (in Coq). V s, initialized(s) A nbrslist(s) = empty
N consistent (s) — Neighborhood Consistency (s)

We prove this theorem in the following steps using CoQ. First, we show that for
all reachable network states that the following lemmas hold for each sub-checker
s

Lemma 3 (in Coq). All components in nbrslist (s) are neighbors of s.

Lemma 4 (in Coq). From initialized(s) follows that, if nbrslist (s)
is empty, a message was received from each neighbor of s.



Lemma 5 (in Coq). From initialized(s) follows that, if consistent (s)
is true, the witness is consistent with each witness received so far.

We prove the Lemmas (1)-(3) by inductive state invariants [31]. A property is an
inductive state invariant if it holds in the initial state (defined by the initState
function — Figure 1. 19) and each state reachable by processing a message. Note
that Lemma (2) and (3) rely on the value of initialized which has nothing to
do with VERDI’'s initState function but with the initialization of our network
model described in the previous section. As a next step, we verify the function
Consistency Nbr by proving that it returns true for two sub-witnesses if and
only if the sub-witnesses are consistent. Finally, we show that the Lemmas (1)-
(3) and the correctness of the function Consistency Nbr together imply the
correctness of Theorem 21

3.5 Extraction of a Distributed Checker

To run our distributed checker on a real network we extract it to OCAML and link
it with the VERDI SHIM — a small library which e.g. provides network primitives.
In order to extract our distributed checker we have to provide a specific topology
and instantiate the types of the CDA interface accordingly.

The trusted computing base of a distributed checker consists of the following:
CoQ’s proof checker and extraction mechanism — both proven on paper, the
OcAML compiler — widely used, VERDI’s SHIM and the underlying operating
system.

4 Related Work

Literature offers numerous certifying algorithms [19], [20], [27], [4], [6], [15], [13],
[12], [18], [23], [11], [22], [3], [10], [2], [1], [24], [9]. A theory of certifying algo-
rithms and further reading is given in [19]. A formal instance verification method
is discussed in [26]. All this work is on sequential algorithms. To the best of our
knowledge, there is little research on certifying distributed algorithms. A certi-
fying variant of a routing algorithm was presented in [30], a discussion on how
to distribute a witness predicate over a network in [28], and a method for formal
instance verification in [29]. Moreover, CDAs share similarities to self-stabilizing
algorithms [7], proof labeling schemes [16], and decentralized runtime verifica-
tion [21].

In this paper, we built up on previous work [28] and [29]. We integrated the
idea of a consistent witness, and focused on distributed checking of consistency
and the witness predicate in contrast to [28]. Moreover, we discussed proof obli-
gations that have to be proven only once for the outlined class of CDAs while
in [29] one particular case study is discussed. Moreover, we integrated VERDI for
verification of a distributed program. As a consequence, the verified distributed
checker runs on a real network in contrast to [29].



5 Discussion

We considered CDAs which verify an input-output pair at runtime. There are
many open questions on how to apply the concept of certification to distributed
algorithms. We focused on the distributed checking of a distributed witness. In
order to form a valid correctness argument a distributed witness has to be con-
sistent. By a restriction to comnected witnesses, consistency can be checked in
the neighborhoods (Theorem ([])). We presented a method for formal instance
verification, and implemented this method in a framework for CoQ. Moreover,
we discussed a verified implementation of the consistency check as an exam-
ple of a task of the distributed checker. We showed how to deploy the verified
distributed checker on a real network.

In the discussed framework, some proof obligations require manual work for
each CDA (Section [3)). For the proof obligations PO II(i) and PO II(ii) we have
to find a proof. Automatic theorem provers can help to partly automate this
undecidable task. However, using different tools creates an overhead: We have
to formalize a proof obligation for different tools, and to show that the differ-
ent formalizations are equivalent. Moreover, the tools add up on the trust base
(c.f [26]). For the proof obligation PO IV (iv) we have to verify the correctness
of the checkers task to decide the sub-predicates. By restricting to simple sub-
predicates, i.e. sub-predicates that can be expressed as a propositional logic for-
mula, we could use a verified program that gets a sub-predicate and generates a
decision procedure correct by construction. By implementing and verifying such
a program in CoOQ, we could easily integrate it to the presented framework.

We focused on terminating distributed algorithms. However, some distributed
algorithms are intended to run continuously such as communication protocols.
On a synchronous network, each round could additionally consist of a checking
phase. By restricting to a universally distributable witness predicate, a sub-
checker can raise an alarm if a sub-predicate does not hold. If not restricting
to universally distributable witness predicates, the overhead of the evaluation
of the witness predicate could be reduced by evaluating each k rounds. As a
consequence, a bug would be discovered with a possible delay.

We focused on networks. However, for shared memory systems, the consis-
tency of a distributed witness could be guaranteed by sharing the according
variables between neighbors. The witness still has to be connected however. An
alternative is to have sub-checkers that act like an interface of its component.
That way, a sub-checker could check whether all messages sent are consistent
with the internal state of its component, that its component does not corrupt
messages when forwarding them, and that its component reads out a message
properly. By that, the computed witness would be consistent. However, an over-
head would be created during the computation.
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