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Abstract. Mobile applications tend to ask for users’ location in order to 

improve the service they provide. However, aside from increasing their 

service utility, they may also store these data, analyze them or share them 

with external parties. These privacy threats for users are a hot topic of 

research, leading to the development of so called Location Privacy 

Protection Mechanisms. LPPMs often are configurable algorithms that 

enable the tuning of the privacy protection they provide and thus the 

leveraging of the service utility. However, they usually do not provide ways 

to measure the achieved privacy in practice for all users of mobile devices, 

and even less clues on how a given configuration will impact privacy of the 

data given the specificities of everyone’s mobility. Moreover, as most 

Location Based Services require the user position in real time, these 

measures and predictions should be achieved in real time. In this paper we 

present a metric to evaluate privacy of obfuscated data based on users’ 

points of interest as well as a predictive model of the impact of a LPPM on 

these measure; both working in a real time fashion. The evaluation of the 

paper’s contributions is done using the state of the art LPPM Geo-I on 

synthetic mobility data generated to be representative of real-life users’ 

movements. Results highlight the relevance of the metric to capture privacy, 

the fitting of the model to experimental data, and the feasibility of the on-

line mechanisms due to their low computing complexity. 

Keywords: Location Privacy, Control of Computing Systems, Modeling, Location 

Based Services, Points of Interest 

Introduction 

The democratization of mobile devices has fostered the development of services 
using the users’ location data to provide or improve a service. Everyday examples 

of Location Based Services (LBS) are navigation applications, recommendation 
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systems or fitness tracking apps. LBSs provide users with always more 
personalized and convenient services but at the cost of personal data publishing. 
Service providers, or any third party attackers, take advantage of these data to 

derive always more informations about users. These habits are threats against 
users privacy, as mobility information are highly sensitive data that can, once 

processed, lead to the inference of users living and working place [8], relatives [2], 
political or religious preferences [6], among many other. The foundation stone of 
advanced inferences are often users’ Points Of Interest (POIs), that are places 

where the user stayed a significant amount of time. POIs, defined by a diameter (in 
meter) and a duration (in seconds), delimit a zone where and when the user were 

confined. The protection of POIs will be considered in the remaining of the article 
as the key challenge for privacy protection [17,8,3]. 

In order to provide ways to protect users’ privacy, Location Privacy Protection 
Mechanisms (LPPMs) have been developed. This terminology gathers all 

algorithms that modifies location data in order to improve the users’ privacy. 
There is a high diversity among LPPMs: some are at the user level, other require 

trusted servers; some are on-line mechanisms, others can only be applied on a 
dataset; etc. Most of them are configurable algorithms with parameters that enable 
to leverage their action, i.e. to enforce more or less privacy on the data. This 

property is highly valuable considering that privacy often comes at the cost of a 
reduction of the service utility. Hence, a configurable LPPM enable to tune the 
privacy to utility trade-off. 

However, nowadays LPPMs face some limitations. On one hand, the notion of 
privacy is often addressed as high level, theoretical principles and might lack of 
practical meaning for average user of mobile devices. It is thus challenging to asses 

the impact of an LPPM on the privacy of data for a non expert user. On the other 
hand, the parametrization of LPPMs makes them tricky to use as the user is not 

able to predict what will be the impact of a given parametrization on her privacy. 
Moreover, location data are highly dynamic, meaning that a location record may 
be useful at a given time while it is of none interest few minutes later. Similarly, if 

a user start to obfuscate her data at a given point, it may take some time before 
she is actually protected, due to memory of the potential attacker. Thus the 
measures and predictions must be real time processes. 

This paper presents a control-theoric approach to solve these challenges. 

Control theory is a mathematical framework that deals with dynamic systems and 
measures; and enables modeling and configuration (i.e. control) of systems. In this 

location privacy context, control methodology will be used to provide a on-line 
prediction algorithm that link the configuration of a LPPM to the privacy of a user 
taking into account her current mobility pattern. Evaluation of this approach is 

carried out using synthetic mobility data reflecting mobility data characteristics 
for a well known LPPM from the state of the art, Geo- 
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Indistinguishability [1]. 

The remaining of the article is organized as follows: first the location data and 
LPPMs are introduced and the problem is motivated in Section 2. Then the privacy 
metric is defined and illustrated in Section 3. Section 4 presents the modeling 

strategy with both a static and dynamic study. Evaluation of both the metric and 
the modeling ends the paper in Section 5, prior to conclusion and perspective of 

this work. 

Background & Motivation 

The mechanisms under study (LPPMs) manipulate location traces. First, mobility 

data will be presented, before reviewing the state of the art protection 
mechanisms and highlighting their limitations that motivate this paper 
contributions. 

Mobility Data 

A user location is a latitude and longitude couple sent at a given time to a service. 

The set of locations over time constitutes a mobility trace. Even though the raw 
information contained in a mobility trace is mathematically extremely simple, the 
amount of extractable information is almost limitless due to its semantics, 

especially if it is considered through its dynamic aspect. Indeed, a mobility trace 
reveals the transportation mean used, the places visited [8], the people 

encountered or even the name of the user when other sources of information are 
used for correlation such as maps or directories [7,13]. The analysis of a mobility 
trace can also lead to prediction of users’ next moves based on their habits [22,9]. 

As it is highly complex and non-relevant to explore the entire properties of 

location data. In the following of this work, the mobility sets will be considered 
from the point of view of the user’s speed and dispersion. This simple level of 

abstraction is particularly relevant for the location privacy formulation as the key 
notion of Points of Interest is linked with concentration of points in time and space, 
i.e. low speed and low dispersion. The movement will be first assumed 

unidirectional - this assumption will be discussed in the evaluation section. The 
variation of users’ speed over time (values and frequencies of changes) will enable 

to represent the various mobility patterns a user could have, see Section 5.1 for 
further details. 

Protection Mechanisms 

Mobility data are considered as input for Location Privacy Protection Mechanisms. 
The aim of these algorithms is to provide obfuscated location data that, when sent 

to the service, improve the user’s protection. The way to achieve privacy 
protection (i.e. the algorithm by itself) defines the various categories of LPPMs. A 
LPPM can work in real-time or require a dataset, it can work at the user level or 
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require a trusted server, etc. LPPMs realize various transformation to data: 

blurring [18,1], cloaking [10,21,15], merging [4,16], etc., see [20] for a complete 
review. 

Another classification of LPPM is regarding the type of privacy it guaranties. A 

classic mechanism consist in hiding a user among k − 1 others (called kanonymity) 
[19], see Never Walk Alone [16] for a location implementation. This LPPM merges 
the traces of users in order to make them anonymous within a set of users. The 

notion of k-anonymity has been extended by l-diversity by Machanavajjhala et al. 
[12] and t-closeness by Liu et al. [11]. 

 

Fig.1. Application of Geo-I on a mobility trace for various configurations: (a) raw mobility 

data, (b) obfuscation with low noise ( ), (c) obfuscation with high noise (

 

Another well known approach of privacy is -differential privacy [5], that 

quantifies the amount of data extractable from a dataset by . A location version of 
this algorithm has been developed by Andres et al. [1], called 
GeoIndistinguishability (Geo-I). It is an on-line mechanism that adds spatial noise 

at each location. An illustration of applying Geo-I to a mobility trace is given in Fig. 
1. A key notion in Geo-I is the value of  that quantifies the dispersion of the 

probabilistic distribution in which the value of the noise is drawn. Practically, the 
lower  is, the more noise is added and thus the better the user is protected. Typical 

range of variation is ;1], expressed in inverse of meter. The impact of the 

values of  can also be seen in Fig. 1. The tuning of Geo-I parameter enables to 

leverage the privacy protection and also the utility of the data sent to the LBS. The 
noisier the data are, the less accurate the service will be. 

In the following of the paper, when needed, the methodology will be applied 
to Geo-I, as it is one of the most used LPPM able to work in real time. Indeed, only 
a LPPM that obfuscate data on-line can be used to study the evolution of user’s 
privacy over time. The methodology presented in the paper can apply for LPPMs 
satisfying the following requirements: 
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– being an on-line process, every location is individually obfuscated in 

real time, 

– being tunable by a single parameter, such as the  of Geo-I, 

– being user centric: the obfuscation should not depend on other 
people’s location or other properties such as the density of the area. 

In a general way, most perturbation based mechanisms can be used, such as 

CloakDroid [14]. 

Motivation 

It can be seen from Fig. 1 that the more noise is added to the mobility data, the 
more the user’s privacy will be protected, as it decreases the accuracy of the 

attacker knowledge. However, in the same time, it will damage the quality of the 
service provided to the user. Even if these trends are intuitive, some quantification 
is missing regarding the protection of the user points of interest. Data of Fig. 1 (c) 

is less private that those of Fig. 1 (b), itself being more privacy preserving that Fig. 
1 (a), but how to measure the differences between the levels of protection? There 

is a need for a privacy metric. 

Second, the information on the level of privacy of a mobility trace may not be 
sufficient. Indeed, the end goal is to be able to use thoughtfully a protection 

mechanism, to be able to chose a LPPM among several and configure it in a way 
that ensure a user’s expectations. In our applicative case with Geo-I, the idea is to 
get a mathematical relation between the configuration parameter  and the privacy 

of the obfuscated data taking into account the user movement. 

Moreover, due to the dynamics of a user mobility trace, the privacy protection 
of a user may also vary independently of the LPPM action. As privacy is POIrelated, 

if a user is moving fast for a long time (i.e. being in a train), he or she is protected 
as no POI can be extracted (or more precisely the smallest POI extractable is really 
large, and not containing much semantic information). Then as soon as the user 

stops, the threats on his or her privacy is increasing as the information about the 
stopping point is likely to be personal (i.e. home). 

Measuring Privacy in Real-time 

In this section, the problem of measuring POI-related privacy in practice is 
addressed. Privacy is defined as the radius of the smallest POI that can be 

extracted from the mobility trace over a past time window. Formal definitions, 
justifications and illustrations are given in this section. 

This work takes as assumption that the objective of a user in terms of privacy 

is to prevent an attacker from retrieving her points of interest [8,17,3]. A point of 
interest is formally defined as a circular zone of a given diameter (in meters) 
where the user spent a significant amount of time. The ability to have one’s POIs 

hidden is defined as being privacy. The POI diameter and minimal duration are 
parameters that allow to refine the POI definition to better fit a user’s point of view 
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about her own privacy. For instance, if a user considers that work place and home 

are sensitive information but do not really care about other people knowing where 
she has lunch, the minimal duration of the user’s POI should be set quite large. 

Moreover, if a user does not mind others to know the neighborhood where she 
lives but still want to keep the exact address private, the POI diameter can be set 
quite small. In the following, POIs are thus considered parametrized by users. 

Values will be picked for experimental validation but the developed method apply 
independently of the chosen values. 

For the addressed problem, one should have an on-line measure of privacy. The 

privacy signal should represent how likely the user is to reveal a POI, i.e. if she is 
spending a significant time in a restricted area. Privacy is defined based on the 
dispersion of the obfuscated data over a past time window. Indeed a small 

dispersion represents a concentration in space and in time (due to the time 
window calculation) of location records, which matches with the definition of a 

POI. Formally, the privacy signal is defined as being the maximum distance 
between any location record of the time window to the centroid of these points. 
The current location record l(k) is considered as being the vector of the user’s 

coordinates at the surface of the earth at time k. Then, the centroid lc(k) of the 
locations over the past window of length T is defined by eq. (1): 

 ) (1) 

and the privacy metric at time k is then: 

 )] (2) 

with dist[x,y] being the euclidean distance between two points x and y at the 

surface of the earth. The privacy signal is expressed in meters and is to be related 
with the POI diameter. The length of the time window T is again chosen by the user 
to fit her conception of privacy. Thus defined, the privacy measure at a given time 

is the radius of the smallest zone in which the user spent her last T seconds. 
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 (d) Instant 4 (e) Instant 5 (f) Privacy over time 

Fig.2. Privacy metric computation on a simple mobility trace. 

An illustration of the metric computation is given in Fig. 2. Each subfigure (a) 
to (e) is the privacy computation at a given instant. Records of the user location 
are the small markers. The user was in a tram (most distant point revealing high 

speed) went out and started walking (points close one to another). The lighter 
points are the ones in the moving time window T. For instance on Fig. 2 (a), the 

privacy is computed for the fourth point (left to right), and the duration of the 
window T is four samples. Fig. 2 (b) illustrates the privacy at the instant of the fifth 
point, and so on. The centroid lc is the large location position. The privacy metric 

is then the maximum distance between the centroid and any point of the time 
window (light points), drawn by the arrow. In this illustration, as the user is 

slowing down and is likely to arrive in an significant place for her, the privacy 
metric decreases, as reported in the graph Fig. 2 (f). 

Dynamic Modeling of Location Privacy 

This section presents a methodology to derive a predictive model of the impact of 

a LPPM on privacy, by taking Geo-I example. The objective is to have a 
mathematical equation that links the LPPM configuration () and the user 
movement (raw trace data) to obfuscated data privacy (priv), at each time instant. 
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Objectives and Methodology 

The modeling requirements are the following: 

– accurate fitting: the predicted privacy should be close to the actual 

one, 

– light computation: the model is aimed at working on-line on a 
smartphone, – robustness: no matter the user’s movement, the 
fitting should be accurate. 

The model is derived in a two-step process: first through a static characterization 

and then by exploring its dynamic behavior over time. The general methodology 
is explained before detailing and applying it for Geo-I in the next two subsection. 

Two parameters have been identified as influencing the privacy of a user trace: 
the LPPM parameter and the properties of the raw mobility trace by itself. In order 

to deal with this duality, we make the prior assumption that the two parameters 
are independently acting on privacy, and thus that the privacy function can be 

linearized. The limits of this assumption will be discussed in Section 5.3. Based on 
this assumption, the -to-privacy function will be studied for various trace speed: 
high (50 km/h), low (5 km/h) or null (the user is stopped). 

The modeling is carried out in two steps: first a static characterization, where 
the LPPM is run with a constant configuration and the steady state privacy (the 
equilibrium value when the privacy has stabilized) is measured; then a dynamic 

study, where the LPPM parameter suddenly change in a step-wise way and the 
evolution of the privacy over time when reaching a new equilibrium value is 

analyzed. 

In order to deal with the stochasticity of the LPPM, each simulation is run 100 
times, only the means of the outputs are presented. 
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Fig.3. Static characteristic for various user’s speed. Mean over 100 experiments. 

Static Characterization 

First, Geo-I is applied to several mobility traces, each one being the movement of 

a user with different speeds. Several experiments are launch per trace, each one 
with a different value of the parameter  (values taken in its definition range); the 
steady state (i.e. converged) values of privacy are measured. Results - privacy over  

- are reported in Fig. 3, where each curve is a different trace. The following 
statements can be formulated: (i) the logarithm of privacy is linear with respect to 

the logarithm of Geo-I parameter for low values of  (high noise) and (ii) for high 
values of  (low noise) there is a saturation, and the level of this saturation depends 
on the user’s speed. 

The saturation reflects that there are some conditions, for instance if the user 

is moving fast, for which adding few noise has no impact on the privacy as the user 
is already protected (i.e. only POI with large diameters can be extracted from the 

raw trace). The linear part of the curve means that, at some point, the more noise 
is added to the data, the larger the diameter of the extracted POI is. The linear part 
of the static characteristic has the same equation in all cases: 

  (3) 

The saturation level corresponds to the privacy of the mobility data when 

, i.e. no noise is added. It is then the privacy of the raw trace, that can be 
measured in real time thanks to equations (1) and (2). This value is denoted 

privraw. 

The transition between the two zones is at 0, which corresponds to the 
intersection of the linear curve with the constant part: 

 . (4) 

Hence 

 . (5) 

Dynamic Study 

Fig. 3 highlighted the zones in which the behavior from the LPPM parameter to the 
privacy measure is linear ( ). Hence for the dynamic analysis, the step 

variation of Geo-I’s parameter will be chosen as being part of this linearity zone, 
otherwise  has no impact on privacy. The measures of privacy over time while 

changing suddenly the LPPM parameter are reported in Fig. 4. 
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Fig.4. Privacy evolution over time with Geo-I parameter varying from  to 

, during a stop. Mean over 100 experiments. 

Several conclusions can be drawn from this figure: (i) in steady state, i.e. at 
equilibrium, the privacy amplification has approximately the same size as the 
amplification of . This consolidates the static characterization results. (ii) There is 

a dynamic change of privacy: it takes some time before the measure reaches its 
steady state value. 

The shape of the privacy signal seems to be close to the inverse of an 

exponential, which makes us look for a recursive equation of the form: 

  (6) 

When time goes to infinity, eq. (6) should fit eq. (3) as it corresponds to the 

steady state value of privacy. This creates the following constraints: 

 . (7) 

These two constraints let one degree of liberty in eq (6). This enables to tune the 

time dynamics of the response, i.e. the time the privacy signal takes to reach its 
steady state. Parameters α,β and γ can be found using simple regression tools. 

The resulting model for privacy prediction, combining both static and dynamic 

studies is the following: 

if  

    
 

  

  

    
 

  

  



 Dynamic Modeling of Location Privacy Protection Mechanisms 11 

 privraw(t)

 otherwise. 

This equation enables to predict, for each time instant, the value of privacy 
knowing the obfuscation level (), the past value of privacy (priv(t−1)) and the raw 
trace properties (0 and privraw). 

Evaluation 

In this section, both the privacy metric and the prediction model are evaluated. 

Prior to this, the mobility scenario on which this evaluation is based is presented. 

Evaluation Setup 

The objective of the metric and model is to capture the privacy of users no matter 

their mobility pattern. This notion of disturbance being essential in this work, the 
contributions should be evaluated with the best representative mobility scenario. 
As explained in Section 2.1, two key properties of a mobility trace are the speed of 

the user and the frequency of variation of this speed. The main advantage of using 
a synthetic trace is that the moves are perfectly known, hence the trace is labeled 

at each instant with ”stop” or ”move”. 

The synthetic trace is sampled every 10 seconds and has varying speeds (0, 5, 
50, 150 km/h) representing various transportation means (stop, walk, car, train, 
etc.). The periods between two changes range from 30 seconds (e.g. stop at a traffic 

light) to one hour (e.g. medical visit), including middle values as 5 minutes (e.g. 
stop in a coffee shop). The synthetic mobility trace is illustrated in Fig. 5 by its 

speed over time. The total trace is 18 hours long. Other mobility properties are 
included, such as turnings (hours 1 to 2), acceleration and decelerations (hours 8 
to 9) and local movements (i.e. the user’s speed is almost zero, between 

 

Fig.5. Mobility trace: changes of user’s speed over time 
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hours 10 and 18). However, due to space restrictions, these properties are hardly 

visible when plotting only speed over time as in Fig. 5. 

The value of the time window on which the privacy metric is calculated is fixed 
at the medium value of T = 15 min (i.e. stops of more than 15 min must be 

protected). The parameters of the models of eq. (3) and eq. (6) have been found 
using Matlab R identification tool, that carries out regressions for modeling. The 
values of the parameters are a = −1, b = 0.85, α = 0.9474, β = 0.0526 and γ = 0.0447. 

Indeed, if the duration of the time window T is changed, the previous parameters 
would change too. Only the regression mechanism would need to be run again. 

Without loss of generality, the evaluation will be presented only for 

T = 15 min. 

Privacy Metric Evaluation 

The privacy sensor is applied to the mobility trace described just before without 
any obfuscation. Results are illustrated in Fig. 6, which plots privacy over time, 

where dark dots are during the user movement and light ones during a stop. The 
privacy signal reflects the user’s stop by having decreasing values. Privacy tends 

to zero with some dynamics which is due to the time-window calculation of the 
metric (T = 15 min for this plot). 

If one takes small values of the privacy as being a stop indicator, each detection 

corresponds to a stop, precision is then of 100%. False negative can be found 
around hour 2 to 3, leading to a recall of 70%. These false negative correspond to 

short stops of less than T =15 minutes. They can be identified by considering the 
privacy derivative sign (that should thus be negative). However, it would lead to 
reduction of the metric precision, due to the presence of turnings at hour 1 to 2 

that also generate decreasing privacy. However, if one goes back to the definition 
of privacy, stops shorter than T do not define POIs and thus are not a threat on 

users’ privacy. 

 

Fig.6. Privacy over time of the raw mobility trace. 
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As a conclusion the presented metric, based on the radius of the smallest POI 

that can be extracted from a past time window, successfully reflects users’ privacy: 
the smallest it is, the more sensitive the mobility trace is. 

Prediction Model Evaluation 

The accuracy of the model presented in Section 4 is now investigated, using the 

mobility trace of Fig. 5. The model input scenario is illustrated in Fig. 7, top plot:  
is taken to vary in its whole range of values with changes at various frequencies 
(randomly chosen between 10 seconds and one hour). The comparison of the 

measured data and the model predictions are in Fig. 7, bottom plot. 

The two curves are almost identical, indicating a good model accuracy most of 
the time. At some instants (around 3h, 6h, etc.) the model fails to perfectly match 
the reality. These moments corresponds to situations where the LPPM 

configuration raises with a large amplitude and for a long time. In these cases, the 
model predicts a decrease of privacy which is faster than the reality. However, the 

steady state value achieved is correct. Note that the modeling is always 
underestimating the privacy, which is more valuable that overestimating. The 
model accuracy could be improved by modeling this non-linear behavior. 

However, it will be with a cost in complexity, which would not be necessary 
beneficial considering the intended implementation of this algorithm on a 
smartphone. An extended analysis of this point will be done in a future work. 

The computing complexity of the algorithm of eq. (6) is O(1), as it consists only 
of scalar products and sums. This makes the modeling algorithm suitable for a 

real-time usage. 

To conclude, the model is able to successfully capture the influence of the LPPM 

Geo-I configuration and user’s mobility on the privacy metric in an online fashion. 
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Fig.7. Model evaluation. Top plot: LPPM parameter variations over time. Bottom plot: 

Comparison of measured privacy and predicted one (mean over 100 experiments). 

Conclusions 

The democratization of Location-Based Services has increased the threats on 

users’ privacy. Location Privacy Protection Mechanisms (LPPMs) have been 
developed to tackle this issue. Yet, the existing algorithms often lack of 

applicability for mobile devices users as they do not provide practical ways 
neither to evaluate nor to predict the gain in privacy. In this paper a model-based 
approach is presented, that enables users to predict their privacy when using such 

protection mechanisms, regardless of their mobility behavior. Contributions are 
on the definition of real-time Points of Interest oriented privacy metric and on the 

modeling of the impact of a state-of-the-art LPPM on users’ privacy. Evaluation 
carried out in simulation highlight the relevance of the model formulation and the 
efficiency of the prediction to fit the real data. The future of this work will be its 

evaluation using data collected from real users, as well as the development of 
strategies to configure LPPMs to ensure privacy objectives. 
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