
HAL Id: hal-01824635
https://inria.hal.science/hal-01824635

Submitted on 27 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reversible Choreographies via Monitoring in Erlang
Adrian Francalanza, Claudio Antares Mezzina, Emilio Tuosto

To cite this version:
Adrian Francalanza, Claudio Antares Mezzina, Emilio Tuosto. Reversible Choreographies via Moni-
toring in Erlang. 18th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS), Jun 2018, Madrid, Spain. pp.75-92, �10.1007/978-3-319-93767-0_6�. �hal-01824635�

https://inria.hal.science/hal-01824635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Reversible Choreographies via Monitoring in Erlang?

Adrian Francalanza1, Claudio Antares Mezzina2, and Emilio Tuosto3

1 University of Malta, Malta adrian.francalanza@um.edu.mt
2 IMT Advanced Studies Lucca, Italy claudio.mezzina@imtlucca.it

3 University of Leicester, UK emilio@le.ac.uk

Abstract. We render a model advocating an extension of choreographies to de-
scribe reverse computation via monitoring. More precisely, our extension imbues
the communication behaviour of multi-party protocols with minimal decorations
specifying the conditions triggering monitor adaptations. We show how, from
these extended global descriptions, one can (i) synthesise actors implementing
the normal local behaviour of the system prescribed by the global graph, but also
(ii) synthesise monitors that are able to coordinate a distributed rollback when
certain conditions (denoting abnormal behaviour) are met.

1 Introduction

Runtime Monitoring [17, 18] (or Monitor Oriented Programming [10, 25, 7]) is a code
structuring principle whereby ancillary system functionality (dealing with aspects such
as security and reliability) is separated from the core functionality of a system and
compartmentalised into separate code units called monitors. These monitors are occa-
sionally assigned their own thread of control and operate by observing the execution
of the core system and reacting to it: typical monitor functionality includes aggregating
system information, comparing the execution against some correctness specification, or
attempting to modify the execution of the observed systems via filtering, adaptation or
enforcement procedures. Monitoring complements traditional verification techniques
such as model checking and testing [3, 4, 6, 13, 23] because it allows verification checks
to be offloaded to a post-deployment phase: these checks are typically either too expen-
sive to perform statically or else intrinsically dependent on (missing) run-time informa-
tion. Experience has also shown that often, computation misbehaviour still arises even
after the software has undergone rigorous scrutiny prior to deployment. In such cases,
monitors provide a natural mechanism to mitigate this misbehaviour.

The goal of this work is to show that monitoring can be used to attain reversible
computation in models using asynchronous message-passing, such as those found in
distributed computing and actor-based languages. Reversible computing [30] has been
show to be a suitable abstraction for a variety of application domains from software
debugging, to transactions, to fault tolerant schemes [29, 19, 14]. Mechanisms for re-
versible computing can also be useful to describe and execute recovery strategies in
distributed setting, where it is hard to anticipate all the conditions under which parts of
computation is carried out: the ability to reverse computation would allow a system to
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Fig. 1. A model for specifying monitors (reproduced from [8])

backtrack certain execution steps that have been invalidated by the violation of certain
conditions, and subsequently execute alternative commands instead.

In spite of its utility, the programming of recovery strategies for asynchronous com-
municating software can be hard and error-prone. To this end, mechanisms for dealing
with reversed execution in asynchronously communicating computation have been in-
troduced. For instance, in [16] an approach based on checkpoints has been developed to
cope with transactional behaviour in actor-based systems. But despite providing these
convenient abstractions for reversibility, this approach still leaves the programmer with
the burden of specifying checkpoints at judicious points within her program. In another
work [29], a reversible Erlang dialect has been proposed, maintaining the fundamen-
tal features of Erlang while automating the mechanism associated with reversibility.
In spite of its advantages, the framework requires the development of a new run-time
support (and the adoption of a special-purpose Erlang VM) to handle reversibility.

In this paper, we explore a third approach to tackle this problem. We combine
“correctness-by-design” of choreographies, checkpoint-based mechanisms, and run-
time monitoring to attain disciplined interweaving of forward and reversed execution.
Unlike existing approaches, we fully exploit the benefit of choreographies to guarantee
communication soundness by construction. For instance, our checkpoints are automat-
ically derived from global views of choreographies unlike [16]. Moreover, we use run-
time monitors to handle reversed executions while avoiding modifications to the stan-
dard runtime setup of Erlang (as is done in [29]). This, in turn, facilitates the adoption
and portability of our approach.

Technically, we concretise a proof-of-concept realisation of the methodology pre-
sented in [8] (see Fig. 1), for designing and implementing monitors for message-passing
software. The main ingredient of this methodology is the use of choreographies for dis-
tributed applications and, in particular, the so-called top-down approach illustrated in
the left part of Fig. 1. The starting point of our approach are the global graph models
called global views, which are algorithmically “projected” on the local views (one for
each “participant” of a choreography). Global views can, on the one hand, be checked
for errors at an early stage of the design process and, on the other hand, be automatically
projected on distributed components interacting via message-passing, to the partici-
pants in the local view in top-down fashion (see Fig. 1, left). The software components
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implementing each participant can, in turn, be checked against their corresponding lo-
cal view; this guarantees communication soundness whenever the global view satisfies
some conditions (e.g., see [22]). The right part of Fig. 1 mirrors the top-down approach
of choreographies for the realisation of the recovery logic, i.e., activities that a dis-
tributed system should carry out to handle undesired states of the computation reached
at runtime. Concretely, starting from a global description of the recovery logic, local
strategies can be derived and rendered as dedicated monitors for every participant. The
realisation of such a scheme poses various research questions:

Q1. What global models are suitable to specify the recovery logic?
Q2. How should components and monitors smoothly interact with each other?
Q3. What are the properties should the recovery logic have to facilitate such a scheme?

The challenges illustrated in Fig. 1 correspond to the above questions (e.g., Challenge
1 relates to Q1 and so forth). These challenges should also observe a separation-of-
concerns principle espoused by monitor-oriented programming, namely that of decou-
pling the application logic from the recovery logic (as much as possible) [8].

Contributions. This paper describes a proof-of-concept solution for Q1 and Q2 in the
setting of Erlang programs. More precisely, (i) we propose reversibility-enabling global
graphs (REGs for short) as a suitable model for the global view of the recovery logic
and intertwine this general specification language with Erlang’s support for monitoring.
Also, (ii) we show how to project REGs into Erlang monitors that steer the execution
of the system according to some conditions. A basic feature of REGs is the possi-
bility of specifying conditions allowing distributed components to execute distributed
choices more flexibly. Specifically, the designer can specify conditions in the global
views, dubbed reversion guards on distributed choices that are orthogonal to the appli-
cation logic and depend on the run-time state of the computation. In this way, branches
of distributed choices may be reversed when their reversion guards flag an undesired
state of the computation. Alternatively, these conditions may be easily ignored during
projection if desired or updated, without altering the application logic produced. We
illustrate this with the following example that will help us throughout the paper.

Example 1. Consider a protocol where iteratively participant C sends a newReq mes-
sage to a logging service L. In parallel, a C’s partner, A makes either requests of either
type req1 or type req2 to a service B, which, in turn, replies via two different types of
responses, namely res1 and res2. Once a request is served, B also sends a report to A,
which logs this activity on L. A possible reversion guard for B could specify that the
port required to respond A needs to be available at the time of communication, or that
the size of the communication buffer for this port does not exceed a given threshold.
At runtime, both of these conditions may prohibit the respective participants from com-
pleting the execution of the specified protocol. By reversing the choice taken (i.e., A
making requests of either type req1 or of type req2), the participants involved can make
alternative choices. �

A definition of global graphs enabling reversible computations that is able to handle the
aforementioned case would contribute towards answering Q1. Moreover, an automated
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projection of these graphs in terms of actors and monitors would start to address Q2.
Question Q3 above requires some theoretical results not in scope here. However, this
paper already sheds some light on possible desirable properties such as the requirement
for “distributability” (over the respective participants) of the recovery logic.

2 Background

We begin by overviewing the preliminaries relating to Global Graph descriptions and
the target actor model.

2.1 Global Specifications

Global graphs, originally proposed in [12] and recently generalised in [32, 20], are a
convenient specification language for the global views of message-passing systems.
They yield both a formal framework and a simple visual representation that we review
here adapting notation and definition from [32].

Hereafter we fix two disjoint sets P and M ; the former is a finite set of participants
(ranged over by A, B, etc.) and M is the set of message (ranged over by m, x, etc.).
To exchange messages and coordinate with each other, participants use asynchronous
point-to-point communication via channels. Basically, we adopt the actor model [21,
1]. We remark that global graphs abstract away from data; the messages specified in
interactions of global graphs have to be thought of as data types rather than values.

The syntax of global graphs is defined by the grammar

G ::= A−→B : m
∣∣ G;G′

∣∣ G |G′
∣∣ G+G′

∣∣ repeat {G}

A global graph can be a simple interaction A−→B : m (for which we require A 6= B),
the sequential composition G;G′ of G and G′, the parallel composition (for which the
participants of G and of G′ are disjoint), a nondeterministic choice G+G′ between G and
G′, or the iteration repeat {G} of G.

An example of global graph is given below.

Example 2. The example discussed in Example 1 of Section 1 can be modelled with
the graph G= repeat {

(
G1 |G′1

)
;G2;G3} where

G1 =C−→L : newReq
G2 =L−→C : ack |B−→A : rep
G3 =A−→L : log

G′1 =A−→B : req1;B−→A : res1
+

A−→B : req2;B−→A : res2

The decision to leave or repeat the loop is non-deterministically taken by one of the
participants (which one is immaterial) which then communicates to all the others what
to do. This will become clearer in Section 4. �

The syntax captures the structure of a visual language of distributed workflows il-
lustrated in Fig. 2. Each global graphs G can be represented as a rooted diagram with
a single source node and a single sink node respectively represented as ◦ and }. Other
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A−→B : m
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G
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branch gate
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interaction sequential parallel branching iteration

Fig. 2. A visual notation for global graphs

nodes are drawn as • and a dotted edge from/to a •-node singles out the source/sink
nodes the edge connects to. For instance, in the diagram for the sequential composition,
the top-most edge identifies sink node of G and the other edge identifies the source node
of G′; intuitively, • is the node of the sequential composition of G and G′ obtained by
“coalescing” the sink of G with the source of G′. In our diagrams, branches and forks
are marked respectively by and nodes; also, to each branch/fork nodes corresponds
a “closing” gate merge/join gate.

The (forward) semantics of global graphs can be defined in terms of partial orders
of communication events [32, 20]. We do not present this semantics here (the reader is
referred to [32, 20]) for space limitations; instead, we give only a brief and informal
account based on an example through a “token game” similar to the one of Petri nets.

Example 3. The diagram in Fig. 3 is the visual counterpart of G in Example 2. The
token game semantics in the example of Fig. 3 would start from the source node and
flow down along the edges in the diagram as described by the test in Fig. 3. �

For the semantics of global graphs to be defined, well-branchedness [32, 20] is a key
requirement. This is a condition guaranteeing that all the participants involved in a dis-
tributed choice follow a same branch. Well-branchedness is quite simple and requires
that each branch in a global graph (i) has a unique active participant (that is a unique
participant taking the decision on which branch to follow) and (ii) that any other par-
ticipant is passive, namely that it is either able to ascertain which branch was selected
from the messages it receives or it does not play any role in the branching.

Example 4. In the branch of Example 2, A is the active participant while the others are
passive; in fact, C and L are not involved in the choice, while B can determine that the
left or the right branch was selected depending on which type of request it receives. �

2.2 Erlang Model

Erlang [2, 9] is a general-purpose, industry-strength concurrent programming language.
Actors—implemented as lightweight processes—constitute its concurrent units of de-
composition: (in principle) actors do not share any mutable memory but rather interact
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A−→B : req1 A−→B : req2

B−→A : res1 B−→A : res2

C−→L : newReq

B−→A : rep
L−→C : ack

A−→L : log

The topmost gate is the entry point of a
loop which simply lets the token to flow. At
the first gate, the token is duplicated, fork-
ing the computations along the two threads.
In the leftmost thread, the token enables the
interaction C−→L : newReq; this allows the
output event from C (which then waits for
the ack message from L) and later the input
event of L. The token on the leftmost thread
then enables the last interaction L−→C : ack.
Observe that, after the input of message ack,
C can start the next iteration of the loop
while the other threads may still be complet-
ing the current iteration.
Concurrently, the token flowing on the right-
most thread reaches another branch gate
which non-deterministically routes the token
either on the left or on the right branch. On
both branches A and B execute a request-
response type of protocol similarly to what
C and L run on the leftmost thread. When
the token flows through the merge gate at the
end of the choice, it enable a last interaction
from B to A (which allows B to go the next
iteration) and subsequently, the last logging
interaction between A and L. Finally, also A
and L can repeat the loop.
Note that the body of an iteration is executed
at least once.

Fig. 3. The diagram of a global graph and its semantics

with one another via asynchronous messages, changing their internal state in response
to the messages received. Every actors is uniquely identified via a process ID (PID); it
owns a message queue, called a mailbox, to which messages are sent in a non-blocking
fashion. Messages may be sent to an actor’s mailbox only if its PID is known, and, once
received, these messages can be selectively (and exclusively) consumed by the recipient
actor using pattern matching. Actors may spawn other actors dynamically (at run-time):
the PID of a newly spawned actor is originally known only by the spawning actor, but
this can then be communicated to other actors via messaging.

Concurrent Erlang actors are typically organised as supervision tiers. Using the
process-linking and exit-trapping mechanisms [2, 9], an actor (referred to as a super-
visor) may be notified via a message that a linked actor has terminated abnormally (i.e.,
crashed), which allows it to take remedial action (e.g., avoid waiting indefinitely for a
message, or spawn a replacement actor). Erlang supervision hierarchies admit a form
of monitor-oriented programming [7], whereby the recovery logic is teased apart from
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the application logic, so as to keep the latter as clear as possible; the recovery logic can
instead be encapsulated within the supervision structure encasing the application.

Finally, our mapping from REGs to Erlang programs heavily uses atoms, that is
literal constants which do not carry any value but can be used as a value; Erlang atoms
corresponds to values of some unit types in typed languages.

3 Global Graphs for Reversibility

We propose a variant of global graphs, dubbed reversibility-enabling (global) graphs
(REGs for short) that generalises the branching construct to cater for reversibility. We
will use REGs to render the recovery model described in Section 1. The syntax of REGs
uses control points4 to univocally identify positions where choices have to be made on
how to continue the protocol. Syntactically, control points are written as i ·A, where i is a
strictly positive integers and A∈ P is the participant responsible for taking the decision.

Definition 1 (Reversibility-enabling global graphs). The set G of reversibility-enabling
global graphs (REGs) consists of the terms G derived by the grammar obtained by re-
placing the last two productions of the grammar in Section 2.1 with

G ::= . . .
∣∣ sel i ·A

{
G1 unless φ1 + G2 unless φ2

}
(1)∣∣ repeat i ·A{G} (2)

that satisfy the following conditions:

– in i ·A G, A is the active participant of G and
– for any two control points i ·A and j ·B occurring in different positions of a REG it

must be the case that the indices are distinct, i 6= j.

In (1), the formulas φh (for h ∈ {1,2}) are reversion guards expressed in terms of
boolean expressions.

In Definition 1, the participant A in (1) non-deterministically decides which branch
to follow; in (2) it decides whether to repeat the body G or exit an iteration. Here-
after, we consider equivalent REGs that differ only in the indices of control points (the
indices of control points are, in fact, irrelevant as long as they are unique) and may
omit control points when immaterial, e.g., writing G unless φ + G′ unless φ′ instead of
sel i ·A

{
G unless φ + G′ unless φ′

}
.

The new branching construct (1) extends the usual branching construct of chore-
ographies to control reversible computations. The semantics of this constructs is ren-
dered by the encoding in Section 4 which realises the following intended behaviour.
To execute sel i ·A

{
G1 unless φ1 + G2 unless φ2

}
we first non-deterministically choose

branch h ∈ {1,2} and execute the REG Gh. If the guard φh is false once the execution
of Gh terminates then the execution stops (i.e., it executes as normal); otherwise, if the
other branch has not been tried yet, the execution of Gn is reversed and the other branch

4 Control points can be automatically generated; for simplicity, we explicitly put them in the
syntax of REGs.
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is executed. Note that, by keeping track of all reversed branches and fully executing the
last branch when all the others have been reversed, we can easily generalise to a branch-
ing construct sel i ·A

{
G1 unless φ1 + · · · + Gh unless φh

}
with h≥ 2; for simplicity we

just consider h = 2 here.
Definition 1 parameterises REGs on the notion of reversion guard. However, our

study required us to address crucial design choice and resolve how reversion guards
are to be rendered in a language like Erlang (without a global state). Roughly, rever-
sion guards can be thought of as propositions predicating on the state of the forward
execution. A key requirement for a proper projection, however, is that the evaluation of
such guards must be “distributable”, i.e., we want revision guards to be “projectable”
from the global view to the components realising the behaviour of the participants. To
meet this requirements, we use local guards, i.e., boolean expression that predicate on
the state of a specific participant and assume that a revision guard is a conjunction of
the local guards at each participant. More concretely, we exploit Erlang’s support [15]
for accessing the status of a process implementing a participant via system functions
such as process info or system info, which return a dictionary with miscellaneous
information about a process or a physical node respectively.

Example 5. Consider the following concrete examples of revision guards:

queue_len(Threshold, State) ->
Info = from_list(State),
{_,Len} = find(message_queue_len, State),
(Len > Threshold).

message_exists(Filter, State) ->
Info = from_list(State),
{_,messages} = find(message_queue_len,State),
Filter(messages).

Predicate queue_len checks if the size of the mailbox is above a threshold, whereas
message_exists checks for the presence of a message matching some pattern in a
mailbox. Other examples of reversion guards are conditions on PIDs and port identi-
fiers, heap size, or the status of processes (e.g., waiting, running, runnable, suspended).

�

Our reversible semantics still requires well-branchedness: a REG, say G, is well-
branched when so is the global graph obtained by removing reversion guards from G.
This guarantees communication soundness in presence of reverse executions.

4 From REGs to Erlang

This section shows how we map REGs into Erlang programs. This mapping corresponds
to the definition of projecting the global view provided by REGs into Erlang implemen-
tations of their local view. Our encoding embraces the principles advocated in [8] and
reviewed in Section 1: we strive for a solution yielding a high degree of decoupling
between forward and reverse executions. Unsurprisingly, the most challenging aspect
concerns how branches are projected. This is done by realising a coordination mecha-
nism which interleaves forward and reversed behaviour, as described in Section 3. In
the following, we first describe the architecture of our solution. We then show how for-
ward and reversed executions are rendered in it. We discuss our design choices and a
few possible alternative solutions in Section 5.
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Fig. 4. Our architecture

4.1 Architecture

The abstract architecture of our proposal is given in Fig. 4. Each participant of a REG
is mapped to a pair of Erlang actors, the participant actor and the participant monitor
which liaise with one another in order to realise reversible distributed choices. The ex-
ecution of a distributed choice is supported by another pair of (dynamically generated)
actors, the selector actor which liaises with its corresponding selector monitor. The
basic idea is that participant and selector actors are in charge of executing the forward
logic part the choice while their respective monitors deal with the reversibility logic.

A key structural invariant of the architecture is that monitors can interact only with
their corresponding participant or with the monitors of the selectors currently in exe-
cution. This is emphasised by the arrows in Fig. 4, which are meant to represent the
information and control flow of our solution. The coordination protocol required to re-
solve a distributed choice specified in a REG is made of the following phases:

1. Inception: The selector actor (started at a branching point) decides which branch
to execute and communicates its decision to the participants involved.

2. Forward attempt: Participant actors execute the selected branch accordingly and
report their local state at the end of the branch to their participant monitor.

3. Guards checking: Participant monitors check their reversion guard and communi-
cate the outcome to the selector monitor.

4. Continuation: The selector monitor aggregates the individual outcome of all par-
ticipant monitors and reports the aggregated result to the selector actor.

5. Decision: Based on suggestion forwarded by the selector monitor, the selector actor
decides whether to continue forward or reverse the execution and communicates the
decision to all participants, which in turn propagate it to their participant monitor.

These phases roughly correspond to the arrows in Fig. 4.

4.2 Branching actors & monitors

We now describe the behaviour of actors and monitors in a choice, with the help of their
automata-like representation in Fig. 5. The coordination protocol that we describe here
resembles a 2-phase commit protocol where participants report the outcome of local
computations to a coordinator that then decides how to continue the execution.

When participant actors (start to) reach a branching point, the inception phase be-
gins. The actor corresponding to the (unique) active participant of the choice spawns
the selector actor and waits from the selector message telling which branch to take in
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– The syntax of labels is of the form
id!msg or id?msg indicating respec-
tively the act of sending (!) or receiv-
ing (?) the message msg to or from the
actor id.

– Messages e, st, r, l stand respectively
for exit, state, right and left.

– Transitions of different automata are
coloured to help the reader understand-
ing the flow of the communication: out-
puts or inputs of actors match when
the corresponding transitions in the au-
tomata have the same colour.

– The fat arrow in the selector monitor
represents that an input action is ex-
pected from all participant monitors in-
volved into a branch; likewise, the fat
arrow in the selector actor represent
that the outputs will be done for all par-
ticipant actors. The fat dashed arrow in
the selector monitor indicates that an
input action is expected from all the
participant monitors and that at least
one of them is a rev message.

Fig. 5. Automata-like description of actors and monitors for the projection of branches

the choice; all other participant actors just wait for the selector’s decision. The act of
spawning the selector arrow by the active participant is represented in Fig. 5 via the
gray arrow and the cloud in the automaton of the participant actor. Subsequently, all
the actor participants involved in a branch will wait from the selector to instruct them
with the branch (either left or right) to take—the yellow arrows in the automaton of
Fig. 5. Upon the receipt of such a message, participant actors first forward this message
to their monitor and then enter the second phase executing the branch—represented by
the cloud in the automaton. The third phase starts (if the chosen branch does not di-
verge) when participant actors finish the branch (possibly at different times) and they
signal to their monitor that they are ready to exit the choice. This is done by the exit
message which also carries the local state of execution (described in Section 3). At this
point, participant actors take part only in the last phase: they receive from the selector
either an ack message (confirming that the choice has been resolved) or a rev message
to reverse the execution. In either case they propagate the message to their monitor and
either “commit” the branch or return to the state that waits for the message dictating the
next branch to take. Participant actors behave uniformly but for the active one, which
has the additional task of spawning the selector at the very beginning (for non-active
participants the gray transition is an internal step not affecting communications).

Each participant monitor waits for the message carrying the local state that its par-
ticipant actor sends at the end of the second phase in the exit message. The state is
used to check whether the reversion guard of the branch, say φ, holds or not. If φ holds
for the local state of the participant actor, the participant monitor sends the selector
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monitor either a request to reverse the branch (message rev). Otherwise the monitor
sends a message to commit the choice (message exit). In Fig. 5 this is represented by
the label sel m!d, where d stands for decision. After this, the monitor waits from its
participant actor for the rev or the ack message sent in the last phase: if rev is received
the monitor returns to its initial state and leaves the branch otherwise.

The selector actor spawned in the inception phase starts by spawning a selector
monitor and then deciding which branch to take initially—represented in Fig. 5 by the
grey transition and the cloud in the automaton of the selector. After communicating its
decision to all participant actors, the selector waits for the request of its monitor and
starts phase five of Section 4.1 by deciding whether to reverse the branch or not. The
decision process is as follows: if the selector receives an ack message then the branch
is committed and the selector monitor terminates. Otherwise, the selector participants
receive a rev message to reverse the branch. If there are branches that have not been
tried yet then the last executed branch is marked as “tried”, a branch not been attempted
yet is selected, and a rev message is sent to all participant actors. Otherwise, the deci-
sion to commit the branch is taken and the ack message is sent to all participant actors.
In the former case, the selector returns to its initial state, and terminates otherwise.

The selector monitor participates to the fourth phase. It first gathers all the out-
comes from the guard-checking phase from all the participant monitors involved into
the choice. Recall that a rev message is received from any participant monitor whose
revision guard becomes true otherwise, while an ack message is received from any par-
ticipant monitor whose revision guard does not hold. Then, the selector monitor com-
putes an outcome to be sent to the selector actor: if all received messages are ack then
an ack message is sent to the selector actor, otherwise the monitor sends a rev mes-
sage to the selector actor. In both cases, the selector monitor terminates; a new selector
monitor is spawned by the selector actor if the branch is actually reversed.

Iteration is a simplification of a distributed choice: we just generate a selector for an
iteration but not its monitor. The reason for not having a monitor for the selector is quite
straightforward: there is no reversible semantics to be implemented for the iteration.
This does not imply that within the body of an iteration a reversible step can not be
taken (e.g., there can be an inner choice), but just that iterations are not points at which
the computation can be reversed. The selector (instantiated by the active participant of
the iteration, similarly to choices) just decides whether to iterate or exit the loop. A
participant actor within a loop, after completing an iteration, awaits the decision from
the selector actor and continues accordingly.

4.3 Compiling to Erlang

The code generated for the projections from REGs to Erlang is discussed below. We fo-
cus on the compiled code for the branches constructs, since the compilation of the other
constructs is standard and therefore omitted. Our discussion uses auxiliary functions for
which the code is not reported5.

5 These can however be found at http://staff.um.edu.mt/afra1/rgg.
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1 act_A_cp() ->
2 %Pid = list_to_atom("sel_act_"
3 %++ integer_to_list(cp)),
4 %register("Pid,
5 % spawn(sel_act,[cp])),
6 receive
7 {cp,left} ->
8 mon_A ! {cp, left}
9 %CODE OF LEFT BRANCH

10 ;
11 {cp,right} ->
12 mon_A ! {cp, right}
13 %CODE OF RIGHT BRANCH
14 end,
15 mon_A!{cp, exit, process_info(self())},
16 receive
17 {cp,ack} -> mon_A ! {cp, ack};
18 {cp,rev} ->
19 mon_A ! {cp, rev},
20 act_A_cp()
21 end.

22 mon_A_cp() ->
23 receive
24 {cp, left} ->
25 %CODE FOR LEFT BRANCH MONITOR%
26 receive{cp, exit, Info} ->
27 G = check_guard(Left_guard, Info)
28 end;
29 {cp, right} ->
30 %CODE FOR RIGHT BRANCH MONITOR%
31 receive{cp, exit, Info} ->
32 G = check_guard(Right_guard, Info)
33 end
34 end,
35 Sel_m = get_selector_monitor(cp),
36 case G of
37 true -> Sel_m ! {cp, rev};
38 _ -> Sel_m ! {cp, ack}
39 end,
40 receive
41 {cp, rev} -> mon_A_cp();
42 {cp, ack} -> ok
43 end.

44 sel_act(Attempt,CP) ->
45 Pid = list_to_atom("sel_mon_"
46 ++ integer_to_list(CP))
47 register(Pid, spawn(sel_mon, [CP, self()])),
48 Sel =
49 case Attempt of
50 [] -> getBranch();
51 [left] -> right;
52 [right] -> left;
53 _ -> throw("panic....")
54 end,
55 P = participants(CP),
56 foreach(fun(X) -> X!{CP, Sel} end, P),
57 receive {CP,Outcome} ->
58 Decision =
59 case {Outcome,Attempt} of
60 {ack,_} -> ack;
61 {rev,[]} -> rev;
62 {_,_} -> ack
63 end
64 end,
65 foreach(fun(X) -> X!{CP, Decision} end, P),
66 case Decision of
67 rev -> sel_act(Attempt ++ [Sel], CP);
68 _ -> end_branch
69 end.

70 sel_mon(CP, SelPid)->
71 MP = participants(CP),
72 MsgList = lists:map(fun(_) ->
73 receive {CP,M} -> M end end, MP),
74 Msg =
75 case lists:member(rev, MsgList) of
76 true -> rev;
77 _ -> ack
78 end,
79 SelPid ! {CP, Msg}.

The code for the participant actor (lines 1-21) is parametrised with respect to cp, the
value of the control point6 univocally identifying the point of branch in the REG. The
commented lines 2-5 are generated only for the code of the active participant which
spawns the selector actor of the branch cp. Note that the process is registered under
a unique name sel_act_cp (which is an atom). This snippet is actually a template
which would be filled up with the code generated for the participant communications
respectively on the left and on the right branches (i.e., the commented lines 9 and 13).

The Erlang process spawned by a participant actor implementing the selector actor
executes the function on lines 44-69. This function takes two parameters: the Attempt
representing the branches chosen so far and the control point CP identifying the choice.
The former parameter is a list of atoms left and right; note that the empty list is
passed initially when the process is spawned and that (in our case) the size of this list
should never exceed 1. As discussed above, the selector chooses a branch (lines 48-
54) and communicates its decision to the participants of the branch (lines 55-56, where
participants is computed at compile time (from the global graph script) and returns
the participants of a branch given its control point). Finally, the selector enters the fourth

6 Note that the value cp is statically determined by the compiler.
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phase of Section 4.1, waiting for the message from its monitor, and decides accordingly
how to continue the execution of the choreographed choice.

As in the case of the participant actor, the snippet of the participant monitor (lines
22-43) does not make it explicit the code for the monitoring of the left and right
branches (commented lines 25 and 30). The auxiliary function check_guard returns
the evaluation of the guard for the state provided by the participant (lines 26-28 and 31-
33). The function get_selector_monitor retrieves the PID of the selector monitor
from the control point value cp.

The selector monitor, spawned by the selector process, is registered with the name
sel_mon_cp (lines 45-47) where cp is the value passed through the second parameters
CP when invoking sel_act. Note that the invocation to get_selector_monitor on
line 35 returns the atom sel_mon_cp. The snippet for the selector monitor uses the
auxiliary function participants returning the list of participant actors involved in the
branch cp. The outcome Msg is computed on lines 72-78 and sent to the selector on line
79. The selector monitor awaits a message from all the participant monitors involved
in the branch (lines 72-73), and then it decides the message to communicate to the
selector actor. If at least one of the messages received is rev, then the final message is
rev, otherwise the final message is ack.

5 Design Choices & Alternatives

We now discuss our design choices and some potential alternatives. As remarked ear-
lier, the architecture and the coordination proposed here strives for a high degree of
decoupling between the run-time support of the application and revision logics. In light
of this, we tried to limit the overhead required to manage the reversible semantics pro-
posed in Section 3.

Not surprisingly, the design choices we had to make mainly concerned the imple-
mentation of branches and the corresponding reversible behaviour. A first decision we
had to take related to the realisation of the application logic part of the branches. Our so-
lution introduces selector actors to implement the policy for selecting a branch. A plau-
sible alternative could have been to let the actor corresponding to the active participant
to manage the choice. We argue that such alternative has two main drawbacks. Firstly, it
makes the projection of active and non-active participants less uniform, negatively im-
pacting on the cohesion of the architecture. This lack of symmetry would also impact on
the corresponding monitors, which would invariably become more complex—ideally,
the monitor logic is kept as simple as possible, since this is conducive to correct, ef-
ficient code. Also, Erlang does not allow multi-threaded actors, hence this alternative
would have introduced unnecessary dependencies between actors and monitors.

We remark that the decision process would typically be specified in the application
logic of the active participant. For instance, one could specify priorities on branches or
allow the same branch to be tried more than once and reversed only after a certain num-
ber of attempts have failed. Our current solution abstracts away from this, and adopts a
non-deterministic policy (using an Erlang randomisation function) for simplicity.

13



Instead of dynamically spawning selector actors, we could statically generate them.
This solution would simplify the projection operation trading on efficiency since, at
run-time, not all branches are typically executed (e.g., in the case of nested branching).

Local guards are designed to attain locally checkable conditions (cf. Section 3).
A less ad-hoc mechanism could possibly be considered following the approach taken
in [5] where “global” logical formulae (dubbed global assertions) are projected into
local ones. This is a more complex approach that nevertheless could be worth exploring
as it could lead to more expressive frameworks. For instance, it would allow the defini-
tion of hyperproperties [11] such as as those that compare the size of message queues
at different actors over time. Note that this could require non-trivial interactions among
monitors for exchanging local information (or more complex aggregation at the branch
monitor). An intriguing research direction would be to explore to which extent these
non-trivial interactions could be automatically derived by the projection of global con-
ditions. Another crucial decision we had to contend with concerned the execution points
at which the reversion guards should be checked. Here the range of possibilities is fairly
broad and we opted for an “optimistic” policy, leaving the realisation of other alterna-
tive policies for future work. For instance, another alternative would be one where each
monitor would continuously check the guard and trigger the reverse execution as soon
as it is breached (instead of waiting for the completion of the branch). This option is
interesting because it avoids the wasteful execution of the entire branch before trying
to then reverse it. However, such a “preemptive” approach would also make actors and
monitors more complex (e.g., participant and selector actors would need to “poll” for
message arrival ) and would increase monitoring overheads as well.

6 Final remarks

We have presented a minimally-intrusive extension to global graph choreographies [20]
for expressing reversible computation. We showed how these descriptions could be re-
alised into executable actor-based Erlang programs that compartmentalise the reversion
logic as Erlang monitors, minimally tainting the application logic.

Related Work. The closest work to ours is [29, 28, 16]. In [29] a reversible semantics
for a subset of Erlang is given. The goal of [29] is a debugger based on a fully reversible
semantics. To achieve this, the Erlang virtual machine is modified in order to keep track
of computational history. Our goal is different since we focus on controlled reversibil-
ity [24]. Our framework automates the derivation of rollback points (namely the exact
point at which the execution has to revert) from the recovery logic. Also, the use of
monitors avoids any changes to Erlang’s run-time support. Choreographies are used
in [28] to devise an algorithm that optimises Erlang’s recovery policies. More precisely,
global views specify dependencies from which a global recovery tables are derived.
Such tables tell which are the safe rollback points. The framework then exploits the
supervision mechanism of Erlang to pair participant with a monitor. In case of failure,
the monitor restarts the actor to a consistent rollback point. One could combine our ap-
proach with the recovery mechanism of [28] so as to generalise our reversible semantics
to harness fault tolerance. This is not a trivial task, because the fault-tolerance mecha-
nism of [28] needs to follow a specific protocol, making it unclear whether participants
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can be automatically derived. In [16] actors are extended with checkpoints primitives,
which the programmer has to specify in order to rollback the execution. In order to
reach globally-consistent checkpoints severe conditions have to be met. Thanks to the
correctness-by-design principle induced by global views, our approach automatically
deals with checkpoints, relieving this burden from the programmer.

Other works [31, 26, 27] have investigated the use of monitors to steer reversibil-
ity in concurrent systems. In [31] a monitored reversible process algebra is presented
where each agent is paired with a monitor. But, unlike our approach, the monitor tells
the agent what to do both in the forward and in the reverse way. In [26, 27] the authors
investigate the use of monitors to steer reversibility in message oriented systems. Here
monitors are used as memories storing information about the forward execution of the
monitored participants, and exploit this information to reconstruct previous states. As
in our approach, in [27] participants and their monitors are derived from a global spec-
ification as well. We diverge from [26, 27] in several aspects. Firstly, our monitors do
not store any information about the forward computation. Secondly, all the monitors
coordinate amongst each other to decide whether to revert a particular computation or
not. The coordination mechanism of our monitors is automatically derived. Moreover
in our approach reversibility is triggered at run-time when certain conditions (specified
at design-time in the recovery logic) are met.

Conclusions. We have presented a method to automatically derive reversible compu-
tation as Erlang actors. A key aspect of our approach is the ability to express, from a
global point of view, when a reverse distributed computation has to take place and not
how. Starting from a global specification of the system, branches can be decorated with
conditions that at run-time will enable the coordinated undoing of a certain branch. An-
other novelty of our approach is the use of monitors to enact reversibility. We leave as
future work the measurement of the overhead of our approach on the normal forward
semantics of the actors, in terms of messages and memory consumption.
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