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Christopher Eibel, Christian Gulden,
Wolfgang Schröder-Preikschat, and Tobias Distler

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract. Handling workloads generated by a large number of users,
data-stream–processing systems also require large amounts of energy.
To reduce their energy footprint, such systems typically rely on the op-
erating systems of their servers to adjust processor speeds depending
on the current workload by performing dynamic voltage and frequency
scaling (DVFS). In this paper, we show that, although effective, this ap-
proach still leaves room for significant energy savings due to DVFS mak-
ing conservative assumptions regarding its impact on application perfor-
mance. To leverage the unused potential we present Strome, an energy-
aware technique to minimize energy demand in data-stream–processing
systems by dynamically adapting upper limits for the power demand of
hardware components. In contrast to DVFS, Strome exploits informa-
tion on application performance and is therefore able to achieve energy
savings while minimizing its effects on throughput and latency. Our eval-
uation shows that Strome is particularly effective in the face of varying
workloads, reducing power demand by up to 25% compared with the
state-of-the-art data-stream–processing system Heron relying on DVFS.

1 Introduction

Distributed data-stream–processing systems such as Twitter’s Heron [23] or
Spark Streaming [33] handle millions of inputs per day, resulting in massive com-
putations that require large amounts of energy. The purpose of the computations
is multi-faceted and depends on the provided services (e.g., machine learning [8],
graph computation [21], geo streaming [22]). With inputs in many cases being
related to user actions, the workload of a data-stream–processing system usu-
ally varies over time, often following diurnal patterns that are characteristic for
data-center applications [5, 12]. As a result, such a system in practice does not
constantly need to provide peak performance but instead is able to save energy
during periods of low and medium workloads. For this purpose, data-stream–
processing systems typically rely on techniques at different levels: First, they
offer the possibility to dynamically reconfigure the number of servers in the sys-
tem depending on the workload that currently needs to be processed [9, 10, 24].
Second, on each server, the systems exploit power-saving techniques such as dy-
namic voltage and frequency scaling (DVFS) [19, 29] to increase the energy effi-
ciency of each server individually. In this paper, we focus on the latter problem,
identify drawbacks of DVFS in the context of data-stream–processing systems,
and present an approach to further improve a server’s energy efficiency.
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When DVFS is activated on a server, the server’s operating system moni-
tors CPU utilization and dynamically regulates processor speed, for example,
decreasing the processor frequency when utilization is low in order to reduce
power demand. Our experiments with Heron confirm this strategy to be effec-
tive, but also show that using DVFS a server often still requires significantly
more power than would actually be necessary to handle the current workload.
As the main reason for this behavior we identified the fact that due to only
taking CPU utilization into account, DVFS needs to make pessimistic assump-
tions on its own interference with the application. Consequently, in an effort to
avoid performance degradation, an operating system applying DVFS not always
configures the hardware to be in its most energy-efficient power state.

Building on our findings, we developed an approach, Strome, that allows a
data-stream–processing system to leverage the so far unused energy-saving po-
tential. In contrast to DVFS, Strome’s decision-making process is not limited
to system-level information obtained on the local server, but instead combines
application-level performance metrics collected in the entire system. As a key
advantage, this allows Strome to precisely assess its impact on application per-
formance and to coordinate energy-saving mechanisms across different servers.
To minimize the power demand of a server, Strome relies on modern hard-
ware features such as RAPL [20] that enable system software to specify upper
limits for the power demand of components (e.g., CPU, memory), which are
then enforced by the hardware. Compared with DVFS, RAPL offers the bene-
fit of taking effect at a wider range of power configurations, thereby especially
enabling energy savings at low and medium workload levels.

With Strome being implemented as a part of the data-stream–processing
platform, the applications running on top of it can profit from our approach with-
out requiring any modifications. Our prototype implementation based on Heron
shows that Strome seamlessly integrates with real-world systems. Furthermore,
our experimental evaluation with varying workloads confirms that Strome is
able to dynamically adjust power-demand limits in an effective and coordinated
fashion, thereby automatically adapting to workload changes. Altogether, this
paper makes the following contributions:

1. It shows how the lack of application awareness significantly reduces the
amount of energy the state-of-the-art DVFS-based approach is able to save.

2. It presents the Strome approach of making data-stream–processing systems
energy aware and applying energy-saving techniques in a way that takes their
effects on application performance into account.

3. It evaluates the effectiveness of Strome at the example of Heron for a variety
of common data-stream–processing applications.

The remainder of the paper is structured as follows. Section 2 summarizes
our analysis of the effects of DVFS on Heron and consequently uses our findings
to motivate the Strome approach. Section 3 presents details on the Strome
design and implementation. Section 4 evaluates our Strome prototype, Section 5
discusses the adaptability, portability, and scalability of the Strome approach.
Finally, Section 6 summarizes related work and Section 7 concludes.
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2 Background and Problem Analysis

Data-stream–processing applications are implemented using topologies, that is,
compositions of processing elements and operators, which each handle different
parts of the overall task. Figure 1 shows an example of such an application
that performs analyses on the browsing behavior of Web-page visitors. For this
application, two source nodes (“spouts”) provide the input data, which is then
routed through a series of worker nodes (“bolts”) responsible for preprocessing
and analyzing the user data. In a last step, a joiner bolt combines the produced
results and forwards them to the data sink. To execute a topology, data-stream–
processing systems such as Heron [23] distribute the topology’s nodes across the
available servers and manage the data flow between machines. For this purpose,
the systems typically rely on a dedicated master process that, amongst other
things, determines node placement, starts the topology, and collects application
performance metrics (e.g., throughput and latency) during execution.

As the amount of input that needs to be processed usually varies throughout
the course of a day, servers in a data-stream–processing system do not always
have to provide peak performance, but instead are able to save energy during pe-
riods of reduced workloads. The technique applied in the vast majority of today’s
servers to achieve this is dynamic voltage and frequency scaling (DVFS) [19, 29].
DVFS allows the operating system of a server to dynamically adjust a CPU’s
frequency (and voltage) depending on current system load, thereby adapting the
CPU’s performance capabilities to the work that needs to be performed.

To analyze the impact of this approach on the power demand of a data-
stream–processing system, we conduct an experiment with the user-behavior–
analysis application presented above. As shown in Figure 2, during the exper-
iment we vary the workload in order to examine the effectiveness of DVFS at
different levels. For comparison, we evaluate three different power-configuration
modes (i.e., DVFS, performance, and power-save), which are implemented by
different power governors [25]. Only for DVFS, the operating system actually
varies voltage and frequency based on the current load level. In contrast, the two
other modes work with constant configurations, always operating the CPU at
its maximum (performance mode) and minimum (power-save mode) frequency,
respectively. Consequently, the results of these power-configuration modes can
serve as baselines for the highest and lowest possible power demand.

Spout1 Bolt1

movAvg

Bolt2

spikeDetector

Spout2 Bolt3

geography

Bolt4

geoStats

Bolt5

repeats

Bolt6

totalStats

Bolt7

joiner

Sink

Worker1

Worker2

Worker3

Master

Fig. 1. Example of the logical topology of a data-stream application for analyzing
Web-user behavior (left) and its physical distribution among three servers (right).



4 C. Eibel, C. Gulden, W. Schröder-Preikschat, and T. Distler

0 50 100
0

20

40

60

Time [sec]

T
h
ro
u
g
h
p
u
t
[k
T
u
p
le
s/
s]

0 50 100
0

50

100

150

Time [sec]

P
ow

er
co

n
su
m
p
ti
o
n
[W

]

Performance

DVFS

Power-Save

Fig. 2. Throughput and power-demand comparison at different workload levels for a
Web-user–behavior-analysis application using three power-configuration modes.

Our measurement results in Figure 2 show that (1) the power demand of the
overall system to a large extent depends on the work performed by CPUs and
that (2) DVFS is able to support the full spectrum of workloads: For high work-
loads, it allows the application to achieve maximum performance at the cost of
an increased power demand, while for low and medium workloads DVFS effec-
tively reduces power demand. However, the results of this experiment also reveal
that DVFS does not necessarily apply the most power-efficient configuration in
all cases. At a throughput of 20 kTuples/s, for example, the power-save configu-
ration achieves a 12% (64W vs. 73W) lower power demand than DVFS, despite
processing the same workload. This effect is a consequence of the problem that
DVFS tries to minimize its interference with the application while using CPU
utilization as the only metric to estimate current performance requirements. To
compensate the lack of knowledge, DVFS needs to make pessimistic assump-
tions on its own negative impact on application performance, which for some
load levels results in processor configurations with non-optimal power demand.

One way to minimize power demand would be to always execute a system
in power-save mode, however, our measurement results illustrate that this also
is not an option as it usually prevents an application from processing high
workloads. For the example application, the maximum throughput achievable
in power-save mode is 21.5 kTuples/s, that is, less than half of the 50 kTuples/s
maximum throughput for DVFS and the performance mode. This shows that
there is a tradeoff between saving as much energy as possible for a particular
workload and being able to handle arbitrary workloads.

To overcome this issue, we developed Strome, an approach that enables
data-stream–processing systems to achieve additional energy savings for low and
medium workloads without sacrificing the ability to support high workloads. To
minimize energy demand, Strome sets CPU power-demand limits and dynami-
cally adapts them in the face of varying workloads. In contrast to DVFS, Strome
does not consider CPU utilization but instead directly takes application perfor-
mance metrics into account. Furthermore, Strome is not focused on a single
server but addresses saving energy as a distributed problem, thereby better re-
flecting the distributed nature of today’s data-stream–processing systems.
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3 Strome

In this section, we first give an overview of the Strome approach (Section 3.1)
and then provide details on the particular mechanisms it uses to minimize energy
demand (Section 3.2), to coordinate power-saving techniques across servers (Sec-
tion 3.3), and to adapt to varying workloads (Section 3.4).

3.1 Overview

Strome’s main goal is to minimize the energy demand of a data-stream–pro-
cessing system without decreasing application performance. To achieve this, de-
pending on the current workload Strome dynamically adjusts individual limits
for the amount of power each server in the system is allowed to use, thereby
saving energy at low and medium workloads while still being able to exploit all
available processing resources at high workloads.

As shown in Figure 3, Strome seamlessly integrates with existing data-
stream–processing systems such as Heron. On a system’s master server, Strome
introduces an additional module, the global regulator, which is responsible for
determining the current workload level and consequently also decides whether
reconfigurations of power-demand limits are necessary. Once the global regula-
tor chooses to modify the power-demand limit of a worker server, it instructs a
dedicated Strome module on this server, the local regulator, to implement the
new power cap. To determine the power-cap values to apply, Strome’s global
regulator relies on a metrics database that is populated by the local regulators
and contains server-specific information on power demand and application per-
formance. Relying on this database, the global regulator, for example, detects
if a server is in danger of becoming overloaded and, as a countermeasure, can
increase the affected server’s power-demand limit.

Being integrated with the data-stream–processing system, Strome does not
require any application-specific configuration or modification. When faced with
an unknown workload, the global regulator initiates an autonomous and coor-
dinated mechanism to learn and apply the most suitable power-demand limits
for all worker servers in the system, and afterwards stores this knowledge for
future use. Using the same mechanism and information, Strome is also able to
dynamically adjust power caps in order to react to workload changes.

Worker1

Heron Executor

Metrics
Manager

. . .

Master

Heron Master

Metrics
Database

Global
Regulator

Local
Regulator

Workern

Heron Executor

Metrics
Manager

Local
Regulator

Fig. 3. Overview of Strome’s basic system architecture at the example of Heron.
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3.2 Performance-aware Power Capping

Strome saves energy during periods of low and medium workloads by reducing
the amount of power a server is allowed to use. To enforce power-demand limits,
we exploit the fact that modern servers are equipped with power-management
features such as running average power limit (RAPL) [20]. RAPL offers fine-
grained control over a machine’s maximum power demand, taking a specific
power-demand value in watt (→ power-cap value) as input. In contrast to DVFS,
RAPL does not only change frequencies and voltages but uses additional hard-
ware features such as throttling the CPU’s clock, which enables further energy
reductions and allows RAPL to strictly adhere to the requested power cap.

To minimize its impact on the application, Strome applies power caps in
a performance-aware manner: it constantly monitors application performance
in order to assess the effects of newly set power caps. In this context, two
application-performance metrics are of particular interest:

– Throughput: The number of data tuples that are processed by the system per
second. Strome’s main goal is to maximize energy savings while ensuring
that this metric is not affected by the selected power caps.

– Back-pressure activity: The amount of time input data is buffered due to a
processing element being overloaded. This metric is crucial because it serves
as an early indicator that a current power limit may be set too low, allowing
Strome to quickly detect the need for a reconfiguration.

To collect these performance metrics for a topology, Strome utilizes the
built-in metrics facility already available in data-stream–processing systems.
Heron, for example, provides this service by running a separate metrics-manager
component on each worker node that registers and forwards node-specific run-
time statistics (e.g., tuples processed per bolt on that node) to the master’s met-
rics database (cf. Figure 3). That is, the metrics database contains, for example,
concrete throughput values (i.e., tuples/s) for each machine in the cluster, or-
dered by a timestamp and categorized by the type of processing element (spout,
bolt, sink). Based on this information, Strome is able to calculate the topology’s
total throughput by adding up the throughput values of all sinks.

Apart from performance metrics, Strome’s worker servers also retrieve ma-
chine-specific power values and forward them to the master’s metrics database.
To obtain such values, we exploit the fact that RAPL can not only be used
to implement power caps but also to measure the power demand of CPUs and
other hardware components (e.g., DRAM, GPU, memory controller). As the
values provided by RAPL only reflect a part of a server’s overall power demand,
in addition, we also feed the metrics database with results from an external
measuring device that cover the entire power demand of all worker servers in
the system, including the power demand of hardware components such as disks,
RAMs, mainboards, fans, and power-supply units. Combining this knowledge
about power demand with the application-performance metrics offered by the
data-stream–processing system, Strome has all the information necessary to
minimize the power caps for each server depending on the current workload.
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3.3 Coordinated Distributed Power Capping

Controlling the power-demand limits of all worker servers a topology is running
on, Strome is able to coordinate the selection and implementation of power caps
across servers. For this purpose, the control logic in Strome’s global regulator
runs in a continuous feedback loop, which involves multiple steps it periodically
executes. Its goal is to determine the best power cap for each machine to save
the largest possible amount of energy while not interfering with application per-
formance. The specific power-cap values depend on the type of topology, the
number and types of worker servers in the cluster, and the current throughput.

At startup, the global regulator retrieves information on the topology from
the data-stream–processing system’s master, which in particular includes the
set of worker machines that participate in executing the topology. In a second
step, the global regulator resets all power caps on all servers (i.e., it makes sure
that all machines have no power-demand limit), meaning that the servers run
with maximum performance possible. Knowing the servers that participate, the
global regulator can also obtain their current individual power-demand values
from the metrics database. Utilizing this knowledge, the global regulator then
sorts the servers in decreasing order of their current power-demand values and
thereby defines the order in which the individual power cap for each server will
be determined. The rationale behind this approach is to start with the worker
server that contributes the most to the system’s overall power demand and is
therefore likely to offer the highest savings in absolute numbers.

Starting with the first worker server on the list, the global regulator repeats
the steps sketched in Figure 4 for each server in the system. Initially, it instructs
the server’s local regulator to set the power cap to the current power demand
of the server (Line 2). Next, the global regulator gradually decreases the power
cap (Line 4) until a processing element in the topology is no longer able to
handle its inputs (Line 6), which is detected based on the back-pressure time
information provided by the metrics database (see Section 3.2). At this point,
the global regulator resets the server’s power cap to the last value known to
support the current workload (Line 7) and advances to the next server. This
process continues until power caps for all worker servers have been determined.

1 void determine_power_cap(Server server):
2 server.set_power_cap(PowerCap cap := server’s current power demand);
3 while(true):
4 server.set_power_cap(PowerCap new_cap := cap − ∆);
5 Wait for the new power cap to take effect;
6 if(back-pressure detected):
7 server.set_power_cap(cap);
8 return;
9 else: cap := new_cap;

Fig. 4. Basic Strome algorithm for determining the individual power cap for a server.
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Relying on back-pressure information as an indicator to decide when a suit-
able power-demand limit for a server is reached has two main advantages: First,
the buffering time of processing elements usually quickly increases in case of over-
load situations and therefore allows the global regulator to revoke a low power
cap before it can have a broader impact on overall application performance. Sec-
ond, in contrast to throughput, for example, the back-pressure metric enables
the global regulator to distinguish between a performance decrease that is caused
by a low power cap and a performance decrease that is the result of fewer input
data flowing into the system. Only in the former case, the global regulator needs
to abort its efforts for the current server, while in the latter case, it is able to
continue by further reducing the server’s power-demand limit.

3.4 Dynamic Adaptation to Varying Workloads

In addition to power capping all servers in a coordinated manner, Strome’s
global regulator also continuously monitors application performance and peri-
odically reevaluates the current configuration in order to be able to dynamically
react to workload changes. To speed up the adaptation process, the global reg-
ulator maintains a power-cap database containing the power-cap values previ-
ously determined for different throughputs using the mechanism discussed in Sec-
tion 3.3. As a key benefit, this database allows the global regulator to quickly
adjust power-demand limits for known workload levels.

The power-cap database is implemented as a map that stores throughput
categories (e.g., 10 kTuples/s, 20 kTuples/s, 30 kTuples/s, etc.) as keys and the
corresponding sets of power caps as values, together with metadata such as
the identifiers of worker servers. If a periodic reevaluation is due and an entry
matches the current workload, the global regulator immediately instructs the lo-
cal regulators to apply the power caps from the database. Otherwise, the global
regulator initiates the distributed power-capping mechanism described in Sec-
tion 3.3, which will eventually lead to the creation of a new database entry.
The same also happens for entries whose throughput values are already in the
database in case the set of worker servers in the system changes.

When creating the power-cap database, the global regulator does not aim
at collecting entries that reflect equidistant throughput categories. Instead, the
regulator targets a finer granularity of database entries for low and medium
workloads, as these are the ranges that offer the highest energy savings. This
approach allows Strome to improve its effectiveness while limiting the costs
necessary for populating and maintaining the power-cap database.

4 Evaluation

In this section, we evaluate Strome with multiple Heron applications to de-
termine the amount of power that can be saved for different topologies in the
presence of a varying throughput (i.e., the number of incoming tuples to process
each second). Furthermore, we show the potential of applying power caps and
evaluate Strome’s ability to dynamically adapt to changing throughput levels.
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4.1 Experimental Environment

We conduct our experiments on a cluster of three homogeneous worker nodes,
comprising servers with an Intel Xeon E3-1275 v5 processor (Skylake archi-
tecture, 8 cores with Hyper-Threading, SpeedStep, and Turbo Boost enabled,
3.40GHz). All machines are connected via switched 1Gbps. To gather node-
specific energy and power values, we use RAPL. In addition, for a complete
view of the whole cluster in terms of power and energy demand, including all
the machines’ hardware, we use an external, high-precision measuring device,
the Microchip MCP39F511 that provides results with a measuring error of only
0.1% [27]. We implemented our Strome prototype based on Heron version 0.14.6
and run all machines on Ubuntu version 16.04.3 LTS. For comparison, we repeat
the experiments with standard Heron while DVFS (i.e., the Linux ondemand
governor) is enabled on all machines. As topologies, we use typical data-stream–
processing applications that are either CPU or memory bound. The evaluated
applications, including short descriptions, are summarized in Table 1.

Table 1. Overview of the evaluated Heron applications.

Application Description

ClickAnalysis Analyzing origins and interactions of users (IP addresses) with
Web pages to gain insights into their Web-browsing behavior.

BargainIndex

A financial benchmark that calculates the volume-weighted av-
erage price by adding all shares multiplied by their share price
and dividing the resulting value by the total number of shares
in a specific period.

WordCount Splits sentences into words and counts each word’s occurrences.
TweetAnalysis Spam and sentiment detection on a stream of incoming tweets.

4.2 Topology-Dependent Power-Capping Efficiency

In our first experiment, we are interested in the effectiveness of applying power
caps to different topologies. For this purpose, we start all workers with the topolo-
gies in Table 1 and apply power caps for different throughput values. We compare
these values to the results obtained with the same setup of workers, topologies,
and inputs when relying on DVFS. All power-demand values reflect the total
power demand of all processing workers, measured with the MCP39F511.

Figure 5 presents the resulting power values for all topologies within their
individual throughput range. Each data point in the graph represents the lowest
power value achievable for the respective throughput when each worker is capped
with a specific power value. Depending on the topology type, the maximum
throughput varies between 4 and 300 kTuples/s, which illustrates the diverse
characteristics of the four topologies evaluated. Comparing the power demand
of Strome with DVFS shows that Strome provides better power efficiency for
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Fig. 5. Power-capping efficiency for the evaluated Heron topologies.

all topologies. The amount of power that can be saved varies with the topology.
For example, while the maximum power savings for ClickAnalysis is almost
17W at a throughput of 45 kTuples/s (i.e., Strome’s power demand is 15%
lower compared with DVFS), the power savings achievable for BargainIndex at
a throughput of 90 kTuples/s are as high as 35W (25%).

Table 2 contains a selection of the chosen power caps for all workers for
ClickAnalysis and WordCount and specific throughput levels. The power-cap
values show that there is no linear relationship between throughput and power
caps to set. Moreover, the ratio between power-cap values of two worker servers
is not always the same over the whole throughput range. For example, with
WordCount, at a throughput of 280 kTuples/s, the caps for Worker2 and Worker3
are equally set to 6.875W, whereas at 140 kTuples/s, the cap of Worker2 can be
set 2.5W higher than the cap of Worker3.

From these results we conclude that it is important to not only know the
effects of a power cap based on a single throughput value, but to investigate the
whole throughput range. This also means that Strome’s approach of determin-
ing the power caps at runtime is favorable over a pure model-based approach,
which is hard and cumbersome to establish for all kinds of topologies.

Table 2. A selection of power-cap values (where Capx corresponds to the power cap set
on Workerx) for WordCount as well as ClickAnalysis and specific throughput values.

Application Throughput [Tuples/s] Cap1 [W] Cap2 [W] Cap3 [W]

WordCount

70,000 2.5 6.875 5
140,000 2.5 11.25 8.125
210,000 3.125 22.5 22.5
280,000 4.375 28.75 28.75

ClickAnalysis

10,000 3.5 3.5 5
20,000 6.875 6.875 3.75
30,000 11.875 9.375 3.75
40,000 21.25 15.625 5
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4.3 Coordinated, Distributed Power-Capping Analysis

In our second experiment, we investigate the coordinated, distributed power-
capping mechanism presented in Section 3.3. In this scenario, the ClickAnalysis
topology is executed with a constant throughput of 40 kTuples/s. The global
regulator runs with an empty power-cap database; that is, it does not know be-
forehand which caps are favorable for the currently applied throughput. Figure 6
shows the complete throughput trend over the entire experiment (top) and the
RAPL power-demand values measured for each worker servers (bottom).

The global regulator’s capping procedure begins to cap all workers one by one,
starting withWorker1 since it has the highest power demand. After a few seconds,
the power demand of Worker1 is reduced by about 5W and an additional 1W at
20 s into the experiment. As the global regulator detects overload, it immediately
raises Worker1’s power cap again so that no throughput deviation is observable.
Next, the power caps for Worker2 and then for Worker3 are decreased in the
same way and finally set to approximately 15W and 5W, respectively. Thus,
the dynamic power-demand amount, which is the power demand that does not
depend on fans, disks, peripherals etc., is reduced by almost 12%.

Finding a suitable power cap for each worker may induce a small temporary
throughput reduction (e.g., at 120 s into the experiment when finding the power
cap for Worker3), which is acceptable considering the energy savings possible
with Strome over the long period of time a data-stream–processing application
is typically running. Overall, based on this experiment we can conclude that
even in phases where no power-cap database entry has been established yet, the
effects on performance are minimal, showing the practicability of our approach.
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Fig. 6. Analysis of Strome’s coordinated, distributed power-capping mechanism in
terms of throughput and individual per-worker power demand for ClickAnalysis.



12 C. Eibel, C. Gulden, W. Schröder-Preikschat, and T. Distler

4.4 Dynamic-Adaptation Analysis

In our third and final experiment, we rely on the BargainIndex topology to
evaluate how Strome behaves in the presence of a varying throughput when its
power-cap database is already filled with entries for a topology. For comparison,
we repeat the experiment with DVFS using the same varying workload.

Figure 7 presents the obtained measurement results for throughput (top),
the total power demand of all involved workers (middle), and the end-to-end
latency (bottom). During the execution of the topology, Strome periodically
queries its database for power caps that are suitable for the current through-
put. This process happens immediately; that is, in contrast to the experiment
in Section 4.3 no extra time is necessary to determine the power caps to set,
allowing Strome to instantly save power compared with DVFS. The values
for end-to-end latency show that Strome’s adaptation process and the power-
capping measure only have a small effect on the time it takes to process input
data. Although the execution times within the processing elements (e.g., inside
a bolt) may increase with lower power caps, other factors (e.g., communication)
have significantly more influence so that these execution times are negligible.

In summary, this experiment confirms that, independent of the current work-
load, Strome is able to provide the necessary throughput performance without
deteriorating the end-to-end latency of the data-stream–processing application.
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Fig. 7. Throughput, power-demand, and end-to-end–latency evaluation of DVFS ver-
sus Strome with a fully established power-cap database for BargainIndex.
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5 Discussion

This section discusses adaptability, portability, and scalability aspects of the
Strome approach and its implementation.

Adaptability. Throughout this paper, we have shown the concept and en-
ergy-demand improvements of Strome at the example of Twitter Heron. How-
ever, the Strome approach is not limited to Heron only. Other systems such as
Apache Spark Streaming [3] and Apache Storm [4] can also benefit from Strome
without requiring major changes to their implementation. This is a result of our
design choice to keep large parts of the local- and global-regulator logic inde-
pendent of the actual data-stream–processing system running. Moreover, most
data-stream–processing systems share design principles, such as the type and
behavior of processing elements (e.g., join) or the performance metrics of inter-
est (e.g., throughput), allowing Strome, for example, to use a metrics database
with a similar schema (i.e., mapping throughput to power caps) for different
data-stream–processing systems. Access to application metrics is inherently im-
portant for Strome to make better power-management decisions than DVFS.
Apache Storm and Apache Spark Streaming, for instance, both have a built-in
metrics API that pushes data via different metric reporters to a central database.

Portability. Strome uses power-capping techniques that are available on a
large set of today’s machines. All new Intel processors, even the mobile versions,
are equipped with this feature. Older AMD processors support the application
power management (APM) [1] feature, which is comparable to RAPL, while
newer ones provide an interface that is more similar to the original RAPL in-
terface from Intel [2]. Therefore, a multitude of systems in modern data centers
offer a feature equal or similar to RAPL. For the few servers for which this is not
the case, it is possible to access commonly available features such as P-states to
adjust the frequency–voltage pair directly. This way, Strome can adapt these
pairs based on its knowledge about the application and still reduce the machines’
power and energy demand significantly compared with standard DVFS.

Scalability. Strome’s algorithm for determining the individual power caps
for all servers sequentially finds the power cap for each server involved in the
execution of a topology. While this mechanism is sufficient for the number of
machines used in our evaluation setting, it might be too time intensive for a
larger set of machines. For such cases we suggest the following two refinements:
First, if the workload level changes before the algorithm completes, the energy
regulator can save the power caps learned so far and resume the algorithm for
the remaining servers when the throughput returns to its original level at a later
point in time. Second, if there are many machines in the cluster, we suggest to
group them by certain criteria (e.g., the type of work they have to accomplish)
and apply the same power cap to all machines in the group at once. If the energy
regulator detects an overload situation, it resets the power caps of all machines in
the group to the last known value that supports the current workload (as is the
case for the algorithm that sequentially caps single machines, cf. Section 3.3). In
consecutive runs, it is then possible to further refine the found cap by splitting
up the original group and reevaluating the cap for the smaller sub groups.
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6 Related Work

Strome is related to several research domains. We present and discuss the most
relevant to its design principles in the following.

Data-Center Power Management. There are multiple approaches at dif-
ferent system levels which tackle the problem of reducing energy demand. DVFS
is a technique that is applied on all kinds of machines, whereas power capping
is typical for large data centers, where the power demand is limited because of
thermal reasons (equipment protection) [6], not tripping circuit breakers [32],
or to stay within a provisioned budget [7]. Hardware-enforced power capping
to reduce power demand has previously been investigated for different types of
applications [13, 14, 26, 28]. Strome is the first work to use this technique in
order to improve energy efficiency in data-stream–processing systems.

Elastic Data-Stream Processing. Elastic data-stream processing com-
monly refers to data-stream processing systems that are dynamically recon-
figured at runtime. Li et al. [24] present Stela for the data-stream–processing
system Apache Storm. Generally, this framework aims at increasing throughput
while decreasing the average request response times, without respecting energy
or power demand. The system is monitored to dynamically adapt the number of
workers or the parallelism of operators in the topology. Cardellini et al. [9] pro-
pose a similar approach where operators may also be relocated. StreamCloud,
introduced by Gulisano et al. [17], lowers the distribution-algorithm overhead for
queries and thus improves the general scalability of the data-stream–processing
system. Cerviño et al. [10] engage scaling by allocating or de-allocating virtual
machines with regard to the input rate. In contrast to Strome, relocation has the
effect of considerably impacting latency and should therefore be handled care-
fully. These mentioned approaches are orthogonal to Strome as they directly
change the data-stream–processing system itself (including the API), whereas
Strome is adaptable to different systems without requiring deep modifications.

Quality-of-Service Awareness. Besides saving energy, Strome ensures
quality of service, an important goal in a wide range of different fields. For exam-
ple, Zhu et al. [34] propose energy-efficient quality-of-service awareness for mobile
Web applications. Heinze et al. [18] propose another approach for data-stream–
processing systems where quality of service is balanced with monetary costs.
Again, energy awareness is not respected in this approach. De Matteis et al. [11]
do consider energy demand in addition to also optimizing for latency in data-
stream–processing systems; however, the presented framework relies on DVFS
to reduce energy demand, which we have shown in this work does not exploit the
full energy-saving potential of today’s hardware. Dhalion by Floratuou et al. [16],
like Strome, is based on Twitter Heron. Dhalion is a self-regulating system that
does not care about energy or power at all. Using Dhalion, it is not required to
restart and reload the whole topology when changing participating hardware
components. Thus, we see great potential in extending our work to incorporate
Dhalion for using not only available power-capping features such as RAPL but
also to dynamically switch between diverse hardware components that each have
their strengths in terms of energy demand for certain throughput regions.
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Resource-Aware Multiprocessor Systems Due to the parallel nature of
topologies, data-stream–processing systems greatly benefit from being executed
on machines with multiple processors. Apart from challenges such as programma-
bility, adaptivity, scalability, physical constraints, reliability, and fault toler-
ance [31], resource and energy awareness are crucial problems in current and
future many-core systems. These issues motivate the new computing paradigm
invasive computing [30], which introduces resource-aware programming. The
invasive-computing paradigm gives applications the possibility to distribute their
workloads depending on the availability and status of the underlying system re-
sources. A key resource here is energy. Systems on a chip consisting of hundreds
or thousands of cores are concerned with inherent power limitation just to avoid
overheating or even blowing of circuitry (dark silicon [15]). Strome shares the
insight that extensive knowledge about the structure and progress of applica-
tions (i.e., data-stream–processing topologies) is greatly useful for an energy-
efficient operation of computing systems. Whether this knowledge is obtained
statically, for example at design-exploration time, as it is the case with invasive
computing, or dynamically at runtime, is not decisive for Strome itself.

7 Conclusion

Applying DVFS reduces the energy demand of data-stream–processing systems,
but for low and medium workloads in many cases cannot exploit the full energy-
saving potential. To address this problem we have presented Strome, a power-
aware technique that relies on power capping to save energy in data-stream–
processing systems without affecting performance. Compared to DVFS, Strome
operates at the granularity of multiple servers which enables the technique to
select and implement power caps in a coordinated fashion across servers. For
its reconfiguration decisions, Strome does not rely on CPU utilization, but in-
stead explicitly takes application performance (e.g., throughput) and overload
metrics (e.g., the buffering times of processing elements) into account and is
therefore able to minimize its own interference with the application. Our evalua-
tion with different application scenarios on common server hardware has shown
very good power-saving results compared to the widely used traditional DVFS.
Furthermore, our experiments have confirmed Strome’s ability to adapt to vary-
ing workloads. As future work, we plan to investigate the Strome approach in
the context of other data-stream–processing systems. In addition, we want to
explore further power-saving techniques such as using heterogeneous workers.
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