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Abstract. Road traffic prediction for the efficient traffic control has lately been 

in the focus of the research community, as it can solve significant urban issues, 

such as city evacuation plans, increased concentration of CO2 emissions and 

delays caused by extended traffic jams. The current paper proposes a novel ap-

proach for multi-variate data mining from past traffic data (i.e. average speed 

values per road), so as to dynamically detect all significant correlations between 

the road network components (i.e. the segments of the roads) by mapping the 

latter onto a low dimensional embedding. Multiple traffic-related features (e.g. 

speed correlation, spatial proximity, phase difference, etc.) are utilized in a mul-

ti-objective optimization framework, producing all Pareto-optimal embeddings, 

each one corresponding to a different trade-off between the objectives. The op-

erator is provided with the option to interactively select among these Pareto-

optimal solutions, so as to explore the most descriptive sets of road influences. 

The proposed method has been evaluated on real traffic data, while the evalua-

tion of the forecasting performance of the multi-objective approach exhibited 

accuracy improvement with respect single-objective approaches. 

Keywords: Data Mining, Multi-objective Optimization, Pareto-optimal Solu-

tions, Clustering, Graph-based Representation. 

1 Introduction 

Traffic conditions on road networks have grown to affect several aspects such as the 

amount of productivity and the lifestyle of the citizens in big urban centers. The opti-

mization of transport, in terms of both individuals and/or fleets, has a serious socio-

economic and environmental impact. The study towards the development of intelli-

gent transportation systems (ITS) is constantly gaining attention by the research 

community. Although common traffic detectors could help alleviate certain traffic 

problems, the fact that traffic is a dynamic, constantly altering variable, poses new 

challenges in its confrontation. Consequently, the problem of forecasting traffic with-

in short time intervals ahead of time has arisen as a crucial task, the satisfactory anal-

ysis of which is believed to result in more efficient and dynamic routing solutions. 
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Traffic may be interpreted in various ways through traffic descriptors, such as trav-

el time and instantaneous vehicle speed, observed using GPS sensors. Traffic predic-

tion techniques use this information, taking also into account the fact that the traffic in 

one region can affect the traffic in another. However, most techniques utilize a single 

notion of influence between roads, e.g. the correlation between their traffic time se-

ries. However, such influences are usually multi-dimensional, depending on more 

than one parameters, e.g. phase similarity of the corresponding time series, geograph-

ical proximity of the roads, etc. 

In this paper, an approach for traffic prediction is proposed, which takes into ac-

count multiple types of influence among roads. The proposed method considers mul-

tiple notions of dissimilarity between roads, based on correlation, phase, geographical 

distance, etc. The dissimilarity measures are used in a multi-objective Multidimen-

sional Scaling framework, for computing the influence between roads and using it for 

prediction. The multi-objective nature of the framework allows the selection of trade-

offs among the dissimilarity measures, allowing data exploration by operators. 

2 Related Work 

Existing approaches used for traffic prediction are divided into parametric and non-

parametric methods. Parametric methods are based on specific pre-determined mod-

els that are trained in order to deduce their parameters. Common parametric methods 

include the Auto-Regressive Integrated Moving Average (ARIMA) model [1], and its 

variations, such as the Auto-Regressive Moving Average (ARMA) model [2]. In con-

trast with the univariate analysis of the ARIMA model, its multivariate counterpart, 

the Space-Time ARIMA (STARIMA), first introduced in [3], takes into account sev-

eral time series that are related to each other, introducing new parameters to account 

for spatial and temporal lags. A quite different line of parametric methods is the wide-

ly used Kalman Filters [4][5], which are based on updating a state variable upon re-

ceiving each new measurement. 

In non-parametric methods, the model is not known a-priori. Non-parametric 

methods can be categorized to memory-based ones, which retain historical samples in 

order to perform prediction, and model-based ones, which only need the extracted 

model, discarding historical data upon the training phase. The most typical example 

of a memory-based model is the k-Nearest Neighbor (kNN) method. Although simple 

in nature, kNN seems to produce satisfactory results [6], suggesting that performance 

lies mainly in the proper representation of the dataset features rather than the blind 

application of a robust algorithm. Model-based methods construct a model using 

training data. Typical examples include Random Forests (RFs) [7], Artificial Neural 

Networks (ANNs), such as Multi-Layered Perceptrons (MLPs) [8][9], and Support 

Vector Machines (SVMs) [10][11]. 

Multi-objective optimization deals with problems having many conflicting objec-

tives [12][13]. Such problems arise frequently, especially in engineering and econom-

ics, for instance maximizing speed while minimizing fuel consumption or maximizing 

profit while minimizing cost. A solution that is optimal for one objective is subopti-
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mal for the other. One way to deal with this conflict is by scalarizing the objective 

functions, i.e. combining them in a single objective, which is then minimized with 

traditional optimization methods. Scalarization methods include using a weighted sum 

of the objectives [12], the ε-constraint method, where only one of the objectives is 

minimized, with the others used as constraints [12], or achievement function-based 

methods, that measure the distance of a solution from a reference one [14]. Scalariz-

ing the objectives involves setting preferences for the multiple objectives, (e.g. the 

weights of a sum, or the reference point for achievement functions), which is not a 

trivial task. Another class of multi-objective optimization methods produce a set of 

solutions [12] instead of a single one, namely the Pareto front, containing different 

trade-offs among the objectives. Such an approach can often discover solutions that 

scalarization approaches cannot, e.g. solutions lying in concave parts of the Pareto 

front. The Pareto front is commonly calculated using genetic algorithms, since the 

fact that they maintain a population of solutions, instead of a single one, suits the goal 

of calculating multiple solutions [13][15]. For the determination of the fitness func-

tion of the genetic process, different approaches have been followed [15], including 

weighted sums of the objectives with varying weights [16], alternating among the 

objectives [15] and using dominance relations [17]. 

Most of the existing methods for traffic prediction usually deal with one traffic-

related characteristic (i.e. modality), e.g. speed velocity at a given time instant, travel 

time required to traverse a road, etc. However, traffic prediction is a multivariate 

problem and such approaches pose some information loss, since they restrict the cog-

nitive understanding of the traffic to one dimension. In this respect, the current paper 

proposes a framework that is able to merge multiple variables on a common space via 

the utilization of Multi-Dimensional Scaling and multi-objective optimization, over-

coming thus the so-called “curse of dimensionality”, while a set of Pareto-optimal 

cases is provided to the traffic operator as possible choices for traffic prediction. 

3 Motivation and contribution 

Existing research has shown that the choice of the data mining approach to use for 

traffic prediction can affect the capability traffic modeling. The work of [18] shows 

that just considering the flow of a road at previous times without considering the flow 

of neighboring roads discards information that is essential for producing more repre-

sentative traffic models. Extending this further, the utilization of only a single notion 

of influence between roads, e.g. graph neighborhoods, may discard other types of 

influence that may lead to more accurate models. Influences among roads usually 

depend on more than one parameters, such as correlation between their traffic flow, 

flow phase similarity, geographical proximity, etc. 

When multiple types of information are available, multi-modal processing tech-

niques have proven useful in combining all available information, in order to produce 

outcomes that are more accurate than using each type of information separately. 

Combining multiple modalities has been especially useful in the field of multimedia 

analysis [19]. Multi-objective optimization has shown promising results in this field, 
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for managing multiple modalities [20], as a generalization of other multimodal tech-

niques, able to discover more solutions and to present the operator with a set of lim-

ited optimal trade-offs. Adapting this approach for combining multiple traffic-related 

characteristics seems promising for improving traffic prediction and allowing parame-

ter exploration by the operator. 

The contribution of this paper is the combination of multiple traffic-related fea-

tures, using multi-objective optimization techniques, in order to measure the influence 

of one road to other roads of the network, and thus define different notions of “neigh-

borhood”, based on Multi-Dimensional Scaling, to be used in STARIMA traffic mod-

els. The proposed framework seems to produce promising results, and is adaptive to 

more traffic features and further notions of road similarity, providing space for further 

experimentation and research. From an application point of view, the operators are 

presented with a set of trade-offs among the multiple traffic features, allowing them to 

select the most important ones for prediction. Such interactivity facilitates the opera-

tor of an ITS in exploring the available data and making decisions. 

4 Proposed approach 

The proposed approach proceeds as follows. Initially, traffic-related features (vehicle 

speed, etc.) are extracted for each road in order to compute pairwise distance matri-

ces, using multiple notions of road distance. The distance matrices are used to con-

struct objective functions, whose minimization leads to an embedding of the roads as 

points on the 2D plane. Multidimensional Scaling (MDS) is used to formulate these 

objectives, while multi-objective optimization techniques are used to compute a set of 

Pareto-optimal placement solutions. This way, a set of alternative placements of the 

roads are provided, that can be used to define neighborhoods of influence, for use in 

STARIMA [3]  traffic prediction. The placement solutions can be interactively select-

ed by the operators, with reference to the indicated current state of the selected road 

segment, while traffic prediction is visually annotated in real time on the map. 

4.1 Problem formulation 

A set 𝑂 =  {𝑅1, 𝑅2, … , 𝑅𝑁 } of N road segments is considered. A road segment is the 

part of a road between two subsequent intersections. If there are two opposite lanes in 

the same road between two intersections, two separate road segments are considered, 

one for each lane. Without loss of generality, the road segments are hereby considered 

to be straight lines. 

For a particular day, each road segment 𝑅𝑖, 𝑖 =  1 …  𝑁, is modeled as a set of cer-

tain attributes: 

 𝑅𝑖  =  {𝒔𝑖 , 𝒆𝑖, 𝒗𝑖  } ∈  𝑃, (1) 

where 𝒔𝑖 ∈  𝑹2 is the starting point of the segment, in map coordinates (latitude and 

longitude), 𝒆𝑖 ∈  𝑹2 is similarly the ending point of the segment and 𝒗𝑖 ∈  𝑹𝑀 is a 

vector whose j-th element, 𝑗 =  1 …  𝑀, is the average speed of the vehicles traveling 
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on the road segment at the j-th time interval, where the day has been split into M time 

intervals. The road segments 𝑅𝑖 are considered to belong in the space 𝑃 of all sets of 

these attributes. 

The problem addressed hereby is, given the road segments and the vehicle speeds 

for a specific day, to discover which road segments are related to a selected road seg-

ment, in order to predict which segments will be influenced by a change in the vehi-

cles' speed, e.g. denoting congestion, at the selected segment, on the same day another 

week. 

4.2 Road segment distance measures 

The proposed approach is based on defining notions of distance among the road seg-

ments, which encode different types of influence among them. The following distance 

measures are used, covering various spatiotemporal characteristics, although others 

can be incorporated as needed. The distance measures are used to construct distance 

matrices among the data, containing the distances among each pair of road segments. 

Cross Correlation similarities. This metric stands for the cross correlation value 

between the sequences of speeds of two road segments. Given two road segments 𝑅𝑖 

and 𝑅𝑗, 𝑖, 𝑗 ∈  1 …  𝑁, with their corresponding speed vectors 𝒗𝑖 and 𝒗𝑗, the correla-

tion distance 𝑑cor is defined as follows: 

 𝑑cor(𝑅i, 𝑅j) = max
𝑘=−𝑀…𝑀

|
𝐸[(𝑣𝑖,𝑡−𝜇𝑖)(𝑣𝑗,𝑡+𝑘−𝜇𝑗)]

𝜎𝑖𝜎𝑗
|, (2) 

whereby 𝑣𝑖,𝑡 is the t-th element of vector 𝒗𝑖, 𝜇𝑖 is the mean value of vector 𝒗𝑖, 𝜎𝑖 is 

the standard deviation of 𝒗𝑖 and 𝐸[⋅] stands for the mean value of the enclosed values, 

for all values of t. The correlation value derives from the absolute value of the Pear-

son Product-Moment Correlation Coefficient (PPMCC), with the modification of 

considering a phase parameter k, in order to take all the possible alignments of the 

two time series, as in [21], since one of them may be delayed with respect to another 

due to time needed for traffic to pass from one segment to another. 

Phase similarities. The correlation value above considers the maximum value of the 

correlation coefficient for all possible alignments of the two time series. The phase 

similarity 𝑑phase between two time series is hereby defined as the amount of sliding 

needed in order to achieve this maximum coefficient value. It is therefore defined as: 

 𝑑phase(𝑅𝑖 , 𝑅𝑗) = |arg max
𝑘=−𝑀…𝑀

|
𝐸[(𝑣𝑖,𝑡−𝜇𝑖)(𝑣𝑗,𝑡+𝑘−𝜇𝑗)]

𝜎𝑖𝜎𝑗
|| (3) 

Only the absolute value of the delay k is used, in order for the distance measure to 

be symmetric. However, the sign of the delay, i.e. whether the second segment pre-

cedes or follows the first, can be used in applications, in order to demonstrate which 

road segments will be influenced in the future. 
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Geographical proximity. The geographical distance 𝑑geo between two road seg-

ments is defined as the Euclidean distance between their midpoints: 

 𝑑geo(𝑅𝑖 , 𝑅𝑗) = ||𝐦i − 𝐦j||, (4) 

where  𝐦i =
1

2
(𝐬i + 𝐞i) and || ⋅ || denotes the Euclidean norm. 

Dynamic Time Warping difference. Provided the strong dependence on temporal 

relations of the fluctuations in the recorded velocities during the day, another metric 

that has been utilized for the estimation of the intra-distances between the roads is the 

Dynamic Time Warping (DTW) algorithm [22] that sufficiently manages to capture 

the spatiotemporal characteristics of these signals. The DTW algorithm has been 

widely used in a series of matching problems, varying from speech processing [22] to 

biometric recognition applications. Its main advantages are its simple implementation 

and its satisfactory performance given the required processing time. 

4.3 Multi-objective multidimensional scaling 

The hereby proposed approach is, using the distance measures described in Section 

4.2, to embed the road segments into a low dimensional space, where nearest neigh-

bors can be calculated, given a selected segment. Formally, the goal is to find an em-

bedding 𝐩1, 𝐩2, … , 𝐩N, 𝐩i ∈ ℝ𝐿 , for the N road segments 𝑅1, 𝑅2, … , 𝑅𝑁, so that the 

distances among the points 𝐩i in the low dimensional space ℝ𝐿 correspond to all the 

notions of distance between road segments which are defined in Section 4.2. 

Multidimensional Scaling (MDS) [23] is a common technique used to find an em-

bedding of a set of points, when only the distances among them are known. Let the 

known target distances be 𝛿𝑖𝑗, 𝑖,  𝑗 ∈ 1 … 𝑁. The desired embedding 𝑃 =

(𝐩1, 𝐩2, … , 𝐩N) ∈ 𝒫 of the objects is one in which the target distances among points 

are best preserved in the embedding. Let 𝐽: 𝒫 → ℝ≥0 be a cost function (objective 

function), evaluating the capability of an embedding 𝑝 ∈ 𝒫 for preserving the target 

distances among the data. ℝ≥0 is the set of non-negative real numbers. A commonly 

used objective function for MDS is the following: 

 𝐽(𝐩1, 𝐩2, … , 𝐩N) = ∑ (||𝐩𝑖 − 𝐩𝑗|| − 𝛿𝑖𝑗)
2𝑁

𝑖,𝑗  (5) 

Since there are multiple notions of distance between two data points (Section 4.2), 

multiple objective functions for MDS can be defined, one for each distance measure 

used. This is handled as a multi-objective optimization problem [12], using genetic 

algorithms [17], resulting in a Pareto front of optimal trade-offs among the objectives. 

The genetic algorithms proceed by examining different placements of the N points on 

the 2D plane, so that there are 2N variables. Crossover strategies can combine two 

placements by randomly keeping, for each object, the corresponding point from either 

parent as the child's point. Mutation operates by adding random noise on the child's 

position. The initial population size can be chosen as multiple of the solutions that are 

kept to represent the final Pareto front, which can be in the order of 10 - 20, so that 
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they are not overwhelming to the operator. The focus of this paper is more on the 

assessment of how the combination of multiple traffic characteristics can benefit pre-

diction than on finding the optimal crossover/mutation functions and population size. 

Further work can use different optimization techniques, in order to achieve more rep-

resentative Pareto fronts faster. 

An example Pareto front for a problem of two objectives is illustrated in Fig. 1(a). 

The Pareto diagram depicts the Pareto optimal solutions as points, having the values 

of the objective functions as coordinates. The gray-shaded area represents the set of 

all feasible solutions, while the bold border in the lower left of the feasible area is the 

Pareto front. Point 𝑃2 dominates 𝑃1, as well as the whole hatched area, since both 

objectives have smaller values at 𝑃2. On the other hand, points 𝑃2 and 𝑃3 are incom-

parable, since decreasing one objective leads to increasing the other one. 

The selection of a Pareto-optimal embedding to use for detecting roads with similar 

characteristics and making predictions is performed by a human user. The solutions of 

the Pareto set are presented to the user in the form of a Pareto diagram, such as the 

one in Fig. 1(a)Error! Reference source not found.. By selecting among different 

trade-offs, the operator can focus on different aspects of traffic flow and be assisted in 

predicting future states. After the selection of a Pareto-optimal embedding, the road 

segments are represented by points in the 2D space (see Fig. 1(b)). Nearby points 

represent roads that are similar with respect to the distance measures used and the 

Pareto trade-off that has been selected. When an operator selects a road segment on 

the map, wishing to view the segments which are influenced by it, the nearest roads 

segments to the selected one in the embedding are found and presented on the map. 

The amount of closeness of a road segment can be depicted graphically on a map by 

e.g. controlling its color or opacity. 

 

Fig. 1. (a) Example Pareto diagram. (b) Low-dimensional embeddings solely based on the (i) 

geographical proximity (ii) temporal proximity (iii) cross-correlation (iv) DTW-based modality. 

5 Evaluation of the proposed approach 

5.1 Dataset Description 

The proposed method has been tested on the so-called Berlin dataset, which was rec-

orded from 18/03/2012 to 31/03/2012, using the open TomTom API [24]. The data 

contain real vehicle speed measurements from Berlin, collected from several road 
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points using GPS locators. Each measurement contains the instantaneous speed at a 

specific road point, measured in millisecond intervals, and is accompanied by the map 

coordinates of the road location. However, due to the absence of speed values in 

many time moments, a preprocessing of the original data was performed, as described 

in [21]. The preprocessing procedure, for a day of measurements is as follows. 

First, the measurement points were grouped in road segments, i.e. parts of a road 

between two subsequent intersections, resulting in about 7000 road segments, each 

associated with the speeds obtained for the road points inside it. Since each road seg-

ment may contain a different number of speed measurements, the raw measurements 

were grouped in five-minute intervals, considering the harmonic mean of the speed 

values at each interval. The size of the resulting speed vector assigned to a road seg-

ment was at most 288, the number of five-minute intervals in a day. This significantly 

reduced the size of the dataset and compensated for many missing values. However, 

there were still many intervals within a day with no measurements, so we kept a time 

period of 15 hours that had a small overall number of missing values throughout the 

whole dataset. This truncated the speed vectors to 180 values. The remaining missing 

values were filled using cubic spline interpolation. Finally, in order to limit the exper-

iments to busy, and thus interesting, roads, the road segments were further filtered by 

keeping only those within a radius of approximately 5km from the city center. The 

final dataset consists of about 1300 road segments for each day of the week, each 

associated with a 180-dimensional speed vector (of average speed value 33.5 

km/hour).  

5.2 Experimental Results 

The proposed method has been employed for the task of predicting the speed of a road 

segment at a future time interval. For evaluation purposes, it has been compared to the 

performance of methods which use a single objective to determine which road seg-

ments are influenced by the traffic of a selected segment. The model used for predic-

tion is a simplified form of the STARIMA model, such as the ones used in [21]. For a 

selected road segment, the model is described by the following equation: 

 𝑧𝑡+1 = 𝜙0𝑧𝑡 + 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + 𝜓0𝑢𝑡 + 𝜓1𝑢𝑡−1 (6) 

Hereby, 𝑧𝑡+1 is the predicted value of the speed of the road segment at time interval 

𝑡 + 1. This value is calculated as a weighted combination of the speed values of the 

same road at previous time intervals, as well as of roads that are influenced by the 

selected road segment. The values 𝑧𝑡, 𝑧𝑡−1 and 𝑧𝑡−2 in Eq. (6) are the speeds of the 

road segments at the current time interval, t, and at the two previous time intervals, 

𝑡 − 1 and 𝑡 − 2, respectively. The parameters 𝜙0, 𝜙1 and 𝜙2 are used as weights to 

denote the importance of each previous speed value for the determination of the pre-

dicted one. The last two factors of Eq. (6) are related to the speeds of the road seg-

ments which are most influenced by the selected road segment. The parameter 𝑢𝑡 is 

defined as: 

 𝑢𝑡 =
1

𝑘
∑ 𝑣𝑡𝑅={𝒔,𝒆,𝒗}∈𝒩𝑘

  (7) 
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The set 𝒩𝑘 is the set of the k segments which are most influenced by the selected 

segment. The value of 𝑢𝑡 is thus the mean value of the speeds at time interval t of the 

road segments which belong to the set 𝒩𝑘 . The determination of the most influenced 

road segments is hereby performed by selecting, in the 2-dimensional embedding, the 

k closest points to the point corresponding to the selected road segment. The most 

influenced road segments are thus determined by considering all notions of distance 

(Section 4.2) in a multi-objective manner, instead of using a single influence measure, 

as e.g. in the lag-based STARIMA model of [21]. 

In order to demonstrate the effectiveness of using multiple objectives, a compari-

son has been performed between two Pareto-optimal solutions. The first corresponds 

to a combination of the 𝑑cor and 𝑑tim distances measures, i.e. it is similar to the lag-

based STARIMA method of [21], which uses correlation to find the roads that are 

most influenced, but also exploits time lags. The second Pareto point corresponds to a 

combination of the 𝑑cor, the 𝑑tim and the 𝑑geo measures, i.e. it also includes geo-

graphical information. For each solution, the model of Eq. (6) is trained with data 

from a specific day of the week. The unknown model parameters 𝜙0, 𝜙1, 𝜙2, 𝜓0 and 

𝜓1 are learned using a least-square error estimate. In order to test the model, predic-

tions are made for the same day at another week. Given the current speed for a specif-

ic road segment, along with the previous speeds of the same segment and of the most 

influenced ones, the speed at the next time interval is calculated using Eq. (6). 

Fig. 2(a) illustrates the Root Mean Square Error (RMSE) between the predicted 

and the real values, for different time intervals. For each interval, the RMSE for the 

prediction of the next interval is depicted. The RMSE is defined as the square root of 

the mean of the squared error between the predicted and the real values, where the 

mean is taken over all road segments. The combination of the three measures results 

in generally smaller prediction errors than the combination of just two of them, espe-

cially at the beginning of the day by an improvement of 0.0301 in the RMSE. Fig. 

2(b) depicts similar results for another pair of sub-cases. Hereby, the first Pareto solu-

tion considers only the geographical distances among the roads, while the second 

solution considers a combination of the 𝑑DTW, the 𝑑tim and the 𝑑geo measures of Sec-

tion 4.2. Again the combination of three objectives outperforms the use of only one. 

The average improvements in the RMSE between the two curves is 0.0717. 

The capabilities of the proposed approach have also been exhibited via a visualiza-

tion application. Let us consider that, after the low-dimensional embedding has been 

performed and one of the Pareto-optimal solutions has been selected, an operator 

selects a specific road segment (blue line in Fig. 3(a) - Fig. 3(d)). The point in the 2D 

embedding that corresponds to the selected road segment is found and the road seg-

ments corresponding to nearby points in the embedding are colored on the map. The 

operator can thus have an overview of which roads are influenced by the traffic condi-

tions of the selected road segment. 

In Fig. 3(a) - Fig. 3(d), examples of different segment selections are depicted. 

When the operator selects a different segment, different roads are colored, denoting 

those which are mostly influenced by the selected segment. The color of the road 

segments is an indication of the direction of traffic. The faint red color corresponds to 

segments whose speed series precede the speed series of the selected segment, in 
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terms of correlation, while segments with bright red color have speed series which 

follow the ones of the selected segment. As an example, in Fig. 3(d), the colors of the 

roads indicate that the general direction of traffic is towards the center of the city. 

 

Fig. 2. Comparison of RMSE for predictions performed using: (a) a combination of 𝑑cor and 

𝑑tim (blue curve) and a combination of 𝑑cor, 𝑑tim and 𝑑geo (red curve), (b) only 𝑑geo (blue 

curve) and a combination of 𝑑DTW, 𝑑tim and 𝑑geo (red curve). 
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Fig. 3. Examples of the neighboring roads, in terms of “merged”, low dimensionality distance. 

The brightest the red colored lines, the biggest is their phase difference in the future. (d) It can 

be noted that the traffic congestion in the next minutes will be moving towards the center of the 

city. 

6 Conclusions and next steps 

In this study, the problem of forecasting traffic speeds was addressed, using a multi-

objective framework that supports the combination of several traffic-related modali-

ties via Multidimensional Scaling. The proposed approach facilitates increased flexi-

bility and efficient human interaction, while exhibiting improved traffic prediction 

results when the broadly utilized STARIMA algorithm is applied. Furthermore, the 

proposed framework can form the basis for useful interactive applications, via sug-

gesting only the (Pareto-)optimal solutions to the operator. 

The potential for further improvement in the prediction accuracy of the proposed 

approach should be highlighted, since it supports the integration of an unlimited 

amount of additional traffic-related modalities. Apart from speed measurements, traf-

fic volume measurements can also be exploited as additional modalities in the future. 

Traffic volume adds additional information, which, combined with traffic speed can 

lead to more accurate traffic prediction. The utilized distance measures can be extend-

ed by using geodesic distance measures, which exploit the graph-like structure of the 

road network, and may be more informative than actual geographic proximity. The 

graph-based structure can also be used to improve the distance measures already used, 

by adjusting the distance matrices, based on their geodesic proximity of the graph. 

Such improvements are the objectives of future extensions of the current work, with 

the goal of achieving more accurate traffic prediction. 
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