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Abstract. The human brain is composed of multiple modular subsys-
tems, with a unique way interacting among. These subsystems have their
own unique characteristics and interact to support cognitive functions
such as memory, attention and cognitive control. Nowadays, deep learn-
ing methods based on the above-mentioned functions accompanied with
knowledge are widely used to design more dynamic, robust and powerful
systems. We first review and summarize the progresses of cognition-based
deep neural networks, and how cognitive mechanisms can be applied to
more brain-like neural networks. Then we propose a general framework
for the design of cognition-based deep learning system. Although great
efforts have been made in this field, cognition-based deep learning is still
in its early age. We put forward the potential directions towards this
field, such as associative memory in deep learning, interpretable network
with cognitive mechanisms, and deep reinforcement learning based on
cognitive science.

Keywords: Cognitive mechanisms · Deep learning · Attention ·Memory
· Knowledge · Decision-making

1 Introduction

In recent years, deep learning, characterized by learning large neural-network-
style models with multiple layers of representations, has received lots of atten-
tion. Those models based on deep learning have achieved remarkable gains in
many domains, including image classification [1], [2], [3], control and decision-
making [4], [5]. [1] trained a deep convolutional neural network that nearly halved
the error rate of the previous state-of-the-art methods on the typical image clas-
sification dataset. In recent years, [2] even surpass the human-level performance
on several challenging classification datasets. In the field of decision-making, deep
learning in combination with reinforcement learning, have been widely used to
play games. [5] achieved several human even superhuman level performance on
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several games, illustrating that computer can master go learning from scratch
by trial-and-error strategies. These accomplishments have helped Deep Neural
Networks (DNNs), the core of deep learning, to regain their status as a leading
paradigm in machine learning.

Nowadays, deep learning has shown more and more interests on how our
brain works and how an artificial intelligence system can be inspired by cogni-
tive science. The human brain doesn’t learn through a unified undifferentiated
neural network. It is composed of multiple modular subsystems, with a unique
way interacting among. These subsystems have their own unique characteris-
tics, and interact to support cognitive functions, such as memory, attention,
language and cognitive control. What’s more, the brain can combine knowledge
(including internal knowledge from self experience, environment knowledge by
interacting with objects around, global knowledge extracted from the universe),
with different cognitive functions to conduct complicated tasks with a few data.

In this article, we review the latest progresses and future perspectives of deep
learning systems based on the cognitive core elements, especially memory, atten-
tion and knowledge. In section two, we will review the fundamental concepts of
deep learning, cognitive mechanism, and what deep neural networks can benefit
from cognitive science. In section three to section five, we review and summa-
rize the latest progresses of deep learning methods based on memory, attention
and knowledge respectively. In section six, we propose a general framework of
cognition-based deep learning and make assumptions of the essential future di-
rections towards this field. In the last section, we’ll make conclusions about all
above-mentioned issues concerning cognition-based deep learning.

2 Fundamental Concepts

In this section, we will review the basic concepts of deep learning, cognitive
mechanism, as well as the reason and the way that the former two are combined.
We first introduce the core concepts of deep learning and it’s foundations (i.e.,
two kind of neural works). Then, the major mechanisms of cognitive science,
especially those that have been applied to more powerful deep learning systems
will be presented. Further, we give some directions on how to build deep learning
systems inspired or based on important elements of cognitive science.

2.1 Deep Learning

Deep learning is a kind of computational methods. It is composed of multiple
processing layers which learn and represent the feature and the distribution of
input data with multiple levels of abstraction, (i.e., different depth of feature
map). Nowadays, the success of deep learning can own to two branches of well-
designed neural networks: Convolutional Neural Networks (CNNs or ConvNets)
and Recurrent Neural Networks (RNNs).

ConvNets are feature extractor indeed. They are very excellent at dealing
with structured 2D arrays in areas like image processing. ConvNets achieved a
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state-of-the-art performance on image classification [1], [2], [3], image segmenta-
tion [6], and object detection [7], [8]. RNNs are excellent at dealing with sequence
inputs, such as speech and language [9], [10]. RNNs process an input sequence
one element at a time, maintaining in their hidden units a ”state vector” that
implicitly contains information about the history of all the past elements of the
sequence. For more detailed explanations, please refer to [11].

2.2 Cognitive Mechanisms

Cognitive science is a discipline and a recognition of a fundamental set of common
concerns shared by psychology and artificial intelligence [12]. The key point of
cognitive science is the way we reflect to our environment and the effect of our
brain activities. Our brain is composed of several subsystems, which interact
with each other in a very complicated way. And they communicate to support
cognitive functions, including attention, memory, language and cognitive control.
The combination of the above-mentioned functions with knowledge extracted
from self experience, environments, intuitive psychology and physical worlds are
among the key characteristics of human.

2.3 Combination

The most important elements of cognitive science are attention, memory and
knowledge. The last one can be classified to internal knowledge, environment
knowledge and global knowledge. Deep learning system can benefit from every
element separately or together by increasing dynamics and target-oriented ac-
curacy with fewer training data. Further, the cognitive science mechanisms are
derived from human brains. Deep learning, which is regarded as the ”black box”,
can be interpreted at the aspect of cognitive science, such as the view of decision
tree [13] and the view of shape bias [14].

3 Deep Learning Inspired by Memory Mechanism

From the perspective of cognitive science and our intuitions, humans can learn
in a continuous spatial sequence and memorize the pattern and characteristics.
Therefore applying this mechanism to deep learning systems is of vital impor-
tance. How to guide those systems to memorize sequences of input and how
to memorize according to the relative importance are two topics that will be
reviewed next.

3.1 RNNs-based Memory Model

RNNs is a type of artificial neural network where connections between units form
a directed cycle. This creates an internal state of the network which allows it to
exhibit dynamic behavior. Unlike feed forward neural networks, RNNs can use
their internal memory to process and work on arbitrary sequences of inputs. This
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makes deep neural networks applicable to handle the data with rich structures,
especially the sequences. It has been widely used in speech recognition [15], [16],
natural language processing [10], [17] and object detection [18], [19].

Traditional RNNs structures have been used to deal with sequences of input
mentioned above, but [20] found it is difficult to train RNNs to capture long-
term dependencies because the gradient tends to either vanish or explode, which
can cause severe effects. Long Short-Term Memory (LSTM) [21] and Gated Re-
current Units (GRU) [22] are two of the well-designed recurrent neural networks
which can elevate this problem. The idea of those two RNNs is to design a more
sophisticated activation function than an usual one, consisting of affine trans-
formation followed by a simple element-wise nonlinearly part by using gating
units.

3.2 Memory Model with Importance

In the process of human learning, the old information we stored will be overwrit-
ten by new incoming information[23]. However, what we memorized are rarely
with equal importance: frequently used and important knowledge is often pre-
vented from being erased. Inspired by the memory mechanism, we think evalu-
ating what is important and what is not behind the structure of a deep neural
network is really meaningful. Elastic Weight Consolidation [24] used an approx-
imation of the diagonal term of the Fisher information matrix to identify the
important parameters for the task. While training a new task, a regularizer is
used to prevent those important weights from being overwritten by the new task.
The Fisher information matrix needs to be computed in a separate phase after
each task and also needs to be stored for each task for later use when learning
a new task. Thus, this model stores a large number of parameters that grows
with the number of executed tasks. To avoid this, Improved multi-task learning
through synaptic intelligence [25] adopts an online way of computing the impor-
tance of the network parameters. [26] formulates the importance of memorized
information as the absolute gradient of the parameters in deep neural network
based on the sensitivity of the predicted output to a change in this parameter.
When learning a new task, changes to important parameters are penalized. The
memory-based deep learning method shows the ability to adapt the importance
of the parameters towards what the network needs (not) to forget.

4 Attention Mechanism Applied to Deep Learning

Human attention is a built-in mechanism for deciding how to apply their brain-
power from moment to moment, (e.g., decide where to see in saliency visual
object detection [27]). Attention mechanism is a reasonably well studied subject
within the field of cognitive psychology and is known to be a key feature of human
artificial intelligence [28]. Nowadays, attention-based deep learning methods are
active especially in dealing problems concerning sequence prediction or control,
including object detection, natural language processing, and deep reinforcement
learning.
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4.1 Natural Language Processing

The seminal work of natural language processing with attention was proposed by
[29] for English-to-French translation. They used a novel neural machine trans-
lation model that implements an attention mechanism in the decoder, which
achieved much better performance than traditional phrase-based models. In or-
der to allow parallelisation, [30] proposed a highly parallelisable multi-hop atten-
tion module with convolutional neural network, which takes multiple glimpses at
the sentence to determine what will be translated next, and a separate attention
module in each decoder layer. Moreover, the attention mechanisms have been
widely used in other language processing fields, like text classification [31], [32]
and text understanding [33].

4.2 Object Detection

Attention mechanism in object detection decides which object or which field
we need to see. Recurrent attention models are widely used to deal with the
problem. [34] represented how an attention mechanism can be applied to ignore
irrelevant objects in a scene and how an object can be ”seen” by the system
with the help of the attention mechanism. [35] proposed a deep recurrent neural
network trained with reinforcement learning to detect multiple objects automat-
ically. [36] found the attention models with deep neural networks are the insights
gained by approximately visualizing where and what the attention focused on
(i.e., what the model ”sees”) after feeding a sequence of data. Besides, attention
models with deep learning are hot methods in several topics related to object
detection, including saliency detection [37], [38] (detecting the most salient ob-
ject and segmenting the accurate region of that object), eye fixation [39], [40],
[41] (maintaining the visual gaze on a single location).

4.3 Deep Reinforcement Learning

Deep reinforcement learning is widely used in decision-making and control. Deep
Q-Network (DQN) proposed by [4] showed a single algorithm that can outper-
form human or even superhuman performance on Atari 2600 games. By com-
bining the attention mechanisms into DQN, [42] proposed the Deep Attention
Recurrent Q-Network (DARQN). By combining what they called ”soft” and
”hard” attention mechanisms, the model greatly outperformed the traditional
DQN. The attention network takes the current game state as input and gener-
ates a context vector based on the features observed. Then an typical LSTM
network takes the context vector with a previous hidden state and the memory
state to evaluate the action that an agent can take. Further, [43] improved on
DARQN by implementing a multi-focus attention network where the agent has
the ability to attend to multiple important elements. They proposed a novel
model by using multiple parallel attention to attend to entities concerning the
problem instead of just one attention layer in DARQN.
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5 Deep Neural Networks with Knowledge

Humans can combine different kinds of knowledge in a complicated manner to
solve very difficult problems without being trained with plenty of data. On the
one hand, our brains use knowledge accompanied with other elements (e.g. at-
tention, reasoning) to realize associative memory and build high-level concepts.
On the other hand, the logical and physical constraints derived from our knowl-
edge can be used to build a more robust model, especially towards solving nat-
ural problems as it can be influenced by too many factors. Beriefly speaking,
our knowledge originated from three different parts: self experience (i.e., inter-
nal knowledge), surrounding objects (i.e., environment knowledge) and universe
(i.e., global knowledge). Human brains process and summarize that knowledge
into three categories: intuitive originates psychology knowledge, intuitive derives
from physical knowledge and domain specific knowledge.

5.1 Intuitive Psychology

Humans gain plenty of psychology knowledge by interacting with the environ-
ment. Infants can understand mental states of other people like beliefs and goals,
and this understanding strongly guides and constraints decisions that they make
[44]. Besides, humans tend to assign the same name to similarly shaped items
rather than to items with similar color, texture, or size by psychological experi-
ments [45]. Those psychology intuitions can help create more interpretable neu-
ral networks and create a new area of one-shot learning. [14] found that several
well-performed one-shot learning models trained on ImageNet exhibit a similar
bias to that observed in humans: they prefer to categorize objects according to
shape rather than color. Inspired by cognitive psychology, [46] proposed shape
Matching Network (MN) with inception network, which has the state-of-the-art
one-shot learning performance on ImageNet.

5.2 Intuitive Physics

Deep learning can learn features and patterns not only from plenty of labeled
data, but also from physical laws. The limitation and constraints can help neural
networks learn from fewer labeled data, even without any labeled data (i.e., un-
supervised learning). Further, deep learning methods with physical constraints
can help build high-level structural models and solve complicated scientific prob-
lems. In many fields, labeled data and long-time training is scarce and obtaining
more labels is expensive. Constraint learning with physical knowledge is another
active field of machine learning, which is aimed at uncover the hidden struc-
ture of models. By using physical knowledge, [47] trained a convolutional neural
network to detect and track objects without any labeled examples.

5.3 Domain Knowledge

Regulating deep neural networks (DNNs) with human structured domain knowl-
edge has been confirmed to be of great benefit for improved accuracy and in-
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terpretability with fewer training data. Recently, [48] proposed a general distil-
lation framework that transfers knowledge into neural networks by combining
first-order logic (FOL), where FOL constraints are integrated via posterior regu-
larization [49]. Further, [50] used a generalized framework that makes it possible
to learn procedure for knowledge representations and adapt their weights jointly
with the help of the regulated DNN models. [50] proposed to transfer logical
knowledge information into neural networks with diverse architectures such as
recurrent networks and convolutional networks.

6 Perspectives

Cognition-based deep learning has become one hot research topic, and some of
the most important functions of our human brains like memory and attention as-
sociated with knowledge extracted from experience and the universe, have been
widely used in the design of a more human-like deep learning system. Meanwhile,
the brain does not learn through a unified undifferentiated neural network. The
brain is composed of multiple modular subsystems, with an unique and compli-
cated way interacting among. Although deep neural network can process struc-
tural data well, it can’t deal with dynamic clouds of data. What’s more, data is
really scarce in some fields. Deep learning systems can get a lot of inspirations
from cognitive science, to alleviate and even eliminate those problems.

In this section, we will discuss the essential trend to apply more elements
of cognitive science to build more dynamic, robust and intelligent deep learning
systems. We are going to give a general framework of cognition-based learning
firstly. Then we will discuss the key problems of fusing deep neural network with
cognitive mechanisms and essential solutions.

6.1 General Framework of Cognition-based Deep Learning

We suggest the general framework of designing cognition-based deep learning
systems. This framework use cognitive mechanisms in a particular way. It can
help build more dynamic, robust and intelligent systems. More accurately speak-
ing, it can process unstructured data as constructed one with the help of our
memory with concepts, especially associative memory. Also the system based
on the proposed framework can reasoning and infer based on the knowledge by
gaining structural feature map with hierarchical knowledge sets in the top-down
manner. Every layer in hierarchical knowledge sets is corresponding to each layer
in the structural feature maps. As feedback is also very essential in our human
brains, we can monitor this mechanism by designing two feedback loops. One
is knowledge feedback loop, to update our knowledge based on attention select
network, which is aimed at deciding what we need to see. Another is memory
feedback loop, to update our memory (especially the experience), and gains high-
level concepts after measuring actions/decisions the system make. The general
framework is shown in Fig 1. The model based on this framework can be suitable
for plenty domains such as image processing and nature language processing.



8 Kai Yi, Shitao Chen, Yu Chen, Chao Xia, Nanning Zheng

Fusion Deep Neural
Networks 

Top-down
Gains

Attention 
Select 

Network

Action/Decision 
Measurement

Outputs

Inputs

Memory
(Including 

Experience)

Memory 
Feedback

Knowledge 
Feedback

Hierarchical 
Knowledge Sets

Structural 
Feature Maps

Knowledge Inference

Feature 
Knowledge Graph

Knowledge 
Reasoning

Fig. 1: General framework of cognition-based deep learning

6.2 Key Problems and Potential Solutions

This part will discuss the future directions of cognition-based deep learning. It
is organized by current problems and essential solutions.

6.3 Associative Memory

Human brains can associate patterns similar to the input patterns when being
stimulated. Associative memory model was once prevailing in 1980s and 1990s,
accompanied with the popularity of Hopfield Neural Network [51], a typical net-
work that can store patterns and realize associative memory. Due to the potential
chaos state of network evolution, HNNs alone is difficult to handle natural real-
world problems well. However, it has the potential as it is an important kind
of brain-like neural network. Besides, synesthesia is a typical perceptual phe-
nomenon in cognitive science. That is, a person can activate a sensory when
stimulated by another sensory (e.g., grapheme-color synesthesia means a person
can directly associate a colorful image when listening to music). The proposi-
tion of an effective associative memory model by combining human-like neural
network and synesthesia with deep learning is a promising direction. A recent
successful attempt was Dense Associative Memory [52], which combined associa-
tive memory with deep learning and achieved a good result on MNIST dataset.

6.4 Interpretable Network with Cognitive Mechanisms

For we human, it’s difficult to understand how deep neural networks work and
how they react towards a task. However, interpretable systems in many applica-
tions are of vital importance. For example, suppose that there is a person who
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may be in the early stage of cancer, the system based on deep neural networks
needs to infer whether he is suffering from cancer. We can gather all features of
the person as the input of DNNs, such as age, history of disease. The question
is why we can trust the output of this system as we can not check the correct-
ness. What if the process of inference can be understood or monitored (e.g., the
decision tree) by an expert? Interpretability is important in these fields.

[13] proposed a tree regularization to interpret the neural network in the
perspective of decision tree. This method can not train towards the typical
backpropagation learning rule as the tree is undifferentiated. They suggested
replacing trees with multi-layer perceptrons in the training phase, but this so-
lution is not very elegent and does not create a really interpretable network
indeed. According to psychological experiments [45], humans tend to assign the
same name to similarly shaped items instead of items with similar color, tex-
ture or size. [46] proposed shape MN with inception network, which achieved
better performance than several state-of-the-art methods in the field of one-shot
learning on ImageNet. And [14] found that this kind of networks that exhibits a
similar shape bias to that observed in humans. Cognitive mechanisms like shape
bias, decision and inference can help design more interpretable neural networks.

6.5 Cognition-based Deep Reinforcement Learning

Deep reinforcement learning has raised a lot of interests nowadays. However, due
to the uncertainty of the state space and the complexity of the reward function,
it is difficult for the traditional trial-and-error strategies to associate continuous
actions with reward. Imagination is utilized to make use of the knowledge em-
bedded in the model. However, deep reinforcement learning is still in its early
stage.

As decision making and feedback mechanism are very similar to that of hu-
mans, there is a trend to apply cognitive mechanisms to reinforcement learning.
As for attention mechanism, [42] proposed the Deep Attention Recurrent Q-
Network (DARQN), which greatly outperformed the traditional Deep Q-Network
(DQN) on Atari 2600 games by combining what they called ”soft” and ”hard” at-
tention mechanisms. Besides, [43] used a multi-focus attention network where the
agent can give attention to multiple important elements. This model achieved
better performance than the traditional DARQN. Further, [53] extended the
typical LSTM-based memory network to choose more sophisticated addressing
schemes over the past k frames by using memory mechanism. [54] proposed a
spatially structured 2D memory image that is capable of learning to store arbi-
trary information about the environment over long time lags. As for our human
knowledge mechanism, in which field we call usually transfer learning. What’s
more, a novel policy distillation (i.e., knowledge-based reinforcement learning
policy) architecture was proposed by [55] for deep reinforcement learning. This
architecture was well organized by implementing task-specific high-level convo-
lutional features as the inputs to the multi-task policy network. However, how
to hierarchically reconstruct the knowledge and uncover the hidden character-
istics, how to abstract our knowledge and experience for the feasibility to deal
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with unstructured data by fusion, how to design a generalized attention selection
network, may remain issues that lead the future research direction in this field.

7 Conclusion

Cognition-based deep learning has gained widely interests recent years. Several
core functions of cognitive science (i.e. attention, memory) and knowledge, are
used to design more dynamic and robust systems based on deep neural network.
We reviewed the recent progress related to this field. Meanwhile, deep neural
networks are not interpretable to our human brains. We can design a more in-
terpretable neural network in the perspective of cognitive science. Finally, we
proposed a general framework of cognition-based deep learning and made as-
sumptions of the essential future directions towards this field.
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