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Abstract. An improved method for vehicle tracking in UAV-captured video is 

introduced in this paper, this method based on GPU (Graphics Processing Units) 

acceleration which have efficient parallel computing powers. Today, vehicle 

tracking in UAV videos has many meaningful applications in computer vision, 

such as traffic management and illegal vehicle tracking. However, the increased 

computational complexity makes it difficult to be used in real-time tracking 

system. To overcome the limitation of tracking speed and meet the highly 

intensive calculation required, we perform image processing with GPUs and 

adopt an optimized structured output support vector machine (SVM) to online 

learning. The proposed approach is evaluated in UAV videos taken from DJI 

Matrice 100 drone and the corresponding conclusions are received. 

Keywords: vehicle tracking; speed optimization; GPU; UAV 

1   Introduction 

With the rapid development of unmanned aerial vehicle technology (UAV), the 

detection and tracking of moving vehicles in UAV videos has been paid more attention. 

In military, UAV can be used in casualty rescue, battlefield investigation and 

surveillance, medicine material transport, damage assessment and so on [1], [2], etc. 

UAV object tracking has also been applied to many civilian areas. Traffic police 

department can conduct the identification of illegal vehicle behavior in a remote 

distance which greatly saves money and material resources [3]. Including Forest fire, 

marine pollution monitoring and other highly destructive events can also be prevented 

by UAV detection. The most widespread use of agricultural UAV is medicine spraying 

[4]. Drone object tracking is a significant research which involves many disciplines 

such as artificial intelligence, image processing, machine learning. 

However, target tracking of UAV remains as a challenge because of the relatively 

lower video resolution, non-uniform illumination, object occlusion, shape deformation, 

irregular rotation, small-sized target, drone vibration and so on [5]. In order to track a 

moving vehicle with a UAV, the following points should be implemented in the 



tracking algorithm. Firstly, the accuracy of the result should be guaranteed in object 

tracking. Algorithm should have the ability to identify the tracking target from a 

complex, noise-filled background. Secondly, the tracking algorithm is supposed to keep 

a certain degree of robustness when the moving target is partially or completely 

obscured. It means that an automatic re-detection process platform should be 

established to keep tracking the object. Lastly, the most important thing one has to take 

into consideration is the processing speed. Videos transferred from a real UAV camera 

ought to be processed at high speed. Many works have been done to reduce the 

processing time, but the processing consumption increases exponentially with a 

significant improvement in UAV video resolution. A single CPU processing has been 

unable to meet the requirements for speed. With the rapid development of GPU 

hardware and its programming model, using the GPU’s massive high-speed parallel 

processing mechanism to accelerate the machine vision algorithm has become an 

inevitable trend. This paper strives to improve the processing speed under the premise 

of high precision on an improved tracking algorithm [6] based on Struck [7] by GPU 

acceleration. 

2   Related Works 

Large quantities of algorithms have been proposed in recent years, but they all have 

significant limitations. G. Mattyus pointed out that the rapid movement of the UAV 

camera which resulting in the distribution of samples can be used to express 

characteristics are too little, so by normalizing the European distance to separate the 

front and back points, and then get the moving target binary image [8]. But the 

calculations is too complex to lead to a slow tracking process. This problem can be 

solved by CUDA Parallel operation as described in this paper. Based on background 

difference, an improved method of moving object detection and tracking is proposed, 

and the target is identified with the background model to construct the deviation among 

different image frames [9]. Considering the relationship between the target height and 

the shadow scale, GV.Reilly performed shadow removal and target tracking by 

combining wavelet features with SVM features in 2013 [10]. The background 

subtraction was used to overcome the difficulties of scene constantly shifts [11], [12], 

etc. In order to achieve higher accuracy and get a relatively good tracking performance, 

many algorithms involve large feature vectors which bring a significant impact on the 

speed of the tracker. 

The purpose of this paper is to accelerate the tracking process By CUDA 

computation. CUDA is a general purpose parallel computing platform and 

programming model that it leverages the parallel compute engine in NVIDIA GPUs to 

solve many complex computational problems in a more efficient way. Using a machine 

learning method to choose the best sparse matrix representation model on GPU [13], 

the target tracking algorithm was implemented on the CUDA platform with the GPU’s 

ability of parallel computing [14], [15], etc. Pei [6] proposed an improved tracking 

method based on Struck [7], the extended affine transformation motion estimation 

method had been adopted to automatically adjust the tracking window’s scale and 

rotation. Compared with the original Struck, the tracking accuracy has been enhanced, 



however, the number of frames processed per second have been dropped. The 

meaningful contribution in this paper is that all those tracking models are ported to the 

GPU and keep detection and tracking via CUDA parallel calculations. 

3   System Achievement 

In this paper, GPU's powerful parallel computing capabilities are exploited to accelerate 

the speed of improved tracking algorithm. We use Gaussian/Haar-like combination to 

reach an acceptable compromise between processing speed and tracking accuracy. An 

online structured output SVM learning framework has been used to incorporate 

multiple types of image features and kernels. In this section, some key points will be 

introduced briefly. 

3.1   CUDA Programming Model 

According to CUDA's model architecture, the task of the CPU is to perform serial 

operation such as data transmission and logic operations. Originally graphics data 

processing consumed lots of resources now is handled by GPU parallel computing. 

CUDA not only completes the traditional image rendering work, but also achieves good 

performance of complex operation. A complete CUDA program includes the serial 

processing program in host (CPU) and the device’s (GPU) parallel processing code. 

Code which runs on the GPU is called the CUDA kernel function. To complete 

respective subtasks of each model, the CUDA threads run on a physically separate 

device (GPU) which plays as a medium to the host running the C code. The host code 

will calls the parallel code running on the device side when needed [16]. 

3.2   Haar-like Feature Extraction 

Papageorgiou first proposed Haar-like features and applied it to face description [19]. 

Pixel-based face detection algorithm has a high computational cost, but the Haar-Like 

feature based on block reduces processing costs. This paper uses six kinds of Haar-like 

features (feature template), as shown in Fig. 1. The reason why we choose this six 

features is it basically cover all the features. The feature value is that the sum of black 

pixels gray value subtracts the sum of white pixels gray value. 

The main idea of integral images is to form a rectangular region from the starting 

point to each point and let the sum of pixels value in each rectangular region as an 

element of an array stored in memory. When you need to calculate the pixels value of 

a region, you can index the array elements, Instead of recalculating the pixels of this 

region, thus the computation will be speeded up. Integral image algorithm is a matrix 

representation method which can describe the global image information. The principle 

is that the element value 𝑖𝑖(𝑥, 𝑦) at location (𝑥, 𝑦)  in integral image is the sum of all 

pixels above from the upper left corner to (𝑥, 𝑦) direction in original image f. The 

recurrence formulae are as follows. 

s(𝑥, 𝑦) = s(𝑥, 𝑦 − 1) + 𝑖(𝑥, 𝑦)





  𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦)


Where 𝑠(𝑥, 𝑦) is the cumulative row sum with the initialization of 𝑠(𝑥, −1) =
0. 𝑖𝑖(−1, 𝑦) = 0 and 𝑖𝑖(𝑥, 𝑦) is an integral image. Scanning the image and when the 

image reaches the lower right corner of the pixel, the integral image is over. 

 

Fig. 1. Six Box Features Template for Extracting Haar-like Feature. 

3.3   Structured Output SVM Optimization 

Support vector machine (SVM) is a statistical learning theory based on Structural Risk 

Minimization Principle (SRM). The goal of SVM is to determine the optimal 

hyperplane of feature space partition and the core idea of SVM is to maximize the 

classification of marginal. Structured output SVM tracking is used to directly estimate 

the change in target position between frames by learning a predictive function 𝑓: 𝑋 →
𝑌, so the output space is a combination of the deformation of Y, instead of traditional 

binary labels -1 and +1. In this method, the sample (𝑥, 𝑦) as a whole, y is the change 

function of target optimal position, the target position at the time of t is 𝑃𝑡 = 𝑃𝑡−1° 𝑦𝑡. 

So the framework used to learn a predictive function 𝑓 can be obtained by introducing 

the discriminant function 𝐹: X × Y → R. The result can be predicted according to (3). 

    𝑦𝑡 = 𝑓(𝑥𝑡
𝑝𝑡−1) = argmax

𝑦𝜖𝑌
𝐹(𝑥𝑡

𝑝𝑡−1 , 𝑦) .                                      (3) 

 

In order to update the predictive function online, we mark every new tracking 

position (𝑥𝑡
𝑝𝑡 , 𝑦0). The discriminant function F measures the compatibility between 

(𝑥, 𝑦) samples and chooses the best score in all samples. Equation (3) can be further 

expressed as F(𝑥, 𝑦) = 〈𝑤, Φ(𝑥, 𝑦)〉 where 𝜃(𝑥, 𝑦) is a joint kernel projection. By 

minimizing the convex objective function (4), it can be learned in a new framework 

from a set of pairs {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}. 



min
𝑤

1

2
||𝑤||2 + 𝐶 ∑ 𝜉𝑖  .

𝑛

𝑖=1

                                                        (4) 

s. t.  ∀𝑖: 𝜉𝑖 ≥ 0 ∀𝑖, ∀𝑦 ≠ 𝑦𝑖 ∶ 〈𝑤, δΦ𝑖(𝑦)〉  ≥  Δ(𝑦𝑖 , 𝑦) − 𝜉𝑖 

δΦ𝑖(𝑦) = Φ(𝑥𝑖 , 𝑦𝑖) − Φ(𝑥𝑖 , 𝑦) . 

 

The original Struck algorithm contains two sets of data in the support vectors 

machine (vector x). One is the features of the previous frame reserved support vectors, 

the other is the parameters that record the current support vector and their 

corresponding coefficients β. In the analysis of SVM algorithm, matrix M is calculated 

from vector x, matrix y and coefficient β. 

M = ∑ ∑ 𝑥𝑖

𝑛

𝑗=1

 

𝑚

𝑖=1

𝑥𝑗𝐾(𝑦𝑖 , 𝑦𝑗 , 𝛽)𝑘 .                                             (5) 

Where 𝑥𝑖,𝑗 ∈ 𝑅2, i, j = 1,2, … , m, n. k is the adjustment parameter and K is kernel 

function. The calculation of matrix M occupies a large amount of computation time in 

CPU. To accelerate execution speed, the algorithm is computed in parallel, and each 

kernel thread in block (in GPU) only computes the row of matrix M, which means the 

calculation of initial matrix M is split into n subtasks and each subtask is executed 

asynchronously. The formula of each subtask is defined as follows. 

 M = ∑ 𝑥𝑖
2

𝑚

𝑖=1

𝐾(𝑦𝑖 , 𝑦𝑖 , 𝛽) .                                                         (6) 

 

This computational framework design is based on CUDA programming model and 

every kernel function runs a number of threads which are executed in parallel. In kernel 

programming, kernel thread only executes a simple cycle to improve the parallel 

procession of the algorithm. 

4   Experimental Results 

Hardware Environment: a standard PC equipped with 4G Memory, Dual-core Intel(R) 

Core(TM) i3-3220, 3.3GHz, GTX 750 TI graphics card with 640 CUDA cores, DJI 

Matrice 100. Software Environment: Windows 7, Microsoft Visual Studio 2010，
CUDA 6.5, OpenCV2.4.10. 

It is important to collect a representative dataset for a comprehensive and impartial 

performance evaluation of the tracking algorithm. The groundbreaking in this work is 

the VTB dataset presented in which contains 100 sequences from recent literatures, and 

it is the most influential visual target tracking dataset. Another influential visual target 



tracking dataset is the VOT dataset. In this section we will use the VTB dataset with 

different frame sizes and video captured with UAV flying over traffic intersections to 

perform the tracking test. This part outlines the results of experiments which carried 

out during this research. 

4.1   Evaluation of VTB Test Set 

Object tracking experiments can be divided into two parts. In this part, five VTB image 

sequences are selected at random and manually marked for the ground truth which 

contains 2926 image frames. This experiment provides a comparison between the 

processing speed on GPU with CUDA and CPU for object tracking, and the resolution 

of picked image is identified below the figure. The record is measured once every 10 

frames, 20 frames or 50 frames according to different sequence. Take the limitation of 

the length into consideration, we demonstrated the detailed results of the RedTeam 

public dataset to test the improved tracking algorithm, the other datasets only give the 

final statistical results. 

We compare the processing speed of original CPU-only algorithm with the speed of 

GPU-accelerated code. The GPU-accelerated algorithm contains the image features 

calculation, dual SVM, learning/adaptation and multiple-kernel learning. As shown in 

Fig. 2, it provides details about the timing of processing the frames (the frame interval 

is 50 every record) of the proposed approach run on the video such as Fig. 3. The overall 

runtime of processing in VTB dataset are observed between the CPU and GPU versions. 

The results show that the speed of algorithm processes a video stream in GPU platform 

achieves a great effect than running on original CPU-only algorithm which is running 

about 2500-3000ms every 10 frames, and the speed running on CPU platform is 

unstable which changes intensely.  

Fig. 4 and Tab.Ⅰshow the results of performance comparison of tracking algorithm 

execution on CPU and GPU platform. In CarDark dataset, the speed boost obtained due 

to using a massive parallel CUDA programming model changes from 3.04 fps to 33.99 

fps which achieved nearly 11 times speedup per second in comparison with CPU 

implementation. From the Fig. 4 we can see that the average FPS from the CPU 

implementation is below four frames per second which means the overall execution 

time will become greater as time goes on. 
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Fig. 2. Comparison of Calculation Performance on CPU and GPU in RedTeam Dataset at 

352×340 Resolution. 

  

Fig. 3. RedTeam Dataset Tracking. 

Table 1.  The Statistics Table for Acceleration Factor. 

Dataset FPS in CPU FPS in GPU Acceleration Factor 

Bike 

CarDark 

Couple 

RedTeam 

3.09 

3.04 

3.39 

3.33 

21.26 

33.99 

33.41 

35.1 

5.88 

10.18 

8.86 

9.54 

Surfer 3.22 31.03 8.64 
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Fig. 4. FPS Test of RedTeam. 

Next, the tracking performance will be valued on RedTeam dataset (as shown in Fig. 

3) using two popular evaluation criteria: center location error (CLE) and overlap ratio 

(VOR). In order to reduce the accident, each video sequence is processed twice and 

picked the RedTeam sequence to show the performance in Fig. 5 and Fig. 6. The 

improved ratio between the original algorithm on CPU and improved algorithm on GPU 

in terms of center location error and overlap rate can be seen from the figure. In Fig. 5, 

the average CLE of original code is about 8.5 but the average CLE on GPU is only 2.4 

which means the better capability of vehicle tracking in our method. In Fig. 6, the 

improved Struck algorithm is 31.63% higher than original Struck algorithm in average 



tracking overlap ratio, and the average high score of VOR shows a good adaptability to 

complex environment. 
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Fig. 5. Quantitative Comparison of CPU and GPU Versions in CLE on the RedTeam Video. 
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Fig. 6. Quantitative Comparison of CPU and GPU Versions in VOR on the RedTeam Video. 

4.2   Evaluation of UAV Test Set 

In this section, three scenes are captured by the DJI X3 camera with UAV in Dalian, 

Chinese and handled as follows: scene one contains the UAV shooting multi-targets. 

Scene two consists of the UAV overlooking a white car on a campus road and scene 

three includes the UAV overlooking a truck from a moving perspective. The purpose 

of the experiments was to compare the performance of the improved algorithm on CPU 

and GPU platforms on the same PC. The precision rate is not considered in this 

experiment, the time to process the video is what we care about. 

In order to get a reasonable comparison, images with different resolutions are used 

to test. Fig. 8 shows the comparison of FPS (frames per second) running on CPU and 

GPU with different resolutions. From Fig. 8 we can see that the implementation of GPU 

algorithm has achieved a very significant acceleration effect, lower resolution of image 

means faster processing speed on GPU. The FPS of original algorithm on CUP 

platforms improves little despite the resolution of image varies greatly. The average 

speed of tracker using CUDA parallel optimization is about 4.5-5 times FPS in 

comparison with CPU implementation. Fig. 7 is the tracking performance in different 

UAV testing sequences. 

 



  

Fig. 7. Vehicle Tracking in UAV Videos. 
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Fig. 8. FPS Test at Different Resolutions of White Car and Truck Dataset. 

5   Conclusions 

In this paper, structured output support vector machine and haar-like features has 

been used to improve the original Struck tracking method and accelerate the overall 

runtime with the implementation of improved algorithm on CUDA. The algorithm 

processes a video sequence with a frame rate close to 31 frames per second, and it is 

significant excellent than CPU. This method has been tested on UAV videos captured 

by DJI M100 UAV, and the experimental results show that the proposed algorithm is 

feasible to track and identify moving vehicles. In the future, the program should be 

optimized to better integrate into the CUDA programming architecture to achieve a 

better performance. 
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