
HAL Id: hal-01789946
https://inria.hal.science/hal-01789946

Submitted on 11 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Extracting and Modeling Design Defects Using Gradual
Rules and UML Profile
Mohamed Maddeh, Sarra Ayouni

To cite this version:
Mohamed Maddeh, Sarra Ayouni. Extracting and Modeling Design Defects Using Gradual Rules and
UML Profile. 5th International Conference on Computer Science and Its Applications (CIIA), May
2015, Saida, Algeria. pp.574-583, �10.1007/978-3-319-19578-0_47�. �hal-01789946�

https://inria.hal.science/hal-01789946
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Extracting and modeling design defects using

gradual rules and UML profile

Mohamed Maddeh
1
and Sarra Ayouni

2

1SOIE, ISG Tunis, Le Bardo, Tunis –Tunisia
maddeh_mohamed@yahoo.com

2Faculty of Sciences of Tunis, Tunisia

s_ayouni@yahoo.fr

Abstract. There is no general consensus on how to decide if a particular design

violates a model quality. In fact, we find in literature some defects described

textually, detecting these design defects is usually a difficult problem. Deciding

which object suffer from one defect depends heavily on the interpretation of

each analyst. Experts often need to minimize design defects in software systems

to improve the design quality. In this paper we propose a design defect detec-

tion approach based on object oriented metrics. We generate, using gradual

rules, detection rules for each design defect at model level. We aim to extract,

for each design defects, the correlation of co-variation of object oriented met-

rics. They are then modeled in a standard way, using the proposed UML profile

for design defect modeling. We experiment our approach on 16 design defects

using 32 object oriented metrics.

Keywords: Object oriented metrics, Data Mining, Gradual rules, Design de-

fects detection, UML profile.

1 Introduction

Design defects which are also called design anomalies, refer to design situations that

adversely affect the development of software like bad smells [9] and antipatterns [2].

The first one (i.e., bad smells) was proposed by Beck [9]. In fact, the author defines

22 sets of symptoms of common defects. The second one (i.e., anti-patterns) was in-

troduced by Brown et al. [2]. A set of refactoring suggestions are associate for each

defect type. Detecting these defects at the model level is a promising way to improve

software maintenance process [4][6][21]. In addition, it is difficult to identify and

express these anomalies as rules [17], since they are not formalized and based on a

simple textual description.

In general, design defects are evaluated using rules in the form of metric/threshold

combinations. Some works propose rules manually identified [1][17], other propose

algorithms that generate these rules[5][11][14]. Both approaches are suffering from

two major difficulties. The first one is due to the large number of possible metrics

combinations, in fact, it is difficult to find the best suitable rule. The second problem

is to find the best threshold for each metric. In this paper, we propose a predictive

design defects detection that focuses on model level in order to correct them before

there propagation to the code. Also, instead of affecting a threshold for metrics, we

generate, using gradual rules a correlation of co-variation of metrics characterizing

the object oriented design defects. We model each defect using UML profile, defect

are then represented as an UML class diagram summarizing the relevant information

from the most significant textual descriptions in literature.

The remainder of the paper is structured as follows. In section 2, we present the re-

lated works. In section 3, we give the problem statement. In Section 4, we introduce

the general process of the approach. In sections 5, we validate the proposed approach

and section 6 is reserved for conclusion.

2 Related works

Several studies have recently focused on detecting design defects in software using

different techniques. In [14] authors propose a new framework M-RAFACTOR for

the detection and correction of design defects based on object oriented metrics.

Marinescu [9] defined a list of rules relying on metrics to detect what he calls design

flaws of OO design at method, class and subsystem levels. Erni et al. [18] use metrics

to evaluate frameworks with the goal of improving them. Another model refactoring

is presented by Marc Van Kempen et al. [13], based on SAAT (Software Architecture

Analysis Tool). It allows calculating metrics about UML models the metrics are then

used to identify the flaws or anti-patterns. Authors represent the structure using class

diagrams, and the behaviour of each class using statecharts. After that they examine

the metrics for refactoring a centralized control structure into one that employs more

delegation. For the four previous contributions it is difficult to manually define

threshold values for metrics in the rules.Moha et al. [15], in their DÉCOR approach,

they start by describing defect symptoms using an abstract rule language. These de-

scriptions involve different notions, such as class roles and structures. In [11] defect

detection is considered as an optimization problem. They propose an approach for the

automatic detection of potential design defects in code. The detection is based on the

notion that the more code deviates from good practices, the more likely it is bad.

3 Problem Statement

There are many open issues that need to be addressed when detecting design defects.

In this paper, we first focus on how to define detection rules when dealing with quan-

titative information and then how to give a unified representation of defects specifica-

tions.

In fact, we notice that the textual description of design defects presented by authors

depend on a subjective interpretations of analysts. As fact, for a same design we can

find variable set of defects depending on the criteria’s used by designer team. To

bridge the gap between the description and the detection process, each design defect

must be formalized for the standardization of the definition of symptoms detection. In

this paper we intend to use gradual rules to formalize design defects. In the context of

our research the generated gradual rules are represented as a correlation of co-

variation of object oriented metrics. Once, gradual rules identified each design defect

is then modeled using the UML profile for design defects. We have proposed an UML

profile for design defect modeling. It summarizes the most relevant information and

replaces all textual descriptions existing in literature by one class diagram for each

design defect.

4 The General process

As presented in figure 1, we start with the domain analysis of the knowledge extracted

from the textual description of design defects. In fact, domain analysis is a process in

which information used in developing software systems is identified, captured, and

organized to be reusable when creating new systems [8]. In our context, information

about design defects must be well structured and reusable for the automated detection

process. Thus, we have studied the textual descriptions of design defects. We present

an antipattern example named the Blob.

Domain

analysis

Extraction of

gradual rules

Base of

example

Design defects
represented as

class diagrams

Modeling

design defects

UML

Profile

Set of

Gradual
rules

Fig. 1. General process

The Blob (called also God class [16]) corresponds to a large controller class that de-

pends on data stored in surrounded data classes. A large class declares many fields

and methods with a low cohesion. After the domain analysis for the Blob antipattern,

we extract the relevant information. Indeed the blob is an interclass and behavioral

defect, related to static and behavioral diagrams. The detection of the blob is based on

the analysis of the class diagram and the sequence diagrams. As presented in table1,

this research is based on 16 design defects.

B
lo

b

S
w

is
sA

rm
yK

n
if

e

L
av

a
F

lo
w

P
o

lt
er

ge
is

ts

F
u
n

ct
io

n
al

D
ec

o
m

p
o

si
ti

o
n

G
o

d
 P

ac
k
ag

e

G
o

d
 C

la
ss

es

L
o

n
g

P
ar

am
et

er
 L

is
t

D
at

a
C

lu
m

p
s

D
iv

er
ge

n
t

C
h

an
ge

S
h

o
tg

u
n

S
u
rg

er
y

L
az

y
C

la
ss

es

F
ea

tu
re

E
n

v
y

C
o

m
m

en
ts

D
at

a
C

la
ss

es

R
ef

u
se

d
B

eq
u
es

t

Structural * * *

Semantic *

Behavioral * * * * * * * * * * * *

Table 1. Classification of design defects

These design defects are evaluated using object oriented metrics that are also identi-

fied at this step. Metrics must be measurable at model level, and useful for detection

process. In our work we have identified 32 metrics. In what follows, we present some

of these metrics:

Access To Foreign Data (ATFD) [12] represents the number of external classes

from which a given class accesses attributes, directly or via accessor-methods.

Weighted Method Count (WMC) [3] is the sum of the complexity of all methods in

a class.

Attribute Per method (APM) is defined as the ratio of the metrics Number of at-

tributes (NOA) and (NOM).

After the metrics identification step we extract for each defect the most significant

gradual rules that express the correlation of co-variation of the object oriented met-

rics. We propose an approach that uses knowledge from previously manually inspect-

ed projects, called defects examples.

4.1 Mining gradual rules

In our research, gradual rules are used to evaluate poor design by detecting bad smells

and antipatterns. Mining gradual rule has been extensively used in fuzzy command

systems. However, in last decade, the data mining community has been interested in

extracting such kind of rules [7] [10] [19] [20]. Gradual rule convey knowledge of the

form « the more/the less A, the more/the less B ». In our context, A and B are object

oriented metric. We thus propose to extract rules such as « the more/the less

Metrique1, the more/the less Metrique2…, the more/the less Metrique n », such that

these metrics characterize a defect X. To the best of our knowledge, no previous study

in the literature has paid attention to apply the extraction of gradual rules to the design

defects detection. In the following section, we recall the key concepts of gradual rules

mining.

Gradual Rules

We consider a data base defined on a schema containing m attributes (X1, …,Xm)

defined on domains dom(Xi) provided with a total order. A data set D is a set of m-

tuples of dom(X1),…,dom(Xm). In this scope, a gradual item is defined as a pair of

an attribute and a variation {+,-}.The gradual item Xn+¸ means that the attribute Xn is

increasing. It can be interpreted by the more A. A gradual itemset, or gradual tenden-

cy, is then defined as a non-empty set list of several gradual items.

For instance, the gradual itemset M =A+ B is interpreted as, the more A and the

less B. For example, the relation from Table 2 shows various items about disease

symptoms.

 Patients Temperature Lymphocyte Hemoglobin

T1 P1 37.8 32 14

T2 P2 38.2 17 10

T3 P3 38.1 15 16

Table 2. Disease symptoms

This table contains three tuples : {T1,T2,T3}, we study co-variations from one item

to another one, as for example the variation of the temperature and hemoglobin. Too

kinds of variations are considered: increasing variation and decreasing variation. Each

item will hereafter be considered twice: once to evaluate its increasing strength, and

once to evaluate its decreasing strength, using the + and - operators.

For example, let us consider the rule “The higher temperature and the higher he-

moglobin then lower the lymphocyte” formalized by : R1= (Temperature + Hemoglo-

bin + Lymphocyte -).

4.2 Mining gradual design defect rules

In this section, we present the extraction of gradual design defects rules. It is based on

the GRITE algorithm [10], for GRadualITemset Extraction. For each design flaw, we

identify the metric-based heuristics. The majority of works assign a threshold to each

metric. The quality of the solution depends on the number of detected defects in com-

parison to the expected ones in the base of examples. The main limitation of this ap-

proach is that it is difficult to find the best threshold.

To overcome this problem, we present another type of correlation between object

oriented metrics. To do so, we associate for each defect a metrics table; it represents

the different metrics values for each occurrence (Oi) of all defects extracted manually

from various projects (Pi). As example, we present in table 3 a part of the metrics

table for the defect Data Class. The Data class defect creates classes that passively

store data. Classes should contain data and methods to operate on that data.

Where, for a given class C we have:

PS: Package Size, NC: Number of Classes in the model, NOPM: Number Of Pack-

ages in the Model, NOC: Number Of Communications, is the number of messages

sent by the class C, NMSC: Number Of Messages for the Same Class, is the number

of internal messages from C to C, NCC: Number of Connected Classes, is the number

of classes that communicates with the class C and NCM: Number of connected mes-

sages, is the number of messages sent to the class C.

 ATFD NOM NOA PS NC NOPM NOC NMSC NCC NCM

P1

O1 03 15 08 22 57 02 05 03 02 01

O2 02 10 05 28 57 02 04 02 01 00

P2

O3 04 08 10 33 113 04 06 09 00 01

O4 02 13 07 33 113 04 04 07 04 02

O5 05 14 08 25 113 04 07 08 04 06

O6 06 09 11 24 113 04 08 04 06 05

O7 04 16 13 21 113 04 04 07 09 08

P3

O8 05 17 12 52 368 11 06 06 03 04

O9 02 13 12 46 368 11 04 05 05 02

Table 3. Data Class metrics

The GRITE algorithm gives the most frequent sequences of metrics using the min-

support threshold. Where, the minsupport threshold aims at discovering subsets of

items that occurs together at least a minsupport time in a database. If minsupport is

set to be too large, no itemsets will be generated, if minsupport is set to be too small,

huge number of itemsets will be generated. Fixing the minsupport threshold depend

on the specificities of the problem.

 In the context on design defect detection, almost we don’t have a very large data-

base comparing to other domains, that’s why we set a minsupport value to be more

than 0.5. It means that we will extract the gradual rules that occur at least in 50% of

the transactions. We can decrease the minsupport thresholds if the program generates

no rule, until having at least one rule.

4.3 Modeling design defects

Based on UML profile capabilities, we extend the UML metamodel to support and

model all key concepts used for the specifications of design defects. We model each

defect to create a catalogue of design flaws. We formalize a set of textual and infor-

mal design flaws description (avoiding any subjective interpretation) in a well-

structured model enclosing all necessary information to deal with design defect detec-

tion.

RefactoringRepository

Description

 <<abstract>>>
RefactoringIndicator

Scope

Level

Metric

Heuristic

Antipattern DesignPatternDefect

UMLDiagram

DesignPatternBadSmells

MinValue
MaxValue
Rate

Evaluate (c: element)
Evaluate (c[1..n]: UMLDiagram)

Element

MultiplicityElementNamedElementComments

Classifier

NamespacePackageableElement Constraint

RefactoringTag

ownedrefactoring

Name : RefactoringRepository

Elements : Element [1..*]

target : Element

0..1

Owner

OwnedElment

0..1

Owner

refactoredElement

Class

PrimitiveName

1

1..n

1

1

0..n

0..n

1..n1..n

1..n

0..n

0..n

0..n

ComposedFrom

Fig. 2. The UML profile

Defined Stereotypes

In this section, we detail the defined stereotypes illustrated in figure 2: Refactor-

ingIndicator is a super-class modeling all possible refactoring indicators. The design

flows can be specialized as Antipattern, DesignPatternDefect, BadSmells.

Description contains a textual description of the design flaws. It represents the se-

mantic aspect. The description stereotype is very helpful to understand the meaning of

the design defect and the context in which it can be identified.

Metric represents the set of metrics useful forsoftware measurement and design

flows detection. The measure of metrics is done over the static and/or dynamic UML

diagrams. The UMLDiagram stereotype represents the UML diagrams attached to the

metric concept. Each Design pattern defect is attached to a design pattern represented

by the stereotype DesignPattern. RefactoringRepository indicates the name of the

refactoring primitive, using the attribute PrimitiveName (For the design defects cor-

rection).

Figure 3 in the next section presents the UML class diagram of the Data Class de-

fect.

5 Experiments

The experimentations concern the defects Blob, Lazy class, Data class, Feature Envy

and Lava flow, using three minsupport thresholds 0.5, 0.8 and 0.9. The Lazy class

defect occurs when class isn't doing enough to pay for itself. Every additional class

increases the complexity of a project. The Feature Envy defect occurs for methods

that make extensive use of another class and may belong in another class. And the

Lava flow defect represents the model elements that are not really used in the project

due to an overestimation of needs.

 Minsupport

 0.5 0.8

Blob

R1 (ATFD+ PS+ NC+ NOPM-)

No Rule R2 (ATFD+ NOM+ NOA- NCM+)

R3 (ATFD+ NC+ NCM+ NCC+ NOM+)

R4 (ATFD+ NMSC+ NOA- PS+ NC+)

Lazy class

R1 (NC+ NCC- ATFD- NCM- PS+)

(NCM- NOM – NC+ NCC- ATFD-)
(NC+ NCC- ATFD- NCM- PS+)

R2 (NCM- NOM – NC+ NCC- ATFD-)

R3 (ATFD- NC+ NCM- NOPM- NOM-)

Data class

R1 (APM- ATFD- NC+ PS+ NCC-)

(NOM- PS+ NCC- NC+ NCM+) R2 (NOM- PS+ NCC- NC+ NCM+)

FeatureEnvy R1 (NIC+ NMSMC- NC+ PS+ NOPM-) No Rule

Lava flow

R1 (NC+ NCC- ATFD- NCM- PS+) (NCM- NOM – NC+ NCC- ATFD-)

R2 (NCM- NOM – NC+ NCC- ATFD-) (NC+ NCC- ATFD- NCM- PS+)

R3 (ATFD- NC+ NCM- NOPM- NOM-)

(NIC- CM- APM- NC+ NOPM+) R4 (NIC- NMSMC- CM- NOM+)

R5 (NIC- CM- APM- NC+ NOPM+)

Table 4. Results

The Table 4 presents our results. We choose to select gradual design defect rules that

contain more than four metrics to guaranty significant results avoiding an overwhelm-

ing rule set. These results indicate the common conditions for the occurrence of a

design defect. We have better rules for high minsupport value 0.8, because the rule is

repeated at the majority of the defect occurrence (80%). We have lowest minsupport

threshold 0.5 guaranty that the extracted rules occurs in at least 50% of the detected

defects.

In our case, for a minsupport threshold equal to 0.9 we have no rules for all de-

fects. We notice that the activity of design defects detection depends on the subjec-

tivity of the designer. In fact, our research intends to help designer to improve the

quality of models by offering a set of gradual rules characterizing the context in

which could occur a design defect. All important information related to defects is now

represented using the UML profile. In figure 3 we present an example for the Data

Class defect.

« Bad smells »
Data Classes

Inter-classes
Comportemental « Heuristic »

(NOM- PS+ NCC- NC+ NCM+)

« Description »
Classes that passively store data

«Metrics »
NOM

«Metrics »
PS

«Metrics »
NC

«Metrics »
NCM

«Metrics »
NCC

« UMLDiagram »
Class Dagram

« UMLDiagram »
Sequence diagrams

Fig. 3. Data Classes

6 Conclusion

Several design defect detection techniques have been proposed. Most of existing

works relies on metrics rule-based detection, applied for the code level. However, it is

difficult to identify and express these symptoms as rules [17], since they are not for-

malized. It is also difficult to find the best threshold for metrics. This work raised

some interesting perspectives in order to detect design defects for model level based

on the evaluation of correlation of metrics co-variation instead of threshold. We have

also proposed an UML profile for design defect modeling. It fully supports design

defects modeling needs. It allows antipatterns and bad smells modeling with one uni-

fied language. Using the UML profile for design defects, we unify software designer

teams with a single and shared design defects specification.

References
1. Abreu, F. B. E. et Melo, W. (1996). Evaluating the impact of object-oriented design on

software quality. In The 3 rd International SoftwareMetrics Symposium, pages 90–99.

2. Brown, W. J., Malveau, R. C., McCormick, H. W. S. et Mowbray, T. J. (1998b). AntiPat-

terns : Refactoring Software, Architectures, and Projects in Crisis : Refactoring Software,

Architecture and Projects in Crisis. John Wiley & Sons.

3. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Transactions

on Software Engineering 20(6) (1994) 476–493.

4. Corradini, A., H. Ehrig, H.-J. Kreowski and G. Rozenberg, editors,”Graph Transfor-

mation” Lecture Notes in Computer Science 2505, Springer-Verlag, 2002.

5. Erni, K. et Lewerentz, C. (1996). Applying design metrics to object-oriented frameworks.

In IEEE METRICS, pages 64–74.

6. Ethan Hadar, Irit Hadar, “The Composition Refactoring Triangle (CRT) Practical Toolkit:

From Spaghetti to Lasagna”, OOPSLA 2006, Portland, Oregon, USA. ACM 1-9593-491-

X/06/0010.

7. E. Hüllermeier. Association rules for expressing gradual dependencies. In Proceedings of

the 6th European Conf. on Principles of Data Mining and Knowledge Discovery,

PKDD’02, pages 200–211. Springer-Verlag, 2002.

8. Frakes, W., Prieto-Diaz, R., & Fox, C. (1998). “DARE: Domain Analysis and Reuse Envi-

ronment”. Annals of Software Engineering (5), , pp. 125-141.

9. Fowler, M., Beck, K., Brant, J., Opdyke, W. et Roberts, D. (1999). Refactoring : Improv-

ing the Design of Existing Code.

10. L. Di Jorio, A. Laurent, and M. Teisseire. Mining frequent gradual itemsets from large da-

tabases. In Proceedings of the Int. Conf. on Intelligent Data Analysis, IDA’09, Lyon

France,2009.

11. Marouane Kessentini, Wael Kessentini, Houari Sahraoui, Mounir Boukadoum and Ali

Ouni. Design Defects Detection and Correction by Example, 19th IEEE International Con-

ference on Program Comprehension, 2011.

12. Marinescu. Detecting Design Flaws via Metrics in Object-Oriented Systems. In Proceed-

ings of TOOLS USA 2001, pages 103–116. IEEE Computer Society, 2001.

13. Marc Van Kempen, Michel Chaudron, Derrick Kourie, Andrew Boake, “Towards Proving

Preservation of Behaviour of Refactoring of UML Models”, in proceedings of SAICSIT

2005, Pages 252.

14. Maddeh Mohamed, Mohamed Romdhani, Khaled Ghedira, M-REFACTOR: A New Ap-

proach and Tool for Model Refactoring, ARPN Journal of Systems and Software, JULY

2011.

15. N. Moha, Y.-G. Gu h neuc, L. Duchien, and A.-F. L. Meur: DECOR: A method for the

specification and detection of code and design smells, Transactions on Software Engineer-

ing (TSE), 2009, 16 pages.

16. Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley (1996).

17. Radu Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In

Proceedings of the 20th International Conference on Software Maintenance, pages 350–

359. IEEE Computer Society Press, 2004.

18. Raul Marticorena and Yania Crespo. Refactorizaciones de especializacion sobre el len-

guaje modelo MOON. Technical Report DI-2003-02, Departamento de Informatica.

Universidad de Valladolid, septiembre 2003.

19. Sarra Ayouni, Sadok Ben Yahia, Fuzzy set-based formalization of gradual

terns, SoCPaR, 2014: 434-439, Tunis, Tunisia.

20. Sarra Ayouni, A. Laurent, S. Ben Yahia and P. Poncelet. Fuzzy gradual patterns: What

fuzzy modality for what result? In Proceedings of the International Conference on Soft

Computing and Pattern Recognition (SoCPaR’10), Cergy, France 2010.

21. Zhang, J., Lin, Y. and Gray, J. (2004) “Generic and Domain-Specific Model Refactoring

using a Model Transformation Engine”, Model-driven Software Development – Research

and Practice in Software, 2005.

