N

N
N

HAL

open science

Practical Evaluation of Large Scale Applications

Tiago Jorge, Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

» To cite this version:

Tiago Jorge, Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira. Practical Evaluation of Large
Scale Applications. 15th IFIP International Conference on Distributed Applications and Interoperable

Systems (DAIS), Jun 2015, Grenoble, France. pp.124-137, 10.1007/978-3-319-19129-4_ 10 .

01775035

HAL Id: hal-01775035
https://inria.hal.science/hal-01775035

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01775035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Practical Evaluation of Large Scale Applications

Tiago Jorge, Francisco Maia, Miguel Matos, José Pereira, and Rui Oliveira

INESC TEC & U. Minho
{tiago.jorge, francisco.maia,miguelmatos, jop,rco}@di.uminho.pt
http://www.haslab.pt

Abstract. Designing and implementing distributed systems is a hard
endeavor, both at an abstract level when designing the system, and at
a concrete level when implementing, debugging and evaluating it. This
stems not only from the inherent complexity of writing and reasoning
about distributed software, but also from the lack of tools for testing
and evaluating it under realistic conditions. Moreover, the gap between
the protocols’ specifications found on research papers and their imple-
mentations on real code is huge, leading to inconsistencies that often
result in the implementation no longer following the specification. As an
example, the specification of the popular Chord DHT comprises a few
dozens of lines, while its Java implementation, OpenChord, is close to
twenty thousand lines, excluding libraries. This makes it hard and error
prone to change the implementation to reflect changes in the specifi-
cation, regardless of programmers’ skill. Besides, critical behavior due
to the unpredictable interleaving of operations and network uncertainty,
can only be observed on a realistic setting, limiting the usefulness of
simulation tools. We believe that being able to write an algorithm im-
plementation very close to its specification, and evaluating it in a real
environment is a big step in the direction of building better distributed
systems. Our approach leverages the MINHA platform to offer a set of
built in primitives that allows one to program very close to pseudo-code.
This high level implementation can interact with off-the-shelf existing
middleware and can be gradually replaced by a production-ready Java
implementation. In this paper, we present the system design and show-
case it using a well-known algorithm from the literature.

Keywords: testing and evaluation; distributed systems, simulation and
emulation

1 Introduction

Real distributed systems are often built around several collaborating middle-
ware components such as a membership or coordination service. The correctness
and performance of these systems depends not only on the particular algorithm
used to solve the problem, but also on the interactions among the supporting
middleware components. Despite its importance and criticality, experimentally
assessing such distributed systems in a large scale setting is a daunting task.

2 Practical Evaluation of Large Scale Applications

Unfortunately, interesting behavior - and bugs - often arise exclusively in large
scale settings where intra-component concurrency, the interleaving among com-
ponents’ operations and network uncertainty, expose the system to previously
overlooked issues. This is aggravated by the fact that the very conditions that
cause the problems to appear in the first place are often hard to determine,
and harder to reproduce. Simulators such as ns-2 [12] or PeerSim [11] partially
address this problem, but their usefulness is limited to validating the design
and specification, not production code. This requires maintaining the simulation
and real implementations in tandem, which due to the huge gap in complexity
between them, becomes error-prone and time consuming as we have witnessed
first-hand several times [10]. Test beds such as PlanetLab [3] or a cloud infras-
tructure allow to perform very large scale deployments, but system observability
and reproducibility of testing conditions on normal and faulty conditions poses
several challenges. As a matter of fact, not only a coherently global observation
is physically impossible, but also the system’s behavior remains largely unpre-
dictable and unreproducible. Other tools allow to run real code but are limited to
a particular framework and language [8], or are limited in scope [2, 14, 5], thus
precluding the integration with required off-the-shelf middleware components
and providing only rough estimates of system behavior and performance.

In this paper, we take a different approach to the problem. Instead of building
yet another simulator, we rely on the MINHA ! platform [4] and extend it
with capabilities to write distributed algorithms at a high abstraction level.
Briefly, MINHA virtualizes multiple Java Virtual Machines (JVM) instances
in a single JVM while simulating key environment components, reproducing
the concurrency, distribution, and performance characteristics of a much larger
distributed system. By virtualizing time, it is possible to get a global observation
of all operation and system variables, while simulation models make it possible to
reproduce specific testing conditions. This allows to run and evaluate unmodified
Java code in real, yet reproducible conditions.

In this work we extend MINHA to provide a simplified API that features
common distributed systems functionality allowing to write algorithms very con-
cisely. Despite this, such code still runs as real code and can interact with off-
the-shelf middleware components. This allows one to not only develop and test
algorithms faster but also to incrementally replace the concise implementations,
close to pseudo-code, with fully fledged Java implementations for critical parts of
the system. Since MINHA accurately reflects the cost of executing real code, suc-
cedaneum components can be used with the guarantee that its behavior can be
analyzed, controlled and evaluated under precise reproducible conditions, thus
minimizing measurements fluctuations. Arguably, working closer to the specifi-
cation allows better reasoning about the problem at hand and therefore easier
detection and correction of problems. This is achieved through the JSR-223 Java
Scripting API [7] which allows to run scripting languages inside the JVM. We
consider the Python programming language in particular, but our approach lends
itself to be used in any language supported by JSR-223.

! www.minha. pt

Practical Evaluation of Large Scale Applications 3

The rest of this paper is organized as follows. We begin by providing back-
ground on important characteristics of MINHA and JSR-223 in Section 2. Then
we describe our system in Section 3 and present a concrete use case by providing
the implementation of the Chord DHT in Section 4. Related work is debated in
Section 5 and, finally, Section 6 concludes the paper and discusses future work.

2 Background

In this section we provide some background and context for our framework. We
describe two frameworks on which our own work relies, MINHA and JSR-223.

The MINHA [4] framework is capable of virtualizing multiple JVM instances
in a single JVM. It is able to do so simulating a real distributed environment
by virtualizing the network, CPU scheduling and by virtualizing most of the
standard Java APIs. As a consequence, it is possible to run multiple instances
of any Java application in a single machine. Each instance believes it is running
in its own machine and runs without the need to adapt any of its code. By
running multiple instances of an application in a single JVM, MINHA reduces
significantly the resources typically required for evaluating it in a large scale
scenario. This makes large scale evaluation practical.

One critical advantage of MINHA is the fact it virtualizes time. Once time is
virtualized, it is possible to perform a global system observation at any moment
of the simulation. Moreover, contrary to execution in a real environment, there
is no overhead introduced by observation and control or even by debugging, so
execution time can be considered for analysis. Global observation of system state
and each application instance variables greatly eases the process of detecting and
solving problems the application may exhibit.

Another important aspect of the MINHA platform is that environments and
software models can be replaced by simulation models, and incorporated in a
standard test harness to be run automatically as code evolves. By resorting to
simulated components and running the system with varying parameters, the im-
pact of extreme environments can be assessed and reproducing testing conditions
becomes automatic. Thanks to this holistic approach, when a component does
not yield the expected results, the developer can quickly identify and fix any
problem that may exist, and reevaluate the new component version for the same
exact conditions. The ability to easily replace software components or mock them
allows for iterative development and allows for component-targeted evaluation
and validation, which greatly eases the development of reliable software.

Additionally, MINHA not only allows to run real applications, but it also
virtualizes a significant part of a modern Java platform, thus providing unprece-
dented support for running existing code. In particular, the virtualization of
threading and concurrency control primitives provides additional detail when
simulating concurrent code, as is usually the case of middleware components.
Code is run unmodified and time is accounted using the CPU time-stamp counter
to closely obtain true performance characteristics.

4 Practical Evaluation of Large Scale Applications

World world = new World ();
Entry<Main>[] e = world.createEntries (10);
for (int 1=0; i<e.length; i++)
e.queue (). main(” test .Main” , "arg0”, "argl”);
world . runAll(e);
world . close ();

Listing 1.1. Asynchronous invocation of 10 identical MINHA entries.

MINHA’s API allows the invocation of arbitrary methods, several schedul-
ing options, asynchronous invocations, and callbacks. As presented in Listing 1.1,
creating and invoking a number of identical application instances is quite straight
forward. Basically, each entry object will represent an application instance run-
ning in its own host to which it is passed the application to run as a parameter.
In this case the application is test.Main and ten instances of this application
are run. These and other utilities that allow to create and control entries for
user defined interfaces, make it very simple to simulate large scale applications
without having to modify its code.

The JSR-223 Java Scripting API [7] is a framework that allows developers
to run scripting language code in the JVM. Any JSR-223 compliant scripting
language can be used. This way, it becomes possible to write Java applications
that can be easily customizable and extendable in a scripting language of choice.
Possible languages include Python (via Jython), JavaScript (via Rhino) or Lua
(via LuaJ). This flexibility is also very useful for reusing code from existing pro-
tocols implemented in a scripting language. Scripting languages are convenient
because they are easy to learn and use, allow complex tasks to be performed
in relatively few steps, thus requiring less lines of code, and code testing can
be made on the fly with handy interpreters. Mainly, their conciseness allow one
to prototype ideas quickly, focusing on early proof of concept implementations
close to pseudo-code.

Importantly, access between the scripting language and regular Java classes
is bidirectional, meaning that the scripting language has access to regular Java
and vice-versa. Therefore, algorithms programmed in our simplified API can still
access other middleware components such as a group communication toolkit. As
shown in Listing 1.2, one can expose an object (File f) as a variable to the
script, that, as such, can access it and call methods on it. On the other hand, it
is also possible to define a script object (var o = new Object()), expose it to
the Java class, and invoke methods on it through the Invocable interface.

The flexibility in choosing any JSR-223 compliant scripting language, to-
gether with its bidirectional exposure, are determining factors for the integration
of components written in different languages.

Practical Evaluation of Large Scale Applications 5

public class Bidirect {

public static void main(String [] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager () ;
ScriptEngine engine = manager.getEngineByName(” JavaScript”);
// Script to Java
File f = new File(”test.txt”);
engine.put(” file”, f);
engine.eval (”print (file.getAbsolutePath())”);
// Java to Script

String s = ”var o=new Object(); o.hi=function (n){print (’Hi
7+Il) ;}77 ’

engine.eval(s);

Invocable inv = (Invocable) engine;

Object o = engine.get(”0”);

inv.invokeMethod (o, ”hi”, ”Script Method”);

}

Listing 1.2. Example of Bidirectional access between scripts and Java.

3 Framework Design

As described previously, the MINHA framework allows to run unchanged Java
applications in a simulated environment. It allows us to instantiate an arbitrary
large number of peers, each with its own IP address, as if they were running in
their own machines. To each peer it is possible to assign a Java application or
service to run. In the same simulation, different peers may run different appli-
cations and may interact with each other through the (simulated) network.

Naturally, it is the responsibility of the developer to implement all the com-
munication code for the application. Moreover, as it is real Java code, the devel-
oper must deal with all the implementation details of socket management, data
marshalling / unmarshalling and message dispatching. This can be a serious
drawback when the application is still in early design and prototyping phase. In
fact, having developers focusing on these tasks prevents them from dedicating
time to the core components of the protocol.

Our framework provides a way of concisely prototyping real code distributed
algorithms. These prototypes can be tested and validated in large-scale simula-
tions leveraging MINHA. Integrating the JSR-223 scripting framework, we allow
each MINHA peer to run any JSR-223 compliant scripting language code. Ad-
ditionally, by providing a high level API to the developer, our framework hides
lower level intricacies from the developer, such as all the boilerplate code relating
to thread and socket management, data marshalling / unmarshalling, and event
dispatching.

In Figure 1 we depict the framework architecture and the exposed high level
API. The API consists in three system primitives and four types of methods each
application must implement. The three primitives are send, call and periodic.

6 Practical Evaluation of Large Scale Applications

. JVM Network controller
[
Minha entry — Peer controller
. Third-party service \I\
Service controller
1 aar
]
boot
periodic
Active thread q
receive Work;ar
poo
send/call
get_state I

Passive thread

Fig. 1. Framework architecture.

Two of the primitives abstract message dispatch - send - and remote procedure
call - call - without the developer needing to write any communication code.
The periodic primitive allows the user to register, at boot time, service methods
to be invoked periodically. In order to make a runnable application, besides
implementing these periodic methods themselves, the developer needs to provide
a boot method, a get_state method and all those events remotely invoked with
send or call, locally triggered through receive. Method boot is invoked by the
platform before actually running the application and should be used to bootstrap
the application data structures and any required initializing procedures. The
get_state method should return a representative state of the peer for system
observation purposes. Finally, receive is invoked each time a message is delivered
to the application and triggers the target event having the necessary logic to
process such message. Besides the API, the framework is organized in three
main components built on top of MINHA: network controller, peer controller
and service controller.

Network controller: ITn MINHA multiple virtual JVMs can be run in each JVM,
significantly reducing the resources required by typical alternatives. This com-
ponent is responsible for interfacing our framework with MINHA. The system
parameters are specified in a YAML configuration file. The number of peers to
run and the number of simulation rounds to perform are two of the required

Practical Evaluation of Large Scale Applications 7

configuration parameters. The network controller creates a MINHA host, which
runs in a virtualized JVM, for every peer to run. Alongside this step, each one of
this hosts is assigned a unique IP address by the MINHA platform. The compo-
nent is also responsible for loading both the script engine for each peer and all
the user-defined scripts, which implement the framework’s API. After instanti-
ating all peers and scheduling their start-up, it initiates the MINHA simulation.
Because this component interfaces with the MINHA platform it can perform
operations outside the simulation environment. In particular, the network con-
troller is able to globally observe the system. In the current implementation,
this is achieved by having all applications implement the get_state method. The
get_state method implementation is application dependent and should return a
representative state of the peer. The goal is to be able to globally observe the
state of the system by being able to inspect, for the same virtual time, the in-
ner state of every peer in the system. This observation can be done periodically
according to user configuration.

Peer controller: This controller corresponds to a MINHA entry, or peer. This
component will run the user application, which can actually consist of a stack
of what we call services. These services can be smaller applications or protocols
that are used as building blocks for a larger application. For instance, in a typical
epidemic application [9], different protocols are used as they rely on each other. In
our platform, each service is implemented in a JSR-223 compliant language and
implementing the exposed API. Alternatively, a service can also be a third-party
off-the-shelf application whose specific interface is exposed to the other services
leveraging the bidirectional characteristic of the JSR-223 framework. With all
the services ready, the user then declares, in the configuration file, which services
to run on each peer and, for each service, specific configuration parameters it
may require. At runtime, the peer controller loads the list of services to run and
their respective configurations, such as protocol specific parameters, port, and
times for periodic behavior. It then instantiates each service by invoking the
correspondent boot method, exposing in the scripting side all the necessary Java
objects such as loggers and communication end-points. Only then it starts the
service controller for each service. Third-party services are also instantiated and
started through their specific interfaces. All services have access to the list of
other services available, which enables integration.

Service controller: The service controller is responsible for the mechanisms nec-
essary to offer the API abstraction of the framework. It schedules the necessary
threads to allow periodic invocation of protocol methods, according to configura-
tion. It handles message passing by managing the necessary sockets for inter-peer
communication as well as data marshalling and unmarshalling mechanisms. Since
distributed protocols can have multiple periodic procedures executing concur-
rently, one active thread is started for each cyclic method registered through the
periodic primitive. Each thread will then periodically invoke, through JSR-223,
its respective procedure. A passive thread listens for messages continuously and
assigns a worker for processing each incoming message through receive, which

8 Practical Evaluation of Large Scale Applications

in turn inspects the message type and invokes the corresponding event, whose
implementation the user must provide.

4 Use Case

In this section we present a concise implementation of the well-known Chord
distributed hash table [13], as a use case that shows the benefits of using our
framework. Chord maps keys to nodes in a peer-to-peer structured infrastruc-
ture. When joining the network, a node receives a unique identifier that de-
termines its position in a ring. Every node is responsible for the keys that fall
between itself and its predecessor, keeping track of the latter and maintaining
a finger table whose entries point to nodes at an exponentially increasing dis-
tance, the first one corresponding to its successor. For completeness, we provide
the specification found in the Chord paper in Listing 1.3.

The corresponding implementation in our system using Python is presented
on Listing 1.4. The boot initializes the protocol. Specifically note the registration
of all the cyclic procedures using the periodic primitive. These are stabiliza-
tion tasks which have to be performed at regular intervals. Namely, function
stabilize verifies that a node is its own successor’s predecessor and notifies the
successor, function fix fingers iteratively refreshes fingers, and check_pred
checks if a node’s predecessor has failed. At the end of initialization, function
join is invoked, allowing the node to join the Chord ring. Here, only its suc-
cessor is set, since its predecessor will be updated as part of the stabilization
mechanism.

Primitives call and send respectively perform a non-blocking and blocking
(waits for a returned result) communication with another node in the overlay.
Their arguments include the destination IP, the name of the event to trigger,
and its necessary parameters. The receiver node then invokes receive (from
the super-class), which in turn applies the correspondent event. Such events in-
clude function find_successor, that looks for the successor of a given identifier,
get_pred for returning the predecessor, poke working as a ping, and notify for
telling a node that its predecessor might be incorrect. Notice that an extra pa-
rameter, src, is provided to each event, corresponding to the sender’s IP. This is
necessary because some protocols require pairwise interactions. Finally, function
closest_preceding node returns the highest predecessor of a given identifier
found in the finger table, and between (from utilities) determines the inclusion
of a value in a given range.

All these procedures correspond to executable code that can be readily de-
ployed. As most of the complexity is hidden inside our infrastructure, we end up
with an extremely concise specification. In fact, excluding boot and the single
comment line, and without compromising code legibility, we have 35 LOC, an
increase of only 17% over the pseudo-code from the original paper (compare with
Listing 1.3), which does not contain initialization code, and a decrease of 15%
over SPLAY’s implementation [8] (also excluding initialization).

O ULk W N~

© o I

10

12
13
14

15
16
17
18
19

20
21
22

23
24
25
26
27

28
29
30

Practical Evaluation of Large Scale Applications

.find_successor(id)

if (id € (n,successor))
return successor;
else
n’ = closest_preceding node(id);

return n’. find_successor(id);

.closest_preceding _node (id)

for i = m downto 1
if(finger[i] € (n,id))
return finger [i];

return n;

.join(n’)

predecessor = nil;

successor = n’.find_successor(n);

.stabilize ()

x = successor.predecessor;

if(x € (n,successor))
successor = x;

successor .notify(n);

.notify(n’):

if (predecessor is nil or n’ € (predecessor ,n))
predecessor = n’

.fix_fingers ()

next = next + 1;
if (next > m)
next = 1;
finger [next] = find_successor(n + 2"*'71);

.check_predecessor ()

if (predecessor has failed)
predecessor = nil;

Listing 1.3. Chord specification as found in the original researh paper [13].

© 00 O Ui W N

11
12

13
14
15
16
17

18
19
20
21
22

23
24
25

26
27
28
29
30
31

32
33
34
35
36
37

38
39

40
41

42
43
44

10 Practical Evaluation of Large Scale Applications

class ChordService(P2Pservices. Service):
def boot(self, xxkwargs):

self .m = kwargs['m’]

self.iD = random.randint (1, 2%xself.m)
self.pred = None

self.finger = [None] * self.m

self . refresh =0
self .periodic(stabilize ,fix_fingers ,check_pred)
self.join (kwargs|[’start_node’])

def join (self, n):
self.pred = None
self.finger [0] = self.call(n.ip, find_successor, self.iD)

def closest_preceding_node(self, iD):
for n in reversed(self.finger):
if n != None and between(n.iD, self.iD, iD):
return n
return self

def stabilize (self):
x = self.call(self.finger [0].ip, get_-pred)
if x != None and between(x.iD,self.iD,self.finger [0].iD):
self.finger [0] = x
self .send(self.finger [0].ip, notify, self)

def fix_fingers (self):
self .refresh = (self.refresh % self.m) + 1
self.finger[self.refresh —1] = self.find_successor ((self.iD
+ 2xx(self.refresh —1)) % 2%*self .m)

def check_pred(self):
if self.pred != None:
try:
self.call(self.pred.ip, poke)
except Timeout:
self.pred = None

invoked by receive
def find_successor(self, src, iD):
if between(iD, self.iD, self.finger [0].iD):
return self.finger [0]
n = self.closest_preceding_node (iD)
return self.call(n.ip, find_successor, iD)

def get_pred(self, src):
return self.pred

def poke(self, src):
pass

def notify(self, src, n):
if self.pred=None or between(n.iD,self.pred.iD,self.iD):
self .pred = n

Listing 1.4. Concise implementation of Chord.

Practical Evaluation of Large Scale Applications 11

simulation config
number_of_peers: 1000
simulation_rounds: 20
round_time: 60000
services: [ChordService]

service config
ChordService:
port: 32143
periodic_interval: 5000
m: 10 # 2"m nodes and keys, with identifiers of length m

Listing 1.5. YAML file with simulation and service parameters.

As for the configuration, consider for instance the YAML file shown in List-
ing 1.5. A simulation of twenty rounds (simulation_rounds) is defined for a
network of one thousand peers (number_of _peers), each round running for sixty
seconds (round_time) of simulated time (time units are in milliseconds). After
each round a global observation is performed over the entire network, there-
fore simulation rounds specifies the number of snapshots to be taken. Each
peer runs a single protocol, ChordService, whose parameters have to be pro-
vided also. General protocol parameters include, for instance, the port where
the service will run (here 32143), as well as the periodic_interval for cyclic
procedures (five seconds in this case). Configurations specific to the protocol are
also defined, in this case m is set to ten, resulting in a ring space of 1024 positions.

5 Related Work

Considering the current approaches to large scale evaluation of distributed sys-
tems, PlanetLab [3] is a very valuable global research network for assessing
large-scale distributed systems, by allowing experimentation in live networks of
geographically dispersed hosts. In a more lightweight approach, network em-
ulators such as ModelNet [15] can reproduce some of the characteristics of a
networked environment, such as delays and bandwidth, allowing users to eval-
uate unmodified applications across various network models, each machine in
the cluster hosting several end-nodes from the emulated topology. However, in
these test beds, system observability and reproducibility of testing conditions
on normal and faulty environments poses several challenges. Despite that exist-
ing technologies allow to partially observe the state of the system, a coherently
global observation is physically impossible. The lack of knowledge about the sys-
tem seriously hinders the ability to find and address problems, which is further
aggravated by failures and non predictable interactions due to concurrency.

12 Practical Evaluation of Large Scale Applications

A common approach to this problem is to build a simulation model, that frees
testing from the availability of the target platform for deployment and provides
perfect observability. Simulators such as ns-2 [12] or PeerSim [11] have been
shown to scale to very large systems. However, they can only validate the design
and simulation model not the real implementation. This requires maintaining
the simulation and real implementations in tandem which is error-prone and
time consuming.

An interesting trade-off is achieved by JiST (Java in Simulation Time) [2], an
event-driven simulation kernel that allows code to be written as Java threaded
code, but avoids the overhead of a native thread by using continuations. JiST
does not however virtualize Java APIs and thus cannot be used to run most
existing Java code, neither does it accurately reflect the actual overhead of Java
code in simulation time. Neko [14] provides the ability to use simulation models
as actual code, provided its event-driven API is used instead of the standard
Java classes. It also does not accurately reflect the actual cost of executing code,
as it uses a simple model that allows the relative cost of the communication
and computation to be adjusted. Protopeer [5] allows switching between event-
driven simulation and a real deployment without modifying the application. This
is achieved by abstracting time and the networking API which offers a limited
set of operations. The simulated network can be subject to message delay and
loss following models already available or others customized by the developer.
The major drawback of Protopeer is the requirement of using a specific API thus
precluding the use of off-the-shelf middleware components.

The approach of MINHA [4] is closer to CESIUM [1], which also accurately
reflects the cost of executing real code in simulated resource usage. MINHA does
however virtualize a significant part of a modern Java platform, thus providing
unprecedented support for running off-the-shelf code. In particular, the virtu-
alization of threading and concurrency control primitives provides additional
detail when simulating concurrent code, as is usually the case of middleware
components.

SPLAY [8] is an integrated system that facilitates the design, deployment
and testing of large-scale distributed applications. It also allows developers to
express algorithms in a concise, simple language that highly resembles pseudo-
code found in research papers. However, SPLAY limits the developer to the
Lua language [6] and does not offer facilities for an incremental integration with
off-the-shelf existing middleware.

6 Discussion and Future Work

In this paper, we present a unified solution for practical testing and validation
of large-scale applications. We achieve this by extending the MINHA simulation
platform with a framework for flexibly and concisely prototyping distributed al-
gorithms. The framework allows to effortlessly integrate prototypes with existing
middleware components and test them in the large.

Practical Evaluation of Large Scale Applications 13

We believe this framework can effectively ease the development of large scale
distributed systems. Not only ideas can be quickly prototyped and tested but,
when developing a complex system, each component can be mocked and pro-
gressively improved while the entire system keeps working as a whole. This
progressive and iterative development process definitely contributes for higher
quality applications.

We plan to assess the platform by implementing a broad number of protocols.
With this effort we intend not only to show the usefulness of the framework
but also to build a library of useful services that can be used in subsequent
applications. Implementing different kinds of protocols will enable us to ensure
a considerable expressiveness level for the framework, rather than taking the
risk of making it biased towards a particular type of distributed applications.
An automated and simplified mechanism for deploying these applications on real
environments is also in the scope of our short-term work, this in order to take
full advantage of supporting real code. Last but not least, we plan to evaluate
the performance of the framework itself. Rather than evaluating the distributed
applications themselves, we will assess the simulation overhead and scalability,
taking our library of protocols as an increasingly rich benchmark.

Acknowledgment

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant LeanBig-
Data, agreement no. 619606.

References

1. Alvarez, G.A., Cristian, F.: Applying simulation to the design and performance
evaluation of fault-tolerant systems. In: Reliable Distributed Systems, 1997. Pro-
ceedings., The Sixteenth Symposium on. pp. 35-42. IEEE (1997)

2. Barr, R., Haas, Z.J., van Renesse, R.: Jist: An efficient approach to simulation
using virtual machines. Software: Practice and Experience 35(6), 539-576 (2005)

3. Bavier, A.C., Bowman, M., Chun, B.N., Culler, D.E., Karlin, S., Muir, S., Peterson,
L.L., Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating systems support for
planetary-scale network services. In: NSDI. vol. 4, pp. 19-19 (2004)

4. Carvalho, N.A., Bordalo, J., Campos, F., Pereira, J.: Experimental evaluation of
distributed middleware with a virtualized java environment. In: Proceedings of the
6th Workshop on Middleware for Service Oriented Computing. p. 3. ACM (2011)

5. Galuba, W., Aberer, K., Despotovic, Z., Kellerer, W.: Protopeer: From simulation
to live deployment in one step. In: Peer-to-Peer Computing, 2008. P2P’08. Eighth
International Conference on. pp. 191-192. IEEE (2008)

6. Ierusalimschy, R., De Figueiredo, L.H., Celes Filho, W.: The implementation of
lua 5.0. J. UCS 11(7), 1159-1176 (2005)

7. JCP - Java Community Process: JSR-223 Java Scripting API. https://wuw. jcp.
org/en/jsr/detail?id=223 (2006)

14

10.

11.

12.

13.

14.

15.

Practical Evaluation of Large Scale Applications

Leonini, L., Rivitre, E., Felber, P.: Splay: Distributed systems evaluation made
simple (or how to turn ideas into live systems in a breeze). In: NSDI. vol. 9, pp.
185-198 (2009)

Maia, F., Matos, M., Vilaga, R., Pereira, J., Oliveira, R., Riviere, E.: Dataflasks:
epidemic store for massive scale systems. In: 2014 IEEE 33rd International Sym-
posium on Reliable Distributed Systems (SRDS). pp. 79-88. IEEE (2014)

Matos, M., Felber, P., Oliveira, R., Pereira, J.O., Riviere, E.: Scaling up publish/-
subscribe overlays using interest correlation for link sharing. IEEE Transactions
on Parallel & Distributed Systems 24(12), 2462-2471 (2013)

Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of the
9th Int. Conference on Peer-to-Peer (P2P’09). pp. 99-100. Seattle, WA (Sep 2009)
The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. Networking, IEEE/ACM Transactions on 11(1), 17-32 (2003)
Urban, P., Défago, X., Schiper, A.: Neko: A single environment to simulate and
prototype distributed algorithms. In: Information Networking, 2001. Proceedings.
15th International Conference on. pp. 503-511. IEEE (2001)

Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kosti¢, D., Chase, J., Becker,
D.: Scalability and accuracy in a large-scale network emulator. ACM SIGOPS
Operating Systems Review 36(SI), 271-284 (2002)

