
HAL Id: hal-01774943
https://inria.hal.science/hal-01774943

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Logic Fragments: A Coordination Model Based on Logic
Inference

Francesco Angelis, Giovanna Di Marzo Serugendo

To cite this version:
Francesco Angelis, Giovanna Di Marzo Serugendo. Logic Fragments: A Coordination Model Based
on Logic Inference. 17th International Conference on Coordination Languages and Models (COOR-
DINATION), Jun 2015, Grenoble, France. pp.35-48, �10.1007/978-3-319-19282-6_3�. �hal-01774943�

https://inria.hal.science/hal-01774943
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Logic Fragments: a coordination model based on
logic inference

Francesco L. De Angelis
francesco.deangelis@unige.ch and

Giovanna Di Marzo Serugendo
giovanna.dimarzo@unige.ch

Institute of Information Services Science, University of Geneva, SWITZERLAND

Abstract Chemical-based coordination models have proven useful to
engineer self-organising and self-adaptive systems. Formal assessment of
emergent global behaviours in self-organising systems is still an issue,
most of the time emergent properties are being analysed through ex-
tensive simulations. This paper aims at integrating logic programs into
a chemical-based coordination model in order to engineer self-organising
systems as well as assess their emergent properties. Our model is gen-
eric and accommodates various logics. By tuning the internal logic lan-
guage we can tackle and solve coordination problems in a rigorous way,
without renouncing to important engineering properties such as com-
pactness, modularity and reusability of code. This paper discusses our
logic-based coordination model and shows how to engineer and verify a
simple pattern detection example and a gradient-chemotaxis example.

1 Introduction

Coordination models have been proven useful for designing and imple-
menting distributed systems. They are particularly appealing for develop-
ing self-organising systems, since the shared tuple space on which they are
based is a powerful paradigm to implement self-organising mechanisms,
particularly those requiring indirect communication (e.g. stigmergy) [16].
Chemical-based coordination models are a category of coordination mod-
els that use the chemical reaction metaphor and have proven useful to
implement several types of self-organising mechanisms [18]. A well-known
difficulty in the design of self-organising systems stems from the analysis,
validation and verification (at design-time or run-time) of so-called emer-
gent properties - i.e. properties that can be observed at a global level but
that none of the interacting entities exhibit on its own. Few coordination
models integrate features supporting the validation of emergent proper-
ties, none of them relying on the chemical metaphor.

In this paper, we propose to enrich a chemical-based coordination
model with the notion of Logic Fragments (i.e. a combination of logic
programs). Our logic-based coordination model allows agents to inject
Logic Fragments into the shared space. Those fragments actually define
on-the-fly ad hoc chemical reactions that apply on matching data tuples
present in the system, removing tuples and producing new tuples, possibly
producing also new Logic Fragments. Our model is defined independently
of the logic language used to define the syntax of the Logic Fragment, an
actual instantiation and implementation of the model can use its own
logic(s). The advent of new families of logic languages (e.g. [17]) has en-
riched the paradigm of logic programming, allowing, among other things,
practical formalisation and manipulation of data inconsistency, knowledge
representation of partial information and constraints satisfaction. By com-
bining those logics with a chemical-based coordination model, we argue
that global properties can be verified at design time.

Section 2 discusses related works, section 3 presents our logic-based
coordination model. Section 4 shows two case studies: a simple pattern
recognition example and another one with the gradient and chemotaxis
patterns. Finally, section 5 concludes the paper.

2 Related works

2.1 Chemical-based coordination models

An important class of coordination models is represented by so-called
chemical-based coordination models, where “chemical” stands for the pro-
cess of imitating the behaviours of chemical compounds in chemical sys-
tems.

Gamma (General Abstract Model for Multiset mAnipulation) [2] and
its evolutions historically represents an important chemical-inspired co-
ordination model. The core of the model is based on the concept of virtual
chemical reactions expressed through condition-action rewriting pairs.
Virtual chemical reactions are applied on input multisets which satisfy a
condition statement and they produce as output multisets where elements
are modified according to the corresponding action (like for chemical com-
pounds); the execution of virtual chemical reactions satisfying a condition
pair is nondeterministic. Gamma presents two remarkable properties: (i)
the constructs of the model implicitly support the definition of parallel
programs; (ii) the language was proposed in the context of systematic
program derivation and correctness as well as termination of programs is

easy to prove ([8]). Its major drawback is represented by the complexity
of modeling real large applications.

The SAPERE model [4] (Figure 1a) is a coordination model for mul-
tiagent pervasive systems inspired by chemical reactions. It is based on
four main concepts: Live Semantic Annotations (LSAs), LSA Tuple Space,
agents and eco-laws. LSAs are tuples of types (name, value) used to store
applications data. For example, a tuple of type (date, 04/04/1988) can be
used to define a hypothetical date. LSAs belonging to a computing node
are stored in a shared container named LSA Tuple Space. Each LSA is as-
sociated with an agent, an external entity that implements some domain-
specific logic program. For example, agents can represent sensors, services
or general applications that want to interact with the LSA space - inject-
ing or retrieving LSAs from the LSA space. Inside the shared container,
tuples react in a virtual chemical way by using a predefined set of co-
ordination rules named eco-laws, which can: (i) instantiate relationships
among LSAs (Bonding eco-law); (ii) aggregate them (Aggregate eco-law);
(iii) delete them (Decay eco-law) and (iv) spread them across remote
LSA Tuples Spaces (Spreading eco-law). Spontaneous executions of eco-
laws can be fired when specific commands (named operators) are present
in tuple values. When a tuple is modified by an eco-law, its corresponding
agent is notified: in this way, agents react to virtual chemical reactions
according to the program they implement. The implementation of the
SAPERE model, named SAPERE middleware, has been proven to be
powerful enough and robust to permit the development of several kinds
of real distributed self-adaptive and self-organising applications, as repor-
ted in [18]. Nevertheless, the model does not aim at proving correctness
or emergence of global properties programs built on it: this means that
proving correctness of applications may turn to be a complex task.

2.2 Formal approaches for tuple based coordination models

Coordination models based on tuple spaces are amenable to several kinds
of analytical formalisation.

PoliS [5] is a coordination model based on multiset rewriting in which
coordination rules consume and produce multisets of tuples; rules are
expressed in a Chemical Abstract Machine style [3]. In PoliS, properties
can be proved by using the PoliS Temporal Logic and the PoliMC model
checker.

Tuples centres [15] allow the use of a specification language (named
RespecT) to define computations performed in the tuple space. Computa-
tions are associated with events triggered internally because of reactions

previously fired or during the execution of traditional input/output op-
erations by agents. RespecT is based on first-order logic and unification
of unitary clauses (tuple templates) and ground atoms (tuples) represent
the basic tuple matching mechanism.

In the ACLT model [7], the tuple space is treated as a container of logic
theories, which can be accessed by logic agents to perform deduction pro-
cesses. Again, the first-order logic and unification of unitary clauses and
ground atoms is used as matching mechanism; the model offers specific
input-output primitives tailored to provide different meaning for unifica-
tion by allowing a certain control in selecting the set of unitary clauses to
be treated as facts in case of backtracks or temporary missing information
in the deduction process.

In our model we do not express coordination in terms of rewriting
rules; moreover, the logic layer is enhanced by considering several types
of logic languages.

3 Logic- and chemical-based coordination model

3.1 Definition of the model

The chemical-based coordination model we present in this paper is de-
signed to exploit several important features of the models cited above
in the context of self-organising and self-adaptive applications; our goal
is to define a coordination model with the following characteristics: (i)
coordination algorithms can be described in an sufficiently abstract way
starting from high-level specifications; (ii) the constructs used to express
coordination algorithms are amenable to formal analysis of their correct-
ness, they incentivize the decoupling of logic from implementation and
they meet software engineering properties such as modularity, reusability
and compactness. The rationale leading the definition of our coordination
model can be synthesized as the adoption of Kowalski’s terminology [12]:
algorithm = logic + control. This formulation promotes the dichotomy of
algorithms in: (i) logic components (formulae) that determine the mean-
ing of the algorithm, the knowledge used to solve a problem (i.e. what
has to be done) and (ii) control components, which specify the manner
the knowledge is used (i.e. how it has to be done).

The coordination model we define (Figure 1b) is a generalization of
the SAPERE model with two additional features: (i) LSAs can store not
only data tuples but actual logic programs (Section 3.2); (ii) the bond-
ing eco-law is replaced by a new one named Logic eco-law, which is in
charge of executing logic programs and performing the bonding actions.

LSA tuple space

Application

Agent

LSA

Sensor

Agent

Spreading
Eco-law

LSA

Decay
Eco-law

Aggregate
Eco-law

Bonding
Eco-law

(a) SAPERE model

LSA tuple space

Application

Agent

LSA

Sensor

Agent

Spreading
Eco-law

LSA

Decay
Eco-law

Aggregate
Eco-law

Logic
Eco-law

(b) Our model

 LSA

Application

Agent

Logic Program2
LSA

LSA

LSA

LSA

Sensor

Agent

Application

Agent

Application

Agent

Spreading
Eco-law

LSA tuple space

Logic Program1
LSA

LSA

LSA

Decay
Eco-law

Logic
Eco-law

Aggregate
Eco-law

(c) Reactions among logic programs

Figure 1: The generalization of the SAPERE Model

The remaining components of the model are exactly the same as the
ones of the SAPERE model. The virtual chemical reactions among tuples
taking place in the shared container are now driven by logic inferences
processes, which produce either data tuples or new logic programs during
the “execution” of logic programs (Figure 1c). This process brings the
idea promulgated by [12] in the context of chemical-based coordination
models: the logic components of an algorithm are expressed in terms of lo-
gic programs, here embedded in LSAs, which can react among each other
in a chemical fashion. Similarly, agents implement the control compon-
ents (written in a programming language such as Java), and they perform
computations according to the knowledge inferred by logic programs. This
approach to separation and mapping of concepts helps designing coordin-
ation algorithms from an abstract point of view. On the one hand, al-
gorithms are thought as interactions of atomic logic entities which define
the meaning (in Kowalski’s terminology) of subparts of the original al-
gorithm. On the other hand, once logic entities have been defined, a spe-
cific problem-solving strategy can be chosen to be implemented for each
subpart of the original problem. The intuition of using logic programs is
twofold: (i) tuples exchanges represent the basic mechanism to carry out
indirect communication among agents, thus the state and the evolution
of a coordination process can be defined by analysing the set of tuples
in the containers; (ii) tuples are used as inputs (facts) and produced as
outputs of logic programs (models and formulae obtained by resolution
rules). By considering points (i) and (ii), logic programs provide a nat-
ural formal tool to express coordination, allowing for inferred formulae to
state relationships among entities of the system, depicting the evolution
of coordination processes and proving system properties.

3.2 Logic programs

Logic programs [14] are sets of logic formulae and are expressed in a
logic language (e.g. first-order logic). Executing a logic program means
either: (i) providing queries to the program and testing whether they
logically follow from the program by using a proof engine (logic inference)
or (ii) inferring all sentences that logically follow from the program (logic
semantics). An interpretation of a formal language is an interpretation
(see [14]) of constants, predicate and functions of the language over a
given domain. The truth-value of a logic sentence is determined by the
interpretation of the logic connectives. Given a logic program P , a model
is an interpretation M such that every formula in P is true (depicted as
M |= P). Here we are interested in Herbrand interpretations ([14]): (i)
the implicit domain is the Herbrand Universe, the closure of the set of
constants under all the functions symbols of the language; (ii) constants
are interpreted as themselves and every function symbol as the function
it refers to. In classical 2-valued logic programs, Herbrand interpretation
can be defined through sets of atoms implicitly interpreted as true.

Example: P = (C(x)← A(x), B(x); A(c)← �;B(c)← �;) is a defin-
ite logic program [14]. Clauses are implicitly universally quantified. This
is a definite logic program (i.e. containing Horn clauses): x is a variable,
c is a constant and here they range over an (implicitly) defined domain.
The first rule is composed of the head C(X) and the body A(X), B(X)
and it can be read as “C(X) is true if both A(X) and B(X) are true”.
Rules with empty bodies (�) are named facts and they state sentences
whose heads must be considered satisfied; in this case A(c) and B(c)
hold. M = {A(c), B(c), C(c)} is a model for the program in the example,
because it satisfies all the rules.

3.3 Logic languages

In our model, logic programs are executed by the Logic eco-law. An im-
portant point in our approach is the generality of the coordination model
w.r.t. the logic. We consider only logic languages that support Herbrand’s
interpretations, whereas we do not put any constraint on the inference
methods or the semantics. Both inference methods and semantics are
treated as parameters associated with logic programs. From the prac-
tical point of view, for each logic language we require the implementation
of a dedicated Logic eco-law that executes the corresponding logic pro-
grams. This feature makes possible to use, possibly simultaneously: (i)

several types of logic programs (e.g. definite, general logic programs, sev-
eral types DATALOG or DATALOG-inspired programs) associated with
two-valued, multi-valued (e.g. Belnap’s logic) or paraconsistent logics; (ii)
several inference procedures (e.g. SLD, SLDNF) and semantics (e.g. Apt-
van Emden-Kowalski, Kripke-Kleen, stable,well-founded model semantics)
[11,13,1,9,17].

3.4 Logic Fragments

In our model, logic programs are embedded in logic units named Logic
Fragments. The following set of definitions will be used to clarify the
concept. We assume that Prop, Const and V ar are finite mutually dis-
joint sets of relation symbols, constants and variables respectively. We will
identify variables with letters x, y, . . . and constants with letters a, b,

Definition 1 (Literals, Ground Literals): A literal P̂ is an expression
of type P (X1, . . . , Xn) or ¬P (X1, . . . , Xn) where P ∈ Prop and Xi ∈
(Const ∪ V ar) for i = 1, . . . , n. A ground literal is a literal without
variables. The set of all ground literals w.r.t. a set Const is denoted
G(Const). The power set of G(Const) is depicted P(G).

Definition 2 (Valuations): A valuation w is a function from V ar to
Const that assigns a constant ci to each variable xi. The set of all possible
valuations is depicted as W = {w|w : V ar → Const}.
Definition 3 (Instances of Literal): If P̂ is a literal and w is a valuation,
with P̂w we identify the ground literal where every variable of P̂ has been
replaced by a constant according to the definition of w. P̂w is named an
instance of P̂ . We denote IP̂ = {P̂w|w ∈ W} ⊆ G(Const).

Definition 4 (Logic Programs): A logic program is a set of logic formulae
written in a logic language using: (i) literals P̂1, ..., P̂n defined over Prop,
Const, V ar and (ii) logic operators.

Definition 5 (A-generator): Given a literal P (X1, . . . , Xn), an A-generator
w.r.t. a function U : Constn → {T, F} is the finite set:
PU (X1, . . . , Xn) = {P (c1, . . . , cn) ∈ IP (X1,...,Xn)|U(c1, . . . , cn) = T}.
Example: AU (X) = {A(X)|X ∈ {a, b, c}} = {A(a), A(b), A(c)}, with
U(a) = U(b) = U(c) = T .

Definition 6 (I-generator): Given a literal P (X1, . . . , Xn), an I-generator
w.r.t a function V : P(G)→ P(G) and a finite set H ⊆ P(G) is the set:
PH,V (X1, . . . , Xn) = {P (c1, . . . , cn) ∈ IP (X1,...,Xn) ∩ V (H)}
If V is omitted, we assume that V (H) = H (identity function).

Example: if N = {2, 3, 4} and V (N) = {Even(x)|x ∈ N ∧x is even}, then
EvenN,V (X) = {Even(2), Even(4)}.

The rationale of such definitions is to provide the program with a set of
facts built from conditions holding on tuples stored in the container. The
unfolding of these generators produces new facts for the interpretation of
the logic program.

By LF we identify the algebraic structure of Logic Fragments, recurs-
ively defined as follows:

Definition 7 (Logic Fragments LF):
(I) 4 ∈ LF
(II) (Grouping) If e ∈ LF then (e) ∈ LF
(III) (Parallel-and) If e1, e2 ∈ LF then e1 u e2 ∈ LF
(IV) (Parallel-or) If e1, e2 ∈ LF then e1 t e2 ∈ LF
(V) (Composition) If P is a logic program, M an execution modal-
ity, S a set of A,I-generators, ϕ : P(G) → {T, F} and ep ∈ LF then
(P,M, eP , S, ϕ) ∈ LF .
4 is a special symbol used only in Logic Fragments to depict all the
tuples in the container (both LSAs and Logic Fragments).M is the iden-
tifier of the way P is “executed” (we will use M = A for the Apt-van
Emden-Kowalski and M = K for the Kripke-Kleen semantics). eP is
named constituent of the Logic Fragment and it is interpreted as a set
of tuples used as support to generate the facts for the program. S is
a set of A,I-generators used to derive new facts from P . The function
ϕ : P(G) → {T, F} returns T if the tuples represented by the constitu-
ent ep satisfy some constraints; the logic program is executed if and only
ϕ(eP) = T (Def. 8). ϕT is constant and equal to T . For style reason, we
will write PM(eP , S, ϕ) instead of (P,M, eP , S, ϕ).

Every Logic Fragment is executed by the Logic eco-law; its semantics is
defined by using the function vL.

Definition 8 (Semantic function): vL : LF → P(G)∪{./} associates the
fragment with the set of tuples inferred by the logic program (consequent)
or with ./, which stands for undefined interpretation. L denotes the set of
actual tuples in the container before executing a Logic Fragment. Oper-
ators are ordered w.r.t. these priorities: grouping (highest priority), com-
position, u and t (lowest priority). vL is recursively defined as follows:
I) vL(4) , L
II) vL

(
(e)
)
, vL(e)

III) vL
(
e1 u ... u en

)
n≥2 ,

{
./ if ∃i ∈ {1, . . . , n}.vL

(
ei
)

=./⋃n
i=1 vL

(
ei
)

otherwise

IV) vL
(
e1t...ten

)
n≥2 ,

{⋃
i∈I vL

(
ei
)

if I = {ei|vL(ei) 6=./, 0 ≤ i ≤ n} 6= ∅
./ otherwise

V) vL
(
PM(eP , S, ϕ)

)
, Q

Q is the consequent of PM and it is defined as follows: if M is not com-
patible with the logic program P or if vL(ep) = ./ or if ϕ

(
vL(ep)

)
=

F then Q = ./. ϕ “blocks” the execution of the program as long as
a certain condition over ep is not satisfied. Otherwise, based on S =

{PH0,V0
0 (X01, ..., X0t0), ..., PHn,Vn

n (Xn1, ..., Xntn), P0(Y01, ..., Y0z0), ...
Pm(Ym1, ..., Ymzm)}, the Logic eco-law produces the set of facts Fs =⋃n

i=0 P
vL(Hi),Vi

i (Xi1, . . . , Xiti) ∪
⋃m

i=0 Pi(Yi1, . . . , Yizi). A,I-generators are
then used to define sets of ground literals for the logic program which sat-
isfy specific constraints; during the evaluation, for every set Hi we have
either Hi = ep or Hi = 4. Q is finally defined as the set of atoms inferred
by applying M on the new logic program P ′ = P ∪ {l ← �|l ∈ Fs},
enriched by all the facts contained in Fs. Note that there may be no need
to explicitly calculate all the literals of A,I-generators beforehand: the
membership of literals to generators sets may be tested one literal at a
time or skipped because of the short-circuit evaluation.

Lemma 1 (Properties of operators): Given a, b ∈ LF with a ≡ b we state
that vL(a) = vL(b) for every set of literals L. Then for any a, b, c ∈ LF :

I) a t a ≡ a (Idempotence of t)
II) a t b ≡ b t a (Commutativity of t)
III) a t (b t c) ≡ (a t b) t c (Associativity of t)
IV) a u a ≡ a (Idempotence of u)
V) a u b ≡ b u a (Commutativity of u)
VI) a u (b u c) ≡ (a u b) u c (Associativity of u)
VII) a u (b t c) ≡ (a u b) t (a u c) ≡ (b t c) u a (Distrib. of u over t)

Intuitively, composing two Logic Fragments means calculating the in-
ner one first and considering it as constituent for the computation of the
second one. Parallel-and (u) means executing all the Logic Fragments
them in a row or none, whereas Parallel-or (t) means executing only
those ones that can be executed at a given time.

3.5 Update of the container

In our model, all the Logic Fragments are carried on a snapshot image of
the container, i.e. given a Logic Fragment e in the container, if vL(e) 6=./,
then it is evaluated as an atomic operation (every symbol 4 in the sub
Logic Fragments which composes e is always translated with the same
set of actual tuples). Multiple Logic Fragments ready to be evaluated are
computed in a non-deterministic order. The tuples inferred by the logic
programs (with all used facts) are inserted in the container only when the
evaluation of the whole logic program terminates. At that point, the Logic

eco-law injects the inferred tuples in the container and notifies the end of
inference process to the agent. The Logic Fragment is subject to a new
evaluation process as soon as the set Fs changes due to updates of the
shared container, but there are no concurrent parallel evaluations of the
same Logic Fragment at a given time (unless it appears twice); this aspect
can potentially hide tuples updates in the evaluation process (Section
5). The representation of the functions associated with A,I-generators
depends on the implementation.

4 Case studies

By using Logic Fragments we can easily tackle interesting coordination
problems and properties. Additional examples are reported in [6].

4.1 Palindrome recognition

As a first example we show an easy pattern recognition scenario. Assum-
ing that an agent A inserts positive integers into the container, we want
to discover which ones are palindromic numbers (i.e. numbers that can
be read in the same way from left to right and from right to left). We
assume that these integers are represented by tuples of type N(a), where
a is a number, e.g. N(3) represents the number 3. Agent A inserts the
Logic Fragment LFp : PAp (4, {N4, T estPalin}, ϕp).

ϕp(4) = T ⇔ ∃w : N(X)w ∈ 4
TestPalin(x) = {TestPalin(a)|a is a positive palindromic number less than dmax}

Logic code 1.1 Definite logic program Pp

Palin(x) ← N(x), T estPalin(x)

Pp is the logic program in Code 1.1, evaluated with the Apt-van Em-
bden Kowalski semantics (A). The set S of A,I-generators is composed of
two elements: N4 contains all literals N(a) (numbers) existing in the con-
tainer (4); TestPalin(x) contains all the literals of type TestPalin(a),
where a is a positive palindromic number less then dmax. These two sets
of literals are treated as facts for Pp. According to ϕ, Pp is executed
as soon as a number N(a) is inserted into the container. The rule of
the logic program Pp states that a number a is a palindromic number
(Palin(a)) if a is a number (N(a)) and a passes the test for being pal-
indromic (TestPalin(a)). We consider the tuple space shown in Figure
2a and 2b. At the beginning, agent A injects LFp (Figure 2a). At a

later stage A injects N(22) and the Logic Fragment is then executed.
In this case, N4 is evaluated as {N(22)}. Moreover, TestPalin(a) will
contain TestPalin(22), because it is palindromic. This means the con-
sequent Q of LFp contains Palin(22), along with all the facts gener-
ated by the A,I-generators used in the logic program. If now agent A
injects N(12), the Logic Fragment is re-executed and N4 is evaluated
as {N(22), N(12)}. This second number does not satisfy the palindromic
test (N(12) 6∈ TestPalin(x)), so the 12 will not be considered as pal-
indromic. Finally A injects N(414) and during the re-execution of LFp

we obtain: N4 = {N(22), N(12), N(414)} and N(414) ∈ TestPalin(x),
so the consequent Q will contain Palin(22) and Palin(414) (Figure 2b).
Note that if numbers were injected by agents different from A (like a
sensor), the same reactions would take place.

Application

Agent
A

LSA Logic
Fragment LFp LSA

Sensor

Agent

LSA tuple space

(a) Injection of LFp

Application

Agent
A

LSA

Sensor

Agent

LSA tuple space

LSA
Palin(22)

LSA
N(22)

LSA
N(12)

LSA Logic
Fragment LFp

Logic
Eco-law

LSA
Palin(414)

LSA
N(414)

(b) Injection of numbers

Figure 2: Evolution of the container for the example of Section 4.1

Property 1: A palindromic integer a ≥ 0 exists in the container if and
only if Palin(a) exists in the least Herbrand model of P ′p (the extension
of Pp with all the facts created by A,I-generators).

Proof sketch: The property above states that by using the Logic Frag-
ment LFp we are able to correctly find out all the palindromic integers.
Thanks to the logic programs and the semantic of Logic Fragments, we
can easily verify that if such integers exist in the container then their
literals are inferred in Herbrand model of P ′p. Moreover, given that such
literals are only generated by LFp, if such literals exist in the model then
there must be the associated palindromic integers in the shared space.

4.2 Gradient and Chemotaxis patterns - general programs

In this second example we use Logic Fragments to implement the gradient
and chemotaxis design patterns ([10]), which are two bio-inspired mech-
anisms used to build and follow shortest paths among nodes in a network.

The chemotaxis is based on the gradient pattern. A gradient is a mes-
sage spread from one source to all the nodes in the network, carrying
a notion of distance from the source (hop-counter). Gradient messages
can also carry user-information. Once a node receives a gradient from a
known source whose hop-counter is less than the local one (i.e. a new local
shortest-path has been found), the node updates its local copy of the hop-
counter (aggregation) and spreads it towards the remaining neighbours
with a hop-counter incremented by one unit. In these terms, the gradi-
ent algorithm is similar to the distance-vector algorithm. The chemotaxis
pattern resorts to gradient shortest-paths to route messages towards the
source of the gradient. We can implement the gradient and chemotaxis
patterns by using an agent Agc associated with the Logic Fragment:

LFgc : PA
g

(
PA
a

(
4u PK

n (4, Sn, ϕn), Sa, ϕT

)
, Sg, ϕT

)
t PA

ch(4, Sch, ϕch)

Logic code 1.2 Program Pn - Next hop initialization

GPath(x,dmax,null) ← ¬existsGPath(x)

Logic code 1.3 Program Pa - Aggregation

cmpGradient(x1, x2, y1, y2, z) ← Gmsg(x1, x2, y1, z), GPath(x1, y2, w)
updateGPath(x1, y1, x2, z) ← cmpGradient(x1, x2, y1, y2, z), less(y1, y2)

Logic code 1.4 Program Pg - Spreading

spreadGradient(x1, local, z, y, x2) ← updateGPath(x1, y, x2, z)

Logic code 1.5 Program Pch - Chemotaxis

sendChemo(m,x,w) ← Cmsg(m,x), GPath(x, y, w)

ϕn(4) = T ⇔ ∃w : Gmsg(x1, x2, y, z)w ∈ 4, ϕch(4) = T ⇔ ∃w : Cmsg(x, y)w ∈ 4

Sch = {Cmsg4, GPath4} Sg = {updateGPathePg } Sn = {existsGPath4,V , Gmsg4}
Sa = {GmsgePa , GPathePa , less} less(x, y) = {less(a, b)|a < b, a, b ∈ {1, ..., dmax}}

existsGPath(x)4,V = {¬existsGPath(a) ∈ I¬existsGPath(x) ∩ V (4)}
V (4) = {¬existsGPath(a)|∃w : Gmsg(a, x, y, z)w ∈ 4 ∧ ¬∃GPath(a, y, w)w ∈ 4}

Gradients are represented by tuples Gmsg(a, b, c, d) where a is the ID
of the source, b is the ID of the last sender of the gradient, c is the hop-
counter and d is the content of the message. Values null, dmax and local
are considered constants. Local hop-counter are stored in tuples of type
GPath(a, c, e), where a and c are as above and e is the previous node in the

path, this will be used to route the chemotaxis message downhill towards
the source. LFgc is composed of several Logic Fragments; the parallel-or
operator makes the agent Agc to react simultaneously to chemotaxis and
gradients messages. The innermost fragment ePa = 4u PKn (4, Sn, ϕn) is
executed when a gradient message is received from a neighbour (4 can
be executed directly but the parallel-and operator blocks the execution
of outer fragments until PKn (4, Sn, ϕn) finishes); it initializes the GPath
tuple for the source of the gradient. By using the composition operator,
the literals inferred in the model of P ′n, along with all the tuples in the
container (fragment 4) are then treated as constituent for the fragment
ePa = PAa (ePe , Sa, ϕT), i.e. they are used to generate facts for the program
P ′a. This one is used to aggregate the hop-counter for the source with the
one stored in the local container. ePa is finally treated as constituent
for the fragment ePg = PAg (ePa , Sg, ϕT). Note that aggregation happens

before spreading, imposing an order on the reactions. PAg is used to verify
whether the gradient message must be spread to the neighbours. If so, a
literal spreadGradient(a, local, d, c, b) is inferred during the computation
of its semantics, where local is translated with the name of the current
node. Simultaneously, the Logic Fragment PAch(4, Sch, ϕch) is executed as
soon as a chemotaxis message is received (described as Cmsg(f, g), with
f content of the message and g ID of the receiver). That Logic Fragment
uses the local copy of the hop-counter to infer which is the next hop to
which the chemotaxis message must be sent to (relay node). If the local
hop-counter exists, a literal sendChemo(f, g, h) is generated in the model
of P ′ch, with h representing the ID of the next receiver of the chemotaxis
message. Otherwise, the message remains in the container until such a
literal is finally inferred. All the literals contained in the consequent Q
of LFgc are used by the agent Agc to manage the control part of the
algorithm, described in the following code.

Control code 1.6 Behaviour of agent Agc

if spreadGradient(a, local, d, c, b) ∈ Q then
send Gmsg(a, local, c + 1, d) to all neighbours but b
remove container.Gmsg(a, x, y, z)w for any w

if updateGPath(a, c, b, d) ∈ Q then
update container.GPath(a, x, y)w = GPath(a, c, b) for any w

if sendChemo(f, g, h) ∈ Q then
send Cmsg(f, g) to node h
remove container.Cmsg(f, g)

We consider the network of Figure 3; the Logic Fragment can be used
to provide the gradient and chemotaxis functionalities as services to other

agents running on the same nodes. Assuming that agent AGm on node A
wants to send a query message m1 to all the nodes of the network, it cre-
ates and injects the gradient message Gmsg(A,A, 0,m1). At this point a
reaction with LFgc takes place, generating in the consequent Q of LFgc lit-
erals GPath(A, 0, A) (semantics of P ′n) and spreadGradient(A,A,m1, 0, A)
(semantics of P ′g). The second literal causes the spreading of the gradi-
ent message to nodes B and C. Similar reactions take place in the re-
maining nodes. If we assume that the gradient passed by node D is the
first one to reach E then GPath(A, 3, D) is inferred in the consequent
Q on node E. When the gradient message coming from B reaches E,
updateGPath(A, 1, B,m1) is inferred in the semantics of program P ′a, so
the hop-counter tuple is updated in GPath(A, 2, B). Now assuming that
agent ACm on node E wants to send a reply-message m2 to node A, it
creates and injects a chemotaxis message Cmsg(m2, A). On the basis of
the tuple GPath(A, 2, C), the literal sendChemo(m2, A,C) is inferred in
the model of P ′g, so the message is sent to node B. Similar reactions take
place on node B, which finally sends the chemotaxis message to node A.

Agent
GC

Logic Fragment
LFgc

GPath(A,1,A)

Agent
GC

Logic Fragment
LFgc

GPath(A,2,B)

Node B Node D

Agent
GC

Logic Fragment
LFgc

GPath(A,2,C)

Node E

Agent
GC

Logic Fragment
LFgc

GPath(A,1,A)

Node C

Agent
GC

Logic Fragment
LFgc

GPath(A,0,A)Gmsg(A,A,0,m1)

Node A

Agent
Gm

Cmsg(m2,A)

Agent
Cm

Cmsg(m2,A)Cmsg(m2,A)

Gmsg(A,A,1,m1) Gmsg(A,A,1,m1) Gmsg(A,B,2,m1)

Gmsg(A,C,2,m1)

GPath(A,3,D)

Figure 3: Network of 5 nodes

Property 2: Let N be a network with no disconnected hosts. If we as-
sume that: (i) nodes do not move; (ii) every node has a Logic Fragment
of type LFgc; (iii) every information sent from one node to another one
arrives at destination in a finite time (eventually due to multiple spread-
ing); (iv) a gradient message is created by an agent AGm on one node S
of N , then there exists a finite time t∗ for which the following statement
holds: if an agent ACm on node R creates a chemotaxis message for A
at time t > t∗, then the chemotaxis message reaches the destination S
following a shortest-path between R and S.

Proof sketch: The rationale behind the proof consists in proving two
categories of properties: (i) a local property which states that the number
of gradient messages sent by each node is finite, due to the decrements of

the hop-counter caused by the applications of the aggregation-function;
(ii) global properties, based on the local property holding in each node
(e.g. we prove the creation of the shortest-path). The details are reported
in [6]. Additional studies focusing on the integration of spatial-temporal
logics in Logic Fragment are needed to prove the analogous statement
when considering mobile nodes.

5 Conclusion and Future works

In this paper we have presented a chemical-based coordination model
based on a logic framework. Virtual chemical reactions are lead by lo-
gic deductions, implemented in terms of combination of logic programs.
This approach combines the benefits of using a chemical-based coordina-
tion model along with the expressiveness of several distinct types of logic
languages to formalise coordination logically. Intuitively, even though no
formal verification or validation methods were presented, the rationale be-
hind the proof of the correctness of coordination algorithm follows from
a formalisation of the system properties to be proved in terms of logical
formulae. This paves the way for at least two formal analysis: (i) what-if
assessment - coordination events can be modeled in terms of injected/re-
moved tuples and deducted literals can be used to test the satisfaction of
the system properties formulae. This first kind of verification can be done
at design time, to assess properties of the whole system under certain
conditions (events) and partially at run-time, to infer how the system
will evolve assuming a knowledge restricted to a certain subset of locally
perceived events; (ii) the second type of design time analysis starts from
the literals that satisfy the properties formulae and proceeds backwards,
to derive what are the events that lead the system to that given state.
Future works will focus on such aspects, to derive formal procedures for
correctness verification of algorithm built on top of Logic Fragments.
Several kinds of logics present interesting features to model and valid-
ate coordination primitives: (i) paraconsistent logics (e.g. [17]) and (ii)
spatial-temporal logics, to assert properties depending on location and
time parameters of system components. We plan also to realise an imple-
mentation of the model, including several semantics for Logic Fragments
taking inspiration from the coordination primitives presented in [7].

References

1. Apt, K.R., van Emden, M.H.: Contributions to the theory of logic programming.
J. ACM 29(3), 841–862 (1982)

2. Banâtre, J.P., Le Métayer, D.: The gamma model and its discipline of program-
ming. Sci. Comput. Program. 15(1), 55–77 (1990)

3. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 81–94. POPL ’90, ACM (1990)

4. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Pervasive middleware goes social:
The sapere approach. In: Proceedings of the 2011 Fifth IEEE Conference on Self-
Adaptive and Self-Organizing Systems Workshops. pp. 9–14. SASOW ’11 (2011)

5. Ciancarini, P., Franzè, F., Mascolo, C.: A coordination model to specify systems
including mobile agents. In: Proceedings of the 9th International Workshop on
Software Specification and Design. IWSSD ’98, IEEE Computer Society, Washing-
ton, DC, USA (1998)

6. De Angelis, F.L., Di Marzo Serugendo, G.: Towards a logic and chemical based
coordination model (2015), https://archive-ouverte.unige.ch/

7. Denti, E., Natali, A., Omicini, A., Venuti, M.: Logic tuple spaces for the coordin-
ation of heterogeneous agents. In: Baader, F., Schulz, K.U. (eds.) Frontiers of
Combining Systems, Applied Logic Series, vol. 3, pp. 147–160. Kluwer Academic
Publishers (1996), 1st International Workshop (FroCoS’96), Munich, Germany,
26–29 Mar. 1996. Proceedings

8. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8) (1979)

9. Emden, M.H.V., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. Journal of the ACM 23, 569–574 (1976)

10. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Ar-
cos, J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Natural Computing 12(1), 43–67 (2013)

11. Fitting, M.: Fixpoint semantics for logic programming a survey. Theoretical Com-
puter Science 278(1–2), 25 – 51 (2002), mathematical Foundations of Programming
Semantics 1996

12. Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424–436 (Jul
1979)

13. Kowalski, R., Kuehner, D.: Linear Resolution with Selection Function. Artificial
Intelligence 2(3-4), 227–260 (Dec 1971)

14. Nilsson, U., Maluszynski, J.: Logic, Programming, and PROLOG. John Wiley &
Sons, Inc., New York, NY, USA, 2nd edn. (1995)

15. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3), 277–294 (nov 2001)

16. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing
self-organising coordination. In: Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M.
(eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009). vol. III,
pp. 1353–1360. ACM, Honolulu, Hawai’i, USA (8–12 Mar 2009)

17. Vitória, A., Maluszyński, J., Sza las, A.: Modeling and reasoning in paraconsistent
rough sets. Fundamenta Informaticae 97(4), 405–438 (2009)

18. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F.L.,
Di Marzo Serugendo, G., Dobson, S., Fernandez-Marquez, J.L., Ferscha, A.,
Mamei, M., Mariani, S., Molesini, A., Montagna, S., Nieminen, J., Pianini, D.,
Risoldi, M., Rosi, A., Stevenson, G., Viroli, M., Ye, J.: Developing pervasive multi-
agent systems with nature-inspired coordination. Pervasive and Mobile Comput-
ing 17, 236–252 (2015), special Issue 10 years of Pervasive Computing In Honor of
Chatschik Bisdikian

https://archive-ouverte.unige.ch/

	Logic Fragments: a coordination model based on logic inference

