
HAL Id: hal-01774941
https://inria.hal.science/hal-01774941

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Type Reconstruction Algorithms for Deadlock-Free and
Lock-Free Linear π-Calculi

Luca Padovani, Tzu-Chun Chen, Andrea Tosatto

To cite this version:
Luca Padovani, Tzu-Chun Chen, Andrea Tosatto. Type Reconstruction Algorithms for Deadlock-
Free and Lock-Free Linear π-Calculi. 17th International Conference on Coordination Languages and
Models (COORDINATION), Jun 2015, Grenoble, France. pp.83-98, �10.1007/978-3-319-19282-6_6�.
�hal-01774941�

https://inria.hal.science/hal-01774941
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Type Reconstruction Algorithms
for Deadlock-Free and Lock-Free Linear π-Calculi

Luca Padovani1, Tzu-Chun Chen1,2, and Andrea Tosatto1

1 Università di Torino, Italy
2 Technische Universität Darmstadt, Germany and Purdue University, USA

Abstract. We define complete type reconstruction algorithms for two type sys-
tems ensuring deadlock and lock freedom of linear π-calculus processes. Our
work automates the verification of deadlock/lock freedom for a non-trivial class
of processes that includes interleaved binary sessions and, to great extent, multi-
party sessions as well. A Haskell implementation of the algorithms is available.

1 Introduction

Type systems help finding potential errors during the early phases of software devel-
opment. In the context of communicating processes, typical errors are: making invalid
assumptions about the nature of a received message; using a communication channel
beyond its nominal capabilities. Some type systems are able to warn against subtler
errors, and sometimes can even guarantee liveness properties as well. For instance, the
type systems presented in [18] for the linear π-calculus [14] ensure well-typed pro-
cesses to be deadlock and lock free. Such stronger guarantees come at the cost of a
richer type structure, hence of a greater programming effort, when programmers are
supposed to explicitly annotate programs with types. In this respect, type reconstruc-
tion becomes a most wanted tool in the programmer’s toolkit: type reconstruction is the
procedure that automatically synthesizes, whenever possible, the types of the entities
used by a program; in particular, the types of the channels used by a communicating
process. In the present work, we describe type reconstruction algorithms for the type
systems presented in [18], thereby automating the static deadlock and lock freedom
analysis for a non-trivial class of communicating processes.

A deadlock is a configuration with pending communications that cannot complete.
A paradigmatic example of deadlock modeled in the π-calculus is illustrated below

(νa,b)(a?(x).b!x | b?(y).a!y) (1.1)

where the input on a blocks the output on b, and the input on b blocks the output on a.
The key idea used in [18] for detecting deadlocks, which is related to earlier works by
Kobayashi [11,13], is to associate each channel with a number – called level – specify-
ing the relative order in which different channels should be used. In (1.1), this mech-
anism requires a to have smaller level than b in the left subprocess, and greater level
than b in the right one. Since no level assignment can simultaneously satisfy both re-
quirements, (1.1) is flagged as ill typed. This mechanism does not prevent locks, namely

configurations where some communication remains pending although the process as a
whole can make progress. A deadlock-free configuration that is not lock free is

(νa)(*c?(x).c!x | c!a | a!42) (1.2)

where the communication pending on a cannot complete. There are no interleaved com-
munications on different channels in (1.2), therefore the level-based mechanism spots
no apparent issue. The idea put forward in [18] to reject (1.2) is to also associate each
channel with another number – called ticket – specifying the maximum number of times
the channel can travel in a message. With this mechanism in place, (1.2) is ill typed be-
cause a would need an infinite number of tickets to travel infinitely many times on c.

Finding appropriate level and tickets for the channels used by a process can be diffi-
cult. We remedy to such difficulty with three contributions. First, we develop complete
type reconstruction algorithms for the type systems in [18] so that appropriate level and
tickets are synthesized automatically, whenever possible. The linear π-calculus [14], for
which the type systems are defined, can model a variety of communicating systems with
both static and dynamic network topologies. In particular, binary sessions [5] and, to a
large extent, also multiparty sessions [18, technical report], can be encoded in it. Sec-
ond, we purposely use a variant of the linear π-calculus with pairs instead of a polyadic
calculus. While this choice has a cost in terms of technical machinery, it allows us to
discuss how to deal with structured data types, which are of primary importance in con-
crete languages but whose integration in linear type systems requires some care [19].
We give evidence that our algorithms scale easily to other data types, including dis-
joint sums and polymorphic variants. Third, we present the algorithms assuming the
existence of type reconstruction for the linear π-calculus [9,19]. This approach has two
positive upshots: (1) we focus on the aspects of the algorithms concerning deadlock
and lock freedom, thereby simplifying their presentation and the formal study of their
properties; (2) we show how to combine in a modular way increasingly refined type
reconstruction stages and how to address some of the issues that may arise in doing so.

In what follows we review the linear π-calculus with pairs (Section 2) and the type
systems for deadlock and lock freedom of [18] (Section 3). Such type systems are un-
suitable to be used as the basis for type reconstruction algorithms. So, we reformulate
them to obtain reconstruction algorithms that are both correct and complete (Section 4).
Then, we sketch an algorithm for solving the constraints generated by the reconstruction
algorithms (Section 5) We conclude presenting a few benchmarks, further connections
with related work, and directions of future research (Section 6).

The algorithms have been implemented and integrated in a tool for the static analysis
of π-calculus processes. The archive with the source code of the tool, available at the
page http://di.unito.it/hypha, includes a wide range of examples, of which we
can discuss only one in the paper because of space constraints.

2 The simply-typed linear π-calculus with pairs

The process language we work with is the asynchronous π-calculus extended in two
ways: (1) we generalize names to expressions to account for pairs and other data types;
(2) we assume that names are explicitly annotated with simple types possibly inferred in

http://di.unito.it/hypha

a previous reconstruction phase (“simple” means without level/ticket decorations). We
annotate free names instead of bound names because, in a behavioral type system, each
occurrence of a name may be used according to a different type. Typically, two distinct
occurrences of the same linear channel are used for complementary I/O actions. We use
m, n, . . . to range over integer numbers; we use sets of variables x, y, . . . and channels
a, b, . . . ; names u, v, . . . are either channels or variables; we let polarities p, q, . . .
range over subsets of {?,!}; we abbreviate {?} with ?, {!} with !, and {?,!} with #.
Processes P, Q, . . . , expressions e, f, . . . , and simple types t, s, . . . are defined below:

Process P,Q ::= 0 | e?(x).P | e!f | P|Q | (νa)P | *P
Expression e, f ::= n | ut | (e,f) | fst(e) | snd(e)

Simple type t,s ::= int | p[t] | p[t]* | t× s

Expressions include integer constants, names, pairs, and the two pair projection oper-
ators fst and snd. Simple types are the regular, possibly infinite terms built using the
rightmost productions in grammar above and include the type int of integers, the type
p[t] of linear channels to be used according to the polarity p and carrying messages
of type t, the type p[t]* of unlimited channels to be used according to the polarity p
and carrying messages of type t, and the type t× s of pairs whose components have re-
spectively type t and s. Recall that linear channels are meant to be used for one commu-
nication, whereas unlimited channels can be used any number of communications. We
require every infinite branch of a type to contain infinitely many occurrences of channel
constructors. For example, the term t satisfying the equation t = ?[t] is a valid type
while the one satisfying the equation t = t×int is not. We impose this requirement to
simplify the formal development, but it can be lifted (for example, the implementation
supports ordinary recursive types such as lists and trees).

Since we are only concerned with type reconstruction, we do not give an operational
semantics of the calculus. The interested reader may refer to [14,19] for generic prop-
erties of the linear π-calculus and to [18] for the formalization of (dead)lock freedom.
We conclude this section with a comprehensive example that is representative of a class
of processes for which our type systems are able to prove deadlock and lock freedom.

Example 2.1 (full duplex communication). The term

*c?(x).(νa)(fst(x)!a | snd(x)?(y).c!(a,y)) | c!(e, f) | c!(f,e)

(where we have omitted simple type annotations) models a system composed of two
neighbor processes connected by channels e and f . The process spawned by c!(e, f)
uses e for sending a message to the neighbor. Simultaneously, it waits on f for a mes-
sage from the neighbor. The process spawned by c!(f,e) does the opposite. Each ex-
changed message consists of a payload (omitted) and a continuation channel on which
subsequent messages are exchanged. Above, each process sends and receives a fresh
continuation a. Once the two communications have been performed, each process iter-
ates with a new pair of corresponding continuations. �

3 Type systems for deadlock and lock freedom

In this section we review the type systems ensuring deadlock and lock freedom [18] for
which we want to define corresponding reconstruction algorithms. Both type systems

rely on refined linear channel types of the form p[t]n
m where the decorations n and m

are respectively the level and the tickets of a channel with this type. Intuitively, levels are
used for imposing an ordering on the input/output operations performed on channels:
channels with lower level must be used before channels with higher level; tickets limit
the number of “travels” for channels: a channel with m tickets can be sent at most m
times in a message. From now on, we use T , S, . . . to range over types, which have
the same structure and constructors as simple types, but where linear channel types are
decorated with levels and tickets. We write bTc for the stripping of T , namely for the
simple type obtained by removing all level and ticket decorations from T . For example,
b?[int×![int]n

m]
c= ?[int×![int]]. Note that b·c is a non-injective function.

We need some auxiliary operators. First, we extend the notion of level from channel
types to arbitrary types. The level of a type T , written |T |, is an element of the set
Z∪{⊥,>} ordered in the obvious way and formally defined thus:

|T | def
=


⊥ if T = p[S]* and ? ∈ p
n if T = p[S]n

m and p 6= /0
min{|T1|, |T2|} if T = T1×T2

> otherwise

(3.1)

As an example, we have |int× ?[![int]1
0]

0
0| = min{|int|, |?[![int]1

0]
0
0|} =

min{>,0}= 0. Intuitively, the level of T measures the inverse urgency for using values
of type T in order to ensure (dead)lock freedom: the lowest level (and highest urgency)
⊥ is given to unlimited channels with input polarity, for which we want to guarantee
input receptiveness; finite levels are reserved for linear channels; the highest level (and
lowest urgency) > is given to values such as numbers or channels with empty polarity
whose use is not critical as far as (dead)lock is concerned. Note that |T | is well defined
because every infinite branch of T has infinitely many channel constructors.

We also need an operator to shift the topmost levels and tickets in types. We define

$n
m T def

=


p[S]n+h

m+k if T = p[S]h
k

($n
m T1)× ($n

m T2) if T = T1×T2

T otherwise
(3.2)

so that, for example, we have $2
1 (int×?[![int]1

0]
0
0) = int×?[![int]1

0]
2
1.

Next, we define an operator for combining the types of different occurrences of
the same object. If an object is used according to type T in one part of a process and
according to type S in another part, then it is used according to the type T +S overall,
where T +S is inductively defined thus:

T +S def
=



int if T = S = int

(T1 +S1)× (T2 +S2) if T = T1×T2 and S = S1×S2

(p∪q)[T]n
h+k if T = p[T]n

h and S = q[T]n
k and p∩q = /0

(p∪q)[T]* if T = p[T]* and S = q[T]*

undefined otherwise

Table 1. Typing rules for the deadlock-free (k = 0) and lock-free (k = 1) linear π-calculus.

Typing rules for expressions Γ ` e : t

[T-INT]

Γ ` n : int
un(Γ)

[T-NAME]

Γ ,u : T ` ubTc : T
un(Γ)

[T-PAIR]

Γi ` ei : Ti
(i=1,2)

Γ1 + Γ2 ` (e1,e2) : T1×T2

[T-FST]

Γ ` e : T ×S

Γ ` fst(e) : T
un(S)

[T-SND]

Γ ` e : T ×S

Γ ` snd(e) : S
un(T)

Typing rules for processes Γ `k P

[T-IN]

Γ1 ` e : ?[T]n
m Γ2,x : $n

0 T `k P

Γ1 + Γ2 `k e?(x).P
n < |Γ2|

[T-OUT]

Γ1 ` e : ![T]n
m Γ2 ` f : $n

k T

Γ1 + Γ2 `k e!f
n < |Γ2|

[T-IN*]

Γ1 ` e : ?[T]* Γ2,x : T `k P

Γ1 + Γ2 `k *e?(x).P
un(Γ2)

[T-OUT*]

Γ1 ` e : ![T]* Γ2 ` f : $n
k T

Γ1 + Γ2 `k e!f
⊥< |Γ2|

[T-IDLE]

Γ `k 0
un(Γ)

[T-PAR]

Γ1 `k P Γ2 `k Q

Γ1 + Γ2 `k P|Q

[T-NEW]

Γ ,a : #[T]m
n `k P

Γ `k (νa)P

[T-NEW*]

Γ ,a : #[T]* `k P

Γ `k (νa)P

Type combination is partial and is only defined when the combined types have the
same structure. In particular, channel types can be combined only if they have equal
message types; linear channel types can be combined only if they have disjoint polarities
and equal level. Also, the combination of two channel types has the union of their
polarities and, in the case of linear channels, the sum of their tickets. For example, a
channel that is used both with type ?[int]0

1 and with type ![int]0
2 is used overall

according to the type ?[int]0
1 +![int]0

2 = #[int]0
3.

Lastly, we define type environments Γ , . . . as finite maps from names to types written
u1 : T1, . . . ,un : Tn. As usual, dom(Γ) is the domain of Γ and Γ1,Γ2 is the union of Γ1 and
Γ2 when dom(Γ1)∩dom(Γ2) = /0. We extend type combination to type environments:

Γ1 + Γ2
def
= Γ1,Γ2 if dom(Γ1)∩dom(Γ2) = /0

(Γ1,u : T)+(Γ2,u : S) def
= (Γ1 + Γ2),u : T +S

We let |Γ | def
= min{|Γ(u)| | u ∈ dom(Γ)} be the level of a type environment, we write

un(Γ) if |Γ | = > and un(Γ) if un(Γ) and Γ has no top-level linear channel types. Note
that un(Γ) is strictly stronger than un(Γ). For example, if Γ def

= x : int× /0[int]0
0 we

have un(Γ) but not un(Γ) because Γ(x) has a top-level linear channel type.
The type systems for deadlock and lock freedom are defined by the rules in Table 1

deriving judgments Γ ` e : T for expressions and Γ `k P for processes. The type system
for deadlock freedom is obtained by taking k = 0, whereas the type system for lock

freedom is obtained by taking k = 1 and restricting all levels in linear channel types to
be non negative. We illustrate the typing rules as we work through the typing deriva-
tion of the replicated process in Example 2.1. The interested reader may refer to the
implementation or [18] for more examples and detailed descriptions of the rules.

Let T and S be the types defined by the equations T = ![S]0
0× ?[S]0

0 and S =
?[S]1

1. We build the derivation bottom up, from the judgment stating that the whole
process is well typed. Since the process is a replicated input, we apply [T-IN*] thus:

c : ?[T]* ` c : ?[T]* c : ![T]*,x : T `1 (νa)(fst(x)!a|snd(x)?(y).c!(a,y))
c : #[T]* `1 *c?(x).(νa)(fst(x)!a|snd(x)?(y).c!(a,y))

In applying this rule we have Γ2 = c : ![T]* so the side condition un(Γ2) of [T-IN*]

is satisfied: since a replicated input process is permanently available, its body cannot
contain any free linear channel except those possibly received through the unlimited
channel. The side condition un(Γ2), which is stronger than simply un(Γ2), makes sure
that a replicated input process does not contain linear channels and therefore is level
polymorphic. We will see a use of this feature at the very end of the derivation. The
continuation of the process gains visibility of the message x with type T and is a restric-
tion of a linear channel a. Hence, the next step is an obvious application of [T-NEW]:

c : ![T]*,x : T,a : #[S]1
3 `1 fst(x)!a|snd(x)?(y).c!(a,y)

c : ![T]*,x : T `1 (νa)(fst(x)!a|snd(x)?(y).c!(a,y))
(3.3)

We guess level 1 and 3 tickets for a. The rationale is that a is a continuation channel
that will be used after the channels in x, which have level 0, so a must have strictly
positive level. Also, in Example 2.1 the channel a travels three times. At this point the
typing derivation forks, for we deal with the parallel composition of two processes.
This means that we have to split the type environment in two parts, each describing the
resources used by the corresponding subprocess in (3.3). We have Γ = Γ1 + Γ2 where

Γ
def
= c : ![T]*,x : T,a : #[S]1

3
Γ1

def
= x : ![S]0

0× /0[S]0
0, a : ?[S]1

2
Γ2

def
= c : ![T]*, x : /0[S]0

0×?[S]0
0, a : ![S]1

1

Observe that Γ is split in such a way that: c only occurs in Γ2, because it is only
used in the right subprocess in (3.3); in each subprocess, the unused linear channel in
the pair x is given empty polarity; the type of the continuation a has input polarity (and
2 tickets) in Γ1 and output polarity (and 1 ticket) in Γ2. The type of a in Γ1 is the same
as $0

1 S, and we use the latter form from now on. We complete the typing derivation for
the left subprocess in (3.3) using Γ1 and applying [T-OUT]:

x : ![S]0
0× /0[S]0

0 ` fst(x) : ![S]0
0 a : $0

1 S ` a : $0
1 S

x : ![S]0
0× /0[S]0

0,a : $0
1 S `1 fst(x)!a

0 < |$0
1 S|= 1

The side condition 0 < 1 ensures that the message has higher level than the channel
on which it travels, according to the intuition that the message can only be used after
the communication has occurred and the message has been received. In this case, the
level of fst(x) is 0 that is smaller than the level of a, which is 1. Shifting the tickets

from the type of a consumes one of its tickets, meaning that after this communication a
gets closer to the point where it must be the subject of a communication.

Concerning the right subprocess in (3.3), we use Γ2 above and apply [T-IN] to obtain

x : /0[S]0
0×?[S]0

0 ` snd(x) : ?[S]0
0 c : ![T]*,a : ![S]1

1,y : S `1 c!(a,y)

c : ![T]*,x : /0[S]0
0×?[S]0

0,a : ![S]1
1 `1 snd(x)?(y).c!(a,y)

0 < 1

The side condition 0 < 1 checks that the level of the linear channel used for input
is smaller than the level of any other channel occurring free in the continuation of the
process. In this case, c has level > because it is an unlimited channel with output polar-
ity, whereas a has level 1. To close the derivation we must type the recursive invocation
of c. We do so with an application of [T-OUT*]:

c : ![T]* ` c : ![T]* a : ![S]1
1,y : S ` (a,y) : $1

1 T

c : ![T]*,a : ![S]1
1,y : S `1 c!(a,y)

⊥< 1

The side condition ⊥ < 1 ensures that no unlimited channel with input polarity is
sent in the message. This is necessary to guarantee input receptiveness on unlimited
channels. There is a mismatch between the actual type $1

1 T and the expected type T of
the message. The shifting on the tickets is due, once again, to the fact that 1 ticket is
required and consumed for the channels to travel. The shifting on the levels realizes a
form of level polymorphism whereby we are allowed to send on c a pair of channels with
level 1 even if c expects a pair of channels with level 0. This is safe because we know,
from the side condition of [T-IN*], that the receiver of the message does not own any linear
channel except those possibly contained in the message itself. Therefore, the exact level
of the channels in the message is irrelevant, as long as it is obtained by shifting of the
expected message type. Level polymorphism is a key distinguishing feature of our type
systems that makes it possible to deal with non-trivial recursive processes.

4 Type reconstruction

We now face the problem of defining a type reconstruction algorithm for the type sys-
tem presented in the previous section. The input of the algorithm is a process P where
names are explicitly annotated with simple types, possibly resulting from a previous
reconstruction stage [9,19]. Notwithstanding such explicit annotations, the typing rules
in Table 1 rely on guesses concerning (i) the splitting of type environments, (ii) lev-
els and tickets that decorate linear channel types, and (iii) how tickets are distributed
in combined types. We address these issues using standard strategies. Concerning (i),
we synthesize type environments for expressions and processes by looking at the free
names occurring in them. Concerning (ii) and (iii), we proceed in two steps: first, we
transform each simple type t in P into a type expression T that has the same structure
as t, but where we use fresh level and ticket variables in every slot where a level or
a ticket is expected; we call this transformation dressing. Then, we accumulate (rather
than check) the constraints that these level and ticket variables should satisfy, as by the
side conditions of the typing rules (Table 1). Finally, we look for a solution of these

constraints. It turns out that the accumulated constraints can always be expressed as an
integer programming problem for which there exist dedicated solvers.

There is still a subtle source of ambiguity in the procedure outlined so far. We have
remarked that stripping is a non-injective function, meaning that different types may be
stripped to the same simple type. For example, if we take T = ?[T]1

1 and S = ?[T]0
0 we

have bTc= bSc= s where s = ?[s]. Now, if we were to reconstruct either T or S from
s, we would have to dress s with level and ticket variables in every slot where a level
or a ticket is expected. But since s is infinite, such dressing is not unique. For example,
T = ?[T]η1

θ1
and S = ?[T]η2

θ2
are just two of the infinitely many possible dressings of

s with level and ticket variables: in T we have used two distinct variables η1 and θ1,
one for each slot; in S we have used four. The problem is that from the dressing T we
can only reconstruct T , by taking η1 = θ1 = 1, whereas from the dressing S we can
reconstruct both T (by assigning all variables to 1) as well as S, by taking η1 = θ1 = 1
and η2 = θ2 = 0. This means that the choice of the number of integer variables we
use in dressing (infinite) simple types constrains the types that we can reconstruct from
them, which is a risk for the completeness of the type reconstruction algorithms. To
cope with this issue, we dress simple types lazily, only to their topmost linear channel
constructors, and we put fresh type variables in place of message types, leaving them
undressed. It is only when the message is used that we (lazily) dress its type as well.
The introduction of fresh type variables for message types means that we redo part of
the work already carried out for reconstructing simple types [19]. This appears to be
an inevitable price to pay to have completeness of the type reconstruction algorithms,
when they build on top of (instead of being performed together with) previous stages.

To formalize the algorithms, we introduce countable sets of type variables α , β and
of integer variables η , θ ; type expressions and integer expressions are defined below:

Type expression T,S ::= int | α | p[T]λ
τ | p[T]* | T×S

Integer expression λ ,ε,τ ::= n | η | ε + ε | ε− ε

Type expressions differ from types in three ways: they are always finite, they have
integer expressions in place of levels and tickets, and they include type variables α

denoting unknown types awaiting to be lazily dressed. Integer expressions are linear
polynomials of integer variables.

We say that T is proper, written prop(T), if all the type variables in T are guarded by
a channel constructor. For example, both int and p[α]* are proper (all type variables
occur within channel types), but α and int×α are not. Since the level and tickets
of a type expression are solely determined by its top-level linear channel constructors,
properness characterizes those type expressions that are “sufficiently dressed” so that it
is possible to extract their level and to combine them with other type expressions, even
if these type expressions contain type variables.

We now revisit and adapt all the auxiliary operators and notions defined for types to
type expressions. Recall that the level of T is the minimum level of any topmost linear
channel type in T , or ⊥ if T has a topmost unlimited channel type with input polar-
ity. Since a type expression T may contain unevaluated level expressions, we cannot
compute a minimum level in general. However, a quick inspection of Table 1 reveals
that minima of levels always occur on the right hand side of inequalities, and an in-
equality like n < min{mi | i ∈ I} can equivalently be expressed as a set of inequalities

{n < mi | i ∈ I}. Following this observation, we define the level |T| of a proper type
expression T as the set of level expressions that decorate the topmost linear channel
types in T, and possibly the element ⊥. Formally:

|T| def
=


{⊥} if T= p[S]* and ? ∈ p
{λ} if T= p[S]λ

τ and p 6= /0
|T1|∪ |T2| if T= T1×T2

/0 otherwise

(4.1)

We write un(T) if |T| = /0, in which case T denotes an unlimited type. Shifting for
proper type expressions is defined just like for types, except that we symbolically record
the sum of level/ticket expressions instead of computing it:

$λ
τ T

def
=


p[S]λ+λ ′

τ+τ ′ if T= p[S]λ ′
τ ′

($λ
τ T1)× ($λ

τ T2) if T= T1×T2

T otherwise
(4.2)

Because type expressions may contain type and integer variables, we cannot deter-
mine a priori whether the combination of two type expressions is possible. For instance,
the combination of ?[T]λ1

τ1 and ![S]λ2
τ2 is possible only if T and S denote the same type

and if λ1 and λ2 evaluate to the same level. We cannot check these conditions right away,
when T, S and the level expressions contain variables. Instead, we record these condi-
tions into a constraint. Constraints ϕ , . . . are conjunctions of type constraints T = S
(equality relations between type expressions) and integer constraints ε ≤ ε ′ (inequality
relations between integer expressions). Formally, their syntax is defined by

Constraint ϕ ::= true | T= T | ε ≤ ε | ϕ ∧ϕ

We write ε < ε ′ in place of ε + 1 ≤ ε ′ and ε = ε ′ in place of ε ≤ ε ′ ∧ ε ′ ≤ ε; if
E = {εi}i∈I is a finite set of integer expressions, we write ε < E for the constraint∧

i∈I ε < εi; finally, we write dom(ϕ) for the set of type expressions occurring in ϕ .
The combination operator TtS for type expressions returns a pair R;ϕ made of the

resulting type expression R and the constraint ϕ that must be satisfied for the combina-
tion to be possible. The definition of t mimics exactly that of + in Section 3, except
that all non-checkable conditions accumulate in constraints:

TtS def
=



int ; true if T= int and S= int

(p∪q)[T′]λ

τ+τ ′ ; T′ = S′∧λ = λ ′ if T= p[T′]λ
τ and S= q[S′]λ ′

τ ′

and p∩q = /0
(p∪q)[T′]* ; T′ = S′ if T= p[T′]* and S= q[S′]*

R1×R2 ; ϕ1∧ϕ2 if T= T1×T2 and S= S1×S2
and TitSi = Ri;ϕi

undefined otherwise

Like type combination, also t is a partial operator: TtS is undefined if T and S
are structurally incompatible (e.g., if T = int and S = p[int]*) or if T and S are not
proper. When TtS is defined, though, the resulting type expression is always proper.

We use ∆, . . . to range over type expression environments (or just environments,
for short), namely finite maps from names to type expressions, and we inherit all the
notation introduced for type environments. We let |∆| def

=
⋃

u∈dom(∆) |∆(u)| and write
un(∆) if |∆| = /0 and ∆ has no top-level linear channel type in its range. By now, the
extension of t to environments is easy to imagine: when defined, ∆1 t∆2 is a pair
∆;ϕ made of the resulting environment ∆ and of a constraint ϕ that results from the
combination of the type expressions in ∆1 and ∆2. More precisely:

∆1t∆2
def
= ∆1,∆2 ; true if dom(∆1)∩dom(∆2) = /0

(∆1,u : T)t (∆2,u : S) def
= ∆,u : R ; ϕ ∧ϕ ′ if ∆1t∆2 = ∆;ϕ and TtS= R;ϕ ′

The last notion we need to formalize, before introducing the reconstruction algo-
rithms, is that of dressing. Dressing a simple type t means placing fresh integer vari-
ables in the level/ticket slots of t. Formally, we say that T is a dressing of t if t ↑ T is
inductively derivable by the following rules which pick globally fresh variables:

int ↑ int
α fresh

p[t]* ↑ p[α]*
α , η , θ fresh

p[t] ↑ p[α]
η

θ

ti ↑ Ti
(i=1,2)

t1× t2 ↑ T1×T2

Note that the decoration of t with fresh integer variables stops at the topmost channel
types in t and that message types are left undecorated. By definition, the dressing of a
simple type is always a proper type expression.

We can now present the type reconstruction algorithms, defined by the rules in Ta-
ble 2. The rules in the upper part of the table derive judgments of the form e : TI∆;ϕ ,
stating that e has type T in the environment ∆ if the constraint ϕ is satisfied. The ex-
pression e is the only “input” of the judgment, while T, ∆, and ϕ are synthesized from
it. There is a close correspondence between these rules and those for expressions in
Table 1. Observe the use of t where + was used in Table 1, the accumulation of con-
straints from the premises to the conclusion of each rule and, most notably, the dressing
of the simple type that annotates u in [I-NAME]. Type expressions synthesized by the rules
are always proper, so the side conditions in [I-FST] and [I-SND] can be safely checked.

The rules in the lower part of the table derive judgments of the form P Ik ∆;ϕ ,
stating that P is well typed in the environment ∆ if the constraint ϕ is satisfied. The
parameter k plays the same role as in the type system (Table 1). The process P and the
parameter k are the only “inputs” of the judgments, and ∆ and ϕ are synthesized from
them. All rules except [I-WEAK] have a corresponding one in Table 1. Like for expressions,
environments are combined through t and constraints accumulate from premises to
conclusions. We focus on the differences with respect to the typing rules.

In rule [T-IN], the side condition verifies that the level of the channel e on which an
input is performed is smaller than the level of any channel used for typing the con-
tinuation process P. This condition can be decomposed in two parts: (1) no unlimited
channel with input polarity must be in P; this condition is necessary to ensure input
receptiveness on unlimited channels in the original type system [18] and is expressed
in [I-IN] as the side condition ⊥ 6∈ |∆2|, which can be checked on type expressions en-
vironments directly; (2) the level of e must satisfy the ordering with respect to all the
linear channels in P; this is expressed in [I-IN] as the constraint λ < |∆2|, where λ is the
level of e. The same side condition and constraint are found in [I-OUT].

Table 2. Type reconstruction rules for expressions and processes.

Reconstruction rules for expressions e : TI ∆;ϕ

[I-INT]

n : intI /0;true

[I-PAIR]

ei : Ti I ∆i;ϕi
(i=1,2)

(e1,e2) : T1×T2 I ∆;
∧

1≤i≤3 ϕi
∆1t∆2 = ∆;ϕ3

[I-NAME]

ut : TI u : T;true
t ↑ T

[I-FST]

e : T×SI ∆;ϕ

fst(e) : TI ∆;ϕ
un(S)

[I-SND]

e : T×SI ∆;ϕ

snd(e) : SI ∆;ϕ
un(T)

Reconstruction rules for processes PIk ∆;ϕ

[I-WEAK]

PIk ∆;ϕ

PIk ∆,u : T;ϕ

un(T)
prop(T)

[I-IDLE]

0Ik /0;true

[I-PAR]

Pi Ik ∆i;ϕi
(i=1,2)

P1 |P2 Ik ∆;
∧

1≤i≤3 ϕi
∆1t∆2 = ∆;ϕ3

[I-IN]

e : ?[T]λ
τ I ∆1;ϕ1 PIk ∆2,x : S;ϕ2

e?(x).PIk ∆;
∧

1≤i≤3 ϕi∧T= $−λ

0 S∧λ < |∆2|
⊥ 6∈ |∆2|
∆1t∆2 = ∆;ϕ3

[I-OUT]

e : ![T]λ
τ I ∆1;ϕ1 f : SI ∆2;ϕ2

e!f Ik ∆;
∧

1≤i≤3 ϕi∧T= $−λ

−k S∧λ < |∆2|
⊥ 6∈ |∆2|
∆1t∆2 = ∆;ϕ3

[I-NEW]

PIk ∆,a : #[T]λ
τ ;ϕ

(νa)PIk ∆;ϕ

[I-IN*]

e : ?[T]* I ∆1;ϕ1 PIk ∆2,x : S;ϕ2

*e?(x).PIk ∆;
∧

1≤i≤3 ϕi∧T= S

un(∆2)
∆1t∆2 = ∆;ϕ3

[I-OUT*]

e : ![T]* I ∆1;ϕ1 f : SI ∆2;ϕ2

e!f Ik ∆;
∧

1≤i≤3 ϕi∧T= $
−η

−k S

⊥ 6∈ |∆2|
∆1t∆2 = ∆;ϕ3
η fresh

[I-NEW*]

PIk ∆,a : #[T]*;ϕ

(νa)PIk ∆;ϕ

In [T-IN], [T-OUT], and [T-OUT*], shifting is used for updating message levels, consuming
tickets, and realizing level polymorphism. In rules [I-IN], [I-OUT], and [I-OUT*], analogous
shiftings are performed on type expressions, except that they are inverted and recorded
in constraints. For example, when typing the continuation P of a process e?(x).P us-
ing [T-IN], if e has type ?[T]n

m then the type of x is required to be $n
0 T . In the recon-

struction algorithm, we record this requirement as the constraint T = $−λ
0 S, where S

is the type synthesized for x in P. We invert the shifting because shifting is defined
only on proper type expressions, and in [I-IN] (and the other rules mentioned) only S is
guaranteed to be proper, while T in general is not.

Finally, note that [I-WEAK] has no correspondent rule in Table 1. This rule is neces-
sary because the premises of [I-IN], [I-IN*], [I-NEW], and [I-NEW*] assume that bound names
occur in their scope. Since type environments are generated by the algorithm as it works

through an expression or a process, this assumption may not hold if a bound name is
never used in its scope. Naturally, the type T of an unused name must be unlimited,
whence the constraint un(T). We also require T to be proper, to preserve the invari-
ant that all environments synthesized by the algorithms have proper types. In principle,
[I-WEAK] makes the rule set in Table 2 not syntax directed, which is a problem if we want
to consider this as an algorithm. In practice, the places where [I-WEAK] may be neces-
sary are easy to spot (in the premises of all the aforementioned rules for the binding
constructs). What we gain with [I-WEAK] is a simpler presentation of the rules.

To state the properties of the reconstruction algorithm, we need a notion of con-
straint satisfiability. A variable assignment σ is a map from type/integer variables to
types/integers. We say that σ covers X if σ provides assignments to all the type/integer
variables occurring in X, where X may be a constraint, a type/integer expression, or an
environment. When σ covers X, the application of σ to X, written σX, substitutes all
type/integer variables according to σ and evaluates all integer expressions in X. When
σ covers ϕ , we say that σ satisfies ϕ if σ � ϕ is derivable by the rules:

σ � true σ � T= S
σT= σS

σ � ε ≤ ε
′ σε ≤ σε

′ σ � ϕi
(i=1,2)

σ � ϕ1∧ϕ2

Whenever we apply an assignment σ to a set of type expressions in reference to a
derivation that is parametric on k, we will implicitly assume that all integer expressions
in ticket slots evaluate to non-negative integers and that, if k = 1, all integer expres-
sions in level slots evaluate to non-negative integers. The value of k and the set of type
expressions will always be clear from the context.

The reconstruction algorithm is correct, namely each derivation obtained through
the algorithm such that the resulting constraint is satisfiable corresponds to a derivation
in the type system:

Theorem 4.1 (correctness). If PIk ∆;ϕ and σ � ϕ and σ covers ∆, then σ∆ `k P.

The algorithm is also complete, meaning that if there exists a typing derivation for
the judgment Γ `k P, then the algorithm is capable of synthesizing an environment ∆
from which Γ can be obtained by means of a suitable variable assignment:

Theorem 4.2 (completeness). If Γ `k P, then PIk ∆;ϕ for some ∆, ϕ , and σ such that
σ � ϕ and Γ = σ∆.

Note that the above results do not give any information about how to verify whether
there exists a σ such that σ � ϕ and, in this case, how to find such σ . These problems
will be addressed in Section 5. We conclude this section showing the reconstruction
algorithm at work on the replicated process in Example 2.1.

Example 4.1. Below is the replicated process in Example 2.1, where we have numbered
and named the relevant rules used by the algorithm as it visits the process bottom-up,
left-to-right:

*c?(x).(νa)(fst(x)!a|snd(x)?(y).c!(a,y))
(1) [I-OUT] (2) [I-OUT*](3) [I-IN]

(4) [I-PAR]

(5) [I-IN*]

Table 3. Type environment and constraints generated for the process in Example 2.1.

i c x a y Constraint
(1) ![α1]

η1
θ1
× /0[α2]

η2
θ2

?[α3]
η3
θ3

α1 = ?[α3]
η3−η1
θ3−k ∧η1 < η3

(2) ![α4]
* ![α5]

η5
θ5

?[α6]
η6
θ6

α4 = ![α5]
η5−η4
θ5−k ×?[α6]

η6−η4
θ6−k

(3) /0[α7]
η7
θ7
×?[α8]

η8
θ8

α8 = ?[α6]
η6−η8
θ6

∧η8 < η5

(4) ![α1]
η1
θ1+θ7

×?[α2]
η2
θ2+θ8

#[α3]
η3
θ3+θ5

α1 = α7∧α2 = α8∧α3 = α5
∧η1 = η7∧η2 = η8∧η3 = η5

(5) #[α9]
*

α9 = ![α1]
η1
θ1+θ7

×?[α2]
η2
θ2+θ8

∧α9 = α4

Table 4. Constraint entailment rules.

[S-LEVEL]

ϕ `1 0≤ λ
p[T]λ

τ ∈ dom(ϕ)
[S-TICKET]

ϕ `k 0≤ τ
p[T]λ

τ ∈ dom(ϕ)

[S-CONJ]

ϕ1∧ϕ2 `k ϕi
i ∈ {1,2}

[S-SYMM]

ϕ `k T= S

ϕ `k S= T

[S-TRANS]

ϕ `k T= R ϕ `k R= S

ϕ `k T= S

[S-CHAN]

ϕ `k p[T]λ1
τ1 = p[S]λ2

τ2

ϕ `k T= S∧λ1 = λ2∧ τ1 = τ2

[S-CHAN*]

ϕ `k p[T]* = p[S]*

ϕ `k T= S

[S-PAIR]

ϕ `k T1×T2 = S1×S2

ϕ `k T1 = S1∧T2 = S2

Each subprocess triggers one rule of the reconstruction algorithm which synthesizes
a type environment and possibly generates some constraints. Table 3 summarizes the
parts of the environments and the constraints produced at each step of the reconstruction
algorithm with parameter k. We have omitted the step concerning the restriction on a,
which just removes a from the environment and introduces no constraints. �

5 Constraint solving

We sketch an algorithm that determines whether a constraint ϕ is satisfiable and, in
this case, computes an assignment that satisfies it. The presentation is somewhat less
formal since the key steps of the algorithm are instances of well-known techniques.
The algorithm is structured in three phases, saturation, verification, and synthesis.

The constraint ϕ produced by the reconstruction algorithm does not necessarily
mention all the relations that must hold between integer variables. For example, the
constraint η3−η1 = η6−η8∧θ3−k = θ6 is implied by those in Table 3, but it appears
nowhere. Finding all the integer constraints entailed by a given ϕ , regardless of whether
such constraints are implicit or explicit, is essential because we use an external solver
for solving them. The aim of the saturation phase is to find all such integer constraints.
Table 4 defines an inference system for deriving entailments ϕ `k ϕ ′. The parameter k
plays the same role as in the type system. Rules [S-LEVEL] and [S-TICKET] introduce non-
negativity constraints for integer expressions that occur in level and ticket slots; level

expressions are required to be non-negative only for lock freedom analysis, when k = 1;
rule [S-CONJ] decomposes conjunctions; rules [S-SYMM] and [S-TRANS] compute the symmet-
ric and transitive closure of type equality; finally, [S-CHAN], [S-CHAN*], and [S-PAIR] state
expected congruence rules. We let ϕ̂

def
=

∧
ϕ`kϕ ′ ϕ

′. Clearly ϕ̂ can be computed in finite
time and is satisfiable by the same assignments as (i.e., it is equivalent to) ϕ .

The verification phase checks whether ϕ̂ is satisfiable and, in this case, computes an
assignment σint that satisfies the integer constraints in it. In ϕ̂ all the integer constraints
are explicit. These are typical constraints of an integer programming problem, for which
it is possible to use dedicated (complete) solvers that find a σint when it exists (our
tool supports GLPK3 and lpsolve4). When this is the case, the type constraints in ϕ̂

are satisfiable if, for each type constraint of the form T = S, either T or S are type
variables, or T and S have the same topmost constructor, i.e. they are either both int,
or both unlimited/linear channel types with the same polarity, or both product types.

The synthesis phase computes an assignment that satisfies ϕ . This is found by ap-
plying σint to all the type constraints in ϕ̂ , by choosing a canonical constraint of the
form α = T where T is proper for each α ∈ dom(ϕ̂), and then by solving the resulting
system {αi = Ti} of equations. By [4, Theorem 4.2.1], this system has exactly one so-
lution σtype and now σint ∪σtype � ϕ . There may be type variables α for which there is
no α = T constraint with T proper. These type variables denote values not used by the
process, like a message that is received from one channel and just forwarded on another
one. These variables are assigned a type that can be computed canonically.

Example 5.1. The constraints shown in Table 3 entail 0 ≤ θ3− k and 0 ≤ θ5− k and
0≤ θ6−k namely k≤ θ3 and k≤ θ5 and k≤ θ6 must hold. When k= 0, these constraints
can be trivially satisfied by assigning 0 to all ticket variables. When k = 1, from the type
of a at step (4) of the reconstruction algorithm we deduce that a must have at least 2
tickets. Indeed, a is sent in two messages. It is only considering the remaining processes
c!(e, f) and c!(f,e) that we learn that y is instantiated with a. Then, a needs one more
ticket, to account for the further and last travel in the recursive invocation c!(a,y). �

6 Concluding remarks

A key distinguishing feature of the type systems in [18] is the use of polymorphic recur-
sion. Type reconstruction in presence of polymorphic recursion is notoriously undecid-
able [10,7]. In our case, polymorphism solely concerns levels and reconstruction turns
out to be doable. A similar situation is known for effect systems [1], where polymorphic
recursion restricted to effects does not prevent complete type reconstruction [2].

We have conducted some benchmarks on generalizations of Example 2.1 to N-
dimensional hypercubes of processes using full-duplex communication. The table be-
low reports the reconstruction times for the analysis of an hypercube of side 5 and
N varying from 1 to 4. The table details the dimension, the number of processes and
channels, and the times (in seconds) spent for linearity analysis [19], constraint genera-
tion (Section 4) and saturation, solution of level and ticket constraints (Section 5). The

3 http://www.gnu.org/software/glpk/
4 http://sourceforge.net/projects/lpsolve/

http://www.gnu.org/software/glpk/
http://sourceforge.net/projects/lpsolve/

solver used for level and ticket constraints is GLPK 4.48 and times were measured on a
13” MacBook Air running a 1.8 GHz Intel Core i5 with 4 GB of 1600MHz DDR3.

N Processes Channels Linearity Gen.+Sat. Levels Tickets Overall
1 5 8 0.021 0.006 0.002 0.003 0.032
2 25 80 0.128 0.051 0.009 0.012 0.200
3 125 600 1.439 0.844 0.069 0.124 2.477
4 625 4000 33.803 26.422 1.116 3.913 65.254

Reconstruction times scale almost linearly in the number of channels as long as
there is enough free main memory. With N = 4, however, the used memory exceeds
10GB causing severe memory (de)compression and swapping. The running time in-
flates consequently. We have not determined yet the precise causes of such dispro-
portionate consumption of memory, which the algorithms do not seem to imply. We
suspect that they are linked to our naive implementation of the algorithms in a lazy lan-
guage (Haskell), but a more rigorous profiling analysis is left for future investigation.
Integer programming problems are NP-hard in general, but the time used for integer
constraint resolution appears negligible compared to the other phases. As suggested by
one reviewer, the particular nature of such constraints indicates that there might be more
clever way of solving them, for example by using SMT solvers.

Our work has been inspired by previous type systems ensuring (dead)lock free-
dom for generic π-calculus processes [11,13] and corresponding type reconstruction
algorithms [12]. These type systems and ours are incomparable: [11,13] use sophisti-
cated behavioral types that provide better accuracy with respect to unlimited channels
as used for modeling mutual exclusion and concurrent objects. On the other hand, our
type systems exploit level polymorphism for dealing with recursive processes in cyclic
topologies, often arising in the modeling of parallel algorithms and sessions. Whether
and how the strengths of both approaches can be combined together is left for future
research. A more thorough comparison between these works can be found in [18].

There is a substantial methodological difference between our approach and those
addressing sessions, particularly multiparty sessions [8,6]. Session-based approaches
are top down and type driven: types/protocols come first, and are used as a guidance
for developing programs that follow them. These approaches guarantee by design a
number of properties, among which (dead)lock freedom when different sessions are
not interleaved. Our approach is bottom up and program driven: programs come first,
and are used for inferring types/protocols. The two approaches can integrate and com-
plement each other. For example, type reconstruction may assist in the verification of
legacy or third-party code (for which no type information is available) or for checking
the impact of code changes due to refactoring and/or debugging. Also, some protocols
are hard to describe a priori. For example, describing the essence of full-duplex com-
munications (Example 2.1) is far from trivial [6]. In general, processes making use of
channel mobility (delegation) and session interleaving, or dynamic network topologies
with variable number of processes, are supported by our approach (within the limits
imposed by the type systems), but are challenging to handle in top-down approaches.
Inference of progress properties akin to lock freedom for session-based calculi has been
studied in [17,3], although only finite types are considered in these works.

The reconstruction of global protocol descriptions from local session types has been
studied in [15,16]. In this respect, our work fills the remaining gap and provides a re-
construction tool from processes to local session types. We plan to investigate the inte-
gration with [15,16] in future work.

Acknowledgments. The authors are grateful to the reviewers for their detailed com-
ments and useful suggestions. The first two authors have been supported by Ateneo/CSP
project SALT. The first author has also been supported by ICT COST Action IC1201
BETTY and MIUR project CINA.

References

1. T. Amtoft, F. Nielson, and H. Nielson. Type and effect systems: behaviours for concurrency.
Imperial College Press, 1999.

2. T. Amtoft, F. Nielson, and H. R. Nielson. Type and behaviour reconstruction for higher-order
concurrent programs. J. Funct. Program., 7(3):321–347, 1997.

3. M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and N. Yoshida. Inference of global progress
properties for dynamically interleaved multiparty sessions. In COORDINATION’13, LNCS
7890, pages 45–59. Springer, 2013.

4. B. Courcelle. Fundamental properties of infinite trees. Theor. Comp. Sci., 25:95–169, 1983.
5. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP’12, pages

139–150. ACM, 2012.
6. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In

ESOP’12, LNCS 7211, pages 194–213. Springer, 2012.
7. F. Henglein. Type inference with polymorphic recursion. ACM Trans. Program. Lang. Syst.,

15(2):253–289, Apr. 1993.
8. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In

POPL’08, pages 273–284. ACM, 2008.
9. A. Igarashi and N. Kobayashi. Type reconstruction for linear π-calculus with I/O subtyping.

Inf. and Comp., 161(1):1–44, 2000.
10. A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence of polymorphic

recursion. ACM Trans. Program. Lang. Syst., 15(2):290–311, 1993.
11. N. Kobayashi. A type system for lock-free processes. Inf. and Comp., 177(2):122–159, 2002.
12. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Informatica,

42(4-5):291–347, 2005.
13. N. Kobayashi. A new type system for deadlock-free processes. In CONCUR’06, LNCS

4137, pages 233–247. Springer, 2006.
14. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM Trans.

Program. Lang. Syst., 21(5):914–947, 1999.
15. J. Lange and E. Tuosto. Synthesising choreographies from local session types. In CON-

CUR’12, LNCS 7454, pages 225–239. Springer, 2012.
16. J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical choreogra-

phies. In POPL’15, pages 221–232. ACM, 2015.
17. L. G. Mezzina. How to infer finite session types in a calculus of services and sessions. In

COORDINATION’08, LNCS 5052, pages 216–231. Springer, 2008.
18. L. Padovani. Deadlock and lock freedom in the linear π-calculus. In CSL-LICS’14, pages

72:1–72:10. ACM, 2014. http://hal.archives-ouvertes.fr/hal-00932356v2/.
19. L. Padovani. Type reconstruction for the linear π-calculus with composite and equi-recursive

types. In FoSSaCS’14, LNCS 8412, pages 88–102. Springer, 2014.

http://hal.archives-ouvertes.fr/hal-00932356v2/

	Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear -Calculi

