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Abstract. This paper studies the strategies used in StarCraft II, a real-
time strategy game (RTS) wherein two sides fight against each other in
a battlefield context. We propose an approach which automatically clas-
sifies StarCraft II game-log collections into rush and non-rush strategies
using a support vector machine (SVM). To achieve this, three types of
features are evaluated: (i) the upper bound of variance in time series for
the numbers of workers, (ii) the upper bound of the numbers of workers
at a specific time, and (iii) the lower bound of the start time for build-
ing the second base. Thus, by evaluating these features, we obtain the
optimal parameters combinations.
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1 Introduction

Real-time strategy (RTS) games make up a popular on line computer game genre
wherein two sides fight against each other in a battlefield context. The players
are required to gather specific resources to develop their combat strengths in
the form of advanced buildings, technologies, and armies. Unlike other strat-
egy games such as Go and Chess wherein complete information on the state
of play is provided to both players, information in RTS games is limited and
rapidly changes as the player’s resources respond to various factors. Moreover,
RTS game environments are formed from complex and dynamic sets of infor-
mation depending on the actions taken by the players. These characteristics
contribute to the game’s difficulty level and prevent the improvement of RTS-
based AI technologies. In this paper, the strategies employed in StarCraft II, a
well-known RTS game, are analyzed. These strategies form the most important
aspect of competing with opponent’s playing styles in order to ultimately win
the game. Liu et al. [2] investigated the player’s styles to predict their future
actions. This type of analysis can aid human players to judge opponent’s strate-
gies and accordingly decide a defense strategy. An incorrect strategy judgment
about an opponent’s game plan and the resultant poor choice of action in Star-
Craft II leads to the selection of an inappropriate defense strategy which harms
the player’s strength. Thus, strategy identification in RTS games has become a
prominent research area, including strategy prediction and strategy modeling.
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Table 1. Data set for evaluation

Logs Number of game logs

Rush strategy 137

Non-rush strategy 616

Total logs 753

Studies focusing on strategy prediction also employ data mining techniques [3]
and machine-learning approaches [1]. Improvements in strategy identification
contribute to the advancement of RTS-game-based AI in order to discover the
most effective strategies that human players can employ depending on their op-
ponent’s plan of action.

Considering these factors, this paper examines the strategies used in Star-
Craft II by classifying them into two main categories: rush and non-rush strate-
gies. A rush strategy involves players that perform sudden attacks on an op-
ponent’s base as early as possible in the game. This strategy aims to interfere
with the opponent’s movements at the early stages of the game. Conversely, in
a non-rush strategy, the players mainly focus on development (i.e., producing
more workers and upgrading technologies) rather than attacking the opponent
base. Therefore, to examine the strategies of the players, we designed a support
vector machine (SVM)-based model that automatically classifies StarCraft II
game logs into rush and non-rush strategies.

2 Game-Log Features and the Evaluation Procedure

We collected 5,150 one-vs.-one game replays of StarCraft II from http://www.
spawningtool.com. All replay files were extracted into human-readable logs
using a Python library: sc2reader1. Our study only focuses on the games between
high-level players. This produced 753 game logs wherein each sample comprises
a single player’s game log, as summarized in Table 1.

We propose several types of features that are closely related to the number of
workers each player has in a rush game. In particular, a major difference tends
to exist between the number of workers on both sides. Generally, a player not
employing rush strategy continues producing a much higher number of workers
since the beginning of the game, while a player adopting a rush strategy pro-
duces only a moderate number of workers and stops production at a particular
time. Thus, by considering these phenomena, we designed features based on the
variance between the time-series number of workers and the number of workers
at a specific time. We use the information about the number of workers a player
has produced up until a certain time. The reason for this is because players
cannot have a complete control over the number of workers each player possess
at a certain time. In addition, we examine time required for constructing the
second base (a building for collecting resources) in order to further design our
1 https://github.com/GraylinKim/sc2reader



3

Table 2. Features of a game log x

Features Variables of x

Upper bound of the variance of time-series num-
ber of workers
fvw(x; u0, d0, e0) =

(x.fv
vw ≤ u0) ∧ (x.fd

vw = d0) ∧ (x.fe
vw = e0)

x.fv
vw Variance of x

x.fd
vw Time for calculating

variance [s]
x.fe

vw End time of calculating
variance [s]

Upper bound of number of workers at a specific
time fnw(x; t0, n0) = (x.f t

nw = t0)∧(x.fn
nw ≤ n0)

x.f t
nw Specific time [s]

x.fn
nw Number of workers

Lower bound of the start time of second base
construction fb(x; t0) = (x.f t

b ≥ t0)
x.f t

b Start time of
second base construction [s]

features. We observe the differences in the timing of construction of the second
bases of both players. Players employing a rush strategy do not necessarily build
their second base as early as possible; however, it is expected that these players
build their second base before a certain time. Based on the above observation,
we propose three types of features: fvw, fnw, and fb (Table 2).

In our proposed feature-based design, the parameter combinations of the
three feature functions were examined to determine the optimal parameter com-
binations. For fvw, the parameter combinations were examined by changing v0

from 0 to 2, d0 from 60 to 300, and e0 from 240 to 360. For fnw, the parameter
combinations were examined by changing t0 from 300 to 600 and n0 from 25
to 40. Finally, for fb, the parameter combination was examined by changing t0
from 60 to 360. We first divided our data set into 10 subsets of equal size to
perform 10-fold cross validation. From the training data of each fold, the op-
timal parameters combinations of each three feature functions fvw, fnw, and
fb were identified from the combinations possessing maximum recall, precision,
and f-measure. Based on this procedure, each feature function generated three
optimal parameter combinations in total resulting in nine optimal parameter
combinations for each fold. Next, we created and implemented a feature vector
constructed from these nine features. Each features represents a parameter of
a set of optimal parameter combinations. Our design eventually resulted in 10
different sets of optimal parameter combinations, which we used to train the
SVM classifier.

3 Evaluation of Results

We used the confidence in SVM to calculate the performance of each fold of our
approach using recall and precision. Further, we generated the average perfor-
mance curve of our approach, as shown in Figure 1. The curves use 11 points
plotted from 0 to 100 in order to display the average performance. We general-
ized the recall value of each fold to the closest position among these 11 points.
Each of the three baseline curves was produced by removing each set of opti-
mal parameter combinations of the three feature functions from the evaluation.
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Fig. 1. Recall and precision curve of the overall design

Removing fnw from the evaluation degraded its baseline performance. Proba-
bly, this occurred because the differences between the number of workers at a
specific time has a significant impact on a rush game. Considering the overall
performance, the F-score of the proposed design shows the highest value among
all three baselines. Thus, considering the above, we found that there is a sig-
nificant correlation between the optimal parameter combinations of the three
features functions. This indicates that the proposed design incorporating all the
combinations worked better than the design considering each combination sep-
arately. Therefore, the proposed design could possibly be effective in identifying
the use of rush strategies in RTS game-logs-collections.

4 Conclusions

This study proposed a method to identify the rush and non-rush strategies em-
ployed by players from RTS game logs. We examined nine optimal parameter
combinations of the three feature functions fvw, fnw, and fb. These combina-
tions along with an SVM were used as the basis for constructing the features
that could accurately identify a player’s use of a rush strategy.
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