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Abstract. We propose a system that turns everyday soft objects, such as 

cushions, into touch interfaces in a non-intrusive manner. The belt type 

sensor modules developed in this study, which can be attached to the out-

side of soft objects, comprise several photo reflective sensors to measure 

the reflection intensity from an object by emitting infrared light (IR 

LED). When the light is irradiated to a material with the same reflection 

coefficient, a reflection intensity that is inversely proportional to the 

square of the distance can be obtained. Our method uses the sensor mod-

ules to measure the change in distance from the sensor to the surface of 

the soft object, and the touch position is estimated using a Support Vector 

Machine (SVM). To evaluate our method, we measured the accuracy 

when touching nine points on a cushion. Using existing everyday soft 

objects, it is possible to create interfaces that not only blend into the liv-

ing space naturally but also match the preferences of each user. 

Keywords: Soft user interface,Photo reflective sensor,Touch interface. 

1 Introduction 

People closely interact with soft objects such as cushions, plush toys, and pillows 

that exist in our everyday living space. By measuring the interaction between people 

and these soft objects, we can construct a user interface that blends the everyday envi-

ronment [9], recognizes the users’ behavior in their daily lives, and provides services 

according to the users’ condition [2,11,14]. 

Many researchers have attempted to construct soft user interfaces. For example, 

Tominaga et al. and Vanderloock et al. developed soft user interfaces consisting of 

conductive fibers and soft material such as wool [12,13], and Hiramatsu et al. developed 

a soft ball interface by placing an atmospheric pressure sensor inside a soft ball to sense 

the deformation of the ball [1]. However, these studies focused on creating original soft 

interfaces rather than developing techniques to use existing soft objects as interfaces. 

There are several advantages to using an existing soft object as an interface. First, 

using soft objects with which people are already used to having in their living space 

makes it possible to measure users’ usual movements. Second, since it eliminates the 

need to purchase soft objects with built-in sensors, costs can be reduced. Third, it is 
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possible to create an interface using soft objects that match the users’ preferences. Be-

cause existing approaches [9,15] place sensors inside of soft objects, it is difficult to 

insert the sensors without damaging the users’ favorite soft objects. 

We thus propose a system that turns a soft object into a touch interface in a non-

intrusive manner (Fig. 1). Our system measures the shape of deformations of a soft 

object and estimates the touch position using detachable photo sensor modules. To 

prove the concept, we conduct an experiment to evaluate the estimation accuracy of the 

touch positions using the developed module.  

 

 
Fig. 1. Detecting a touch position using photo sensor modules. 

2 Related Work 

2.1 Soft Sensors and Soft User Interfaces 

Previous studies have developed soft sensors to detect haptic interactions using var-

ious sensing devices such as a phototransistor and multiple IR LEDs [3], conductive 

rubber [16], gel [17], and fabric [18]. As those methods require creating a dedicated 

soft element for sensing, we propose a method to turn existing soft object surfaces into 

sensors. 

Kamiyama et al. proposed a camera-based method for detecting deformations of a 

soft material by tacking positions of embedded markers [4]. The method allows accu-

rate three-dimensional force vector detection using their GPGPU technique. Sato et al. 

proposed an alternative camera-based detection method based on polarization [8]. 

However, it is difficult to apply these methods to existing soft object surfaces available 

in people’s daily lives due to spatial restrictions and shielding issues. 

To overcome these restrictions, Sugiura et al. proposed a method to enable people to 

interact with soft objects without changing their softness by embedding a photo sensor 

module inside a soft object containing cotton [9]. However, for soft objects that cannot 

be opened, such as cushions, it is necessary to cut open the object to insert the sensor 

module, thus damaging the object. To avoid this damage, our proposed method turns 



3 

soft objects into interfaces without causing any damage by attaching the module to the 

outside of a soft object. 

Yagi et al. developed a system that measures the state of the cushion by sewing an 

acceleration sensor, photo sensors, and touch sensors to the back of the cushion cover 

[14]. This system can estimate the user’s behavior and intention from the cushion state 

and can thus be used to control the environment, such as the lighting and sound. How-

ever, since the touch sensor is sewn near to the surface of the cushion, the user might 

feel the hardness of the sensor when touching the cushion. We therefore construct a 

system that allows touch sensing without eliminating any of its softness. 

Sugiura et al. developed a ring-type device that can convert existing plush toys into 

interactive robots [10]. The device, which has a built-in sensor and motor, can drive 

plush toys while attached to the arms, legs, and tail. Because there is no need to cut 

open the plush toys, they are not damaged. However, since this device uses sensors to 

measure the joint angles of the plush toys, it cannot be attached to an object that has no 

joints. It is thus difficult to attach it to soft objects such as cushions and pillows. 

 

2.2 Detecting Shape Deformation Using Photo Reflective Sensors 

Photo reflective sensors measure the reflection intensity of emitted light, which can 

be changed by the distance and reflection properties of a reflective object. Considerable 

research has been conducted to estimate the deformation of soft objects caused by hu-

man skin making contact with the surface of the sensor. Nakamura et al. proposed a 

device that intuitively controls augmented reality information according to eyebrow 

movement. The system, which has one photo reflective sensor, detects eyebrow move-

ments by the amount of reflected light [5]. Ogata et al. developed a system to use skin 

as a soft interface through a band-type device [6]. Photo reflective sensors are installed 

on the back of this device, and the sensor measures a change in the distance to the skin 

and estimates deformations in the skin. In this paper, we estimate the deformation of a 

soft object by measuring the distance between the soft surface and the photo reflective 

sensors. 

3 Detecting Touch Position Using Photo Sensors 

Photo reflective sensors consist of an infrared light (IR LED) and a phototransistor, 

which senses the light transmitted by the IR LED. When an object is placed near to the 

photo reflective sensor, the light from the IR LED is reflected by the object and detected 

by the phototransistor. Hence, a photo reflective sensor is an effective tool for measur-

ing distances between objects. Since the reflection intensity of the IR LED varies de-

pending on the distance between the photo reflective sensor and the object, the distance 

to the object can be measured. When the object is deformed, the distance between the 

sensor and the object changes; thus, the deformation of the object can be estimated from 

the change in the sensor values. 

We develop a belt type sensor module that can be attached to the outside of soft 

objects. Fig. 2 shows the principle of the proposed sensing method. Several photo re-

flective sensors are placed on the back of the belt of the sensor module. The shape 
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deformation of the soft object is estimated by measuring changes in the distance be-

tween the soft object and the photo reflective sensors. When the surface of the soft 

object is touched, the elasticity of the periphery of the touched position becomes de-

formed, and the touched position can be estimated, even if it is positioned away from 

the sensor module. 

 
Fig. 2. Principle of touch sensing using photo reflective sensor modules attached to 

the soft object. 

4 Implementation 

4.1 Overview of Our System 

Fig. 3 shows a system overview of our touch sensing system. In this system, the 

photo sensor modules obtain sensor values from a deformable object and label the touch 

positions as a training dataset. After learning the training dataset, classifiers can esti-

mate the current touch point from the inputted sensor values. We used Support Vector 

Machine (SVM) to train the classifiers. The sensor values are transmitted and used to 

make the classifiers on the PC. 

 

 
Fig. 3. Overview of the sensing system. 
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4.2 Hardware 

Fig. 4 shows an overview of our prototype of the photo reflective sensor module, 

which consists of multiple photo reflective sensors (KODENSHI SG - 105) and a mi-

crocontroller (Arduino Micro). Resistances of 300 Ω for the IR LED of the photo re-

flective sensor and 10 k Ω for the phototransistor were attached to the sensor module. 

Three optical sensors were installed on the belt, 7 cm apart. Since photo reflective sen-

sors are not sensitive at a distance shorter than the minimum measurement distance, a 

tiny donut-shaped plastic isolator (0.3 cm thickness) is attached to each sensor to keep 

the deformable surface at a sensible distance. As the AT mega 328 microcontroller has 

a 10-bit A/D converter, the output of the photo reflective sensor is between 0 and 1,023. 

To detect the positon of touch on the cushion, two belt type sensor modules were con-

structed and attached. 

 

 
Fig. 4. Prototyped belt type module.  

 

Fig. 5 shows how the module is attached to the cushion. The cushion is filled with 

polyester cotton and covered with cotton fabric (30 cm × 30 cm). The actual size after 

filling the cotton was 24 cm (length) × 24 cm (width) × 10 cm (height). The sensors of 

the belt attached to the left side of the cushion are S1, S2, and S3 in order from the side 

closest to the microcontroller, and the sensors of the belt attached to the right side are 

S4, S5, and S6 in the same order. Six sensor values are used as sensor data. 

 

 
Fig. 5. A cushion equipped with two photo reflective sensor modules. 
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4.3 Method of Estimating the Touch Position 

4.3.1 Filtering Photo Reflective Sensor Value 

Since a photo reflective sensor is affected by ambient light, it is necessary to use a 

filter to reduce noise. Before estimating the touch position using the machine learning 

technique, we applied an IIR low-pass filter(cutoff frequency: 1.7Hz).  

 

4.3.2 Estimating the Touch Position using SVM  

The area between the two modules was divided into nine areas, and markers were 

attached as shown in Fig. 6. The markers are labeled A, B, C, D, E, F, G, H, and I in 

order from the top left. Fig. 7 shows the sensor data when A, E, and I are touched 

directly from above with a force gauge (A&D Company AD-4932A-50N, resolution: 

0.01N). The force gauge is fitted with a cylindrical part similar in shape to human fin-

gers with a diameter of 1.5 cm. When a force of 7N is applied in different positions, the 

sensor values change, as shown in Fig. 7, depending on the position touched. We nor-

malized a range of the photo reflective sensors from 0 to 1 based on averaged data 

obtained from 10 measurements, which were recorded by each photo reflective sensor 

when force was applied in each place.  

 

 
Fig. 6. Arrangement of markers on a cushion. 
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Data when touching A    (a).Data when touching E (b).   Data when touching I (c). 

Fig. 7. Sensor data when touching each position. 

 

Using the SVM approach, the Support Vector Machine for Processing (PSVM) li-

brary was used for the implementation [7]. We first prepared a direction dataset for 

estimating the touch position. For the training, the user touches the soft object and ac-

cumulates the learning data by recording the data of the sensor when touching nine 

areas on the soft object. The PSVM provides the probability of how close the input is 

to each position. Based on the probability, each position is weighted. This enables the 

system to not only recognize the basic nine areas, but also calculate a position on the 

2D plane to which the force is applied.  

5 System Evaluation  

To evaluate this system, we conducted an experiment to validate the classification 

accuracy in ten touching conditions (non-touch and touch conditions at marked loca-

tions on the cushion). To investigate the classification accuracy in various touching 

conditions, we conducted the experiment by changing the touch force in four conditions 

(1N, 3N, 5N, and 7N). 

 

5.1 Conditions 

To control the touch force to the cushion, a force gauge (A&D Company AD-4932A-

50N, resolution: 0.01N) with 1.5-cm-diameter cylinder parts attached at the tip was 

used. Sensor values were measured when touched for each force of 1N, 3N, 5N, and 

7N. The cushion used is the same as that described in Section 4.3. The arrangement of 

the markers was set as shown in Fig. 6. The captured dataset was divided into two: 

training data in the first half and test data in the second half. 
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5.2 Result 

5.2.1 Accuracy of Training Each Force Data when Applying the Same Force 

Fig. 8 shows the accuracy when using the same force data during training and testing. 

The average accuracy is 93.7%. 

 

 
Fig. 8. The accuracy of using the training data for each force. 

 

As shown in Fig. 8, higher force conditions showed higher accuracy except for in 

the 7N condition. However, the lowest accuracy (83.9%) was achieved in the 1N con-

dition. Table 1 shows the confusion matrix of the result in the 1N condition. 

 

Table 1. Confusion matrix of the result when touching with 1N. 

 
 

Table 1 shows that confusion occurs between non-touch, B, and H. The locations of 

B and H are furthest from the sensor modules in the experimental conditions. In the 1N 

condition, the intensity and the spatial size of the deformation were small. Therefore, 

when touching those points with a weak force, the deformation might not be enough to 

be classified.  
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It is thought that the accuracy increased as the touching force became larger because 

the range in which the deformation of the cushion propagated became wider and the 

change in the sensor value became relatively large. To improve the accuracy in a weak 

force condition, it is necessary to shorten the distance between the modules. 

5.2.2 Accuracy of Training Each Force Data when Applying Different 

Forces 

Table 2 shows the accuracy when training each force data and applying different 

forces. An accuracy of 80% or more is displayed in bold letters. 

 

Table 2. Accuracy with training each force data and applying each force (%) 

 
Table 3. Confusion matrix (Test data: 1N, Training data: 3N, 5N, 7N). 

 
 

The test dataset in the 1N force condition showed a low accuracy when we applied 

the training datasets of the other conditions. Table 3 presents a confusion matrix of 1N 

test dataset, which shows the average accuracy of the 3N, 5N, and 7N training dataset 

conditions. 

According to Table 3, confusion occurs between non-touch and B, and most of the 

results are concentrated in these two classes. In other words, when the training data 
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involves all data other than 1N data, if the user touches with 1N, it is likely to be deter-

mined as a non-touch. For the system to detect a weak force such as 1N, it is necessary 

to prepare training data of the same force. 

5.2.3 Accuracy of Training All Force Data when Applying Different Forces 

To check the possibility of a universal classifier among the force conditions, we ap-

plied all the training datasets (1N, 3N, 5N, and 7N) and made a classifier. Fig. 10 shows 

the accuracies when testing all of the test data; the average accuracy is 79.0%. As shown 

in Fig. 10, the accuracy when touching with 1N force is the lowest. As described above, 

it is considered that a 1N input is identified as non-touch. 

The accuracy when touching with a force of 3N is lower than when training 3N force 

data only. However, the accuracy when touching with forces of 5N and 7N is 98.0%, 

which is almost the same as when training the force of only 5N or 7N data. 

When we excluded the test data of the 1N condition, it showed a 92.0% classification 

accuracy. Thus, a force of >3N shows a good performance among the different force 

conditions. 

 
Fig. 10. The accuracy of all training data. 

6 Application 

We developed a prototype of our proposed system (Fig. 11), which enables the user 

to interact dynamically with the content shown on a screen by crushing a plush toy. 

When the user touches the plush toy, soap bubbles are displayed on the screen. The 

content also changes depending on the strength of the user’s applied force. The user 

can use their favorite plush toy as the user interface. This system has the potential to 

use dynamic and emotional gestures such as hitting, stroking, and hugging as an input 

method. This system could thus be used in applications such as entertainment, therapy, 

and rehabilitation. 
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Fig. 11. Example application. 

7 Limitations and Future Work 

This research study has several limitations, which we incorporate in our plans for 

future work. We tested the recognition rate in a deformable object. Future works could 

thus examine the recognition rate with different materials, shapes, sizes, and softness 

levels. 

While we detected the touch positions in this study at nine points on a cushion, in 

future studies, we aim to recognize gestures on soft objects using continuous recogni-

tion results. 

The photo reflective sensors were found to be affected by ambient light such as from 

an electric lamp or sunlight. We thus plan to implement a filtering system using light 

modulation that separates IR light emitted by the LEDs in the photo reflective sensors 

from ambient light. 

Our proposed sensor module is wrapped around a soft object such as a cushion; how-

ever, the position of the module gradually shifts when using it. We therefore plan to 

add clips or safety pins to fix the sensor module in place. 

Furthermore, deformable objects show hysteresis over long-term use. Future work 

should thus test the repeatability over a long time frame. 

8 Conclusion 

In this paper, we proposed a sensing system to turn soft objects into soft touch inter-

faces using belt type photo reflective sensor modules. In our proposed system, the 

change in reflected intensity due to the deformation of the surface is captured by the 

reflective optical sensor modules placed on the deformable object. The touch position 

is estimated using an SVM machine learning technique. 

To evaluate the estimation accuracy of the touch position to the deformable object, 

we measured the recognition rates by touching nine points on the cushion with various 

touch forces (1N–7N). When using a training and test dataset with the same touch force, 

the estimated touch position achieved an accuracy of 93.7%. Furthermore, by excluding 

the dataset of the weakest force (1N), the average recognition rate was 92.0%, even 
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when mixing the test dataset. It is considered that the proposed method shows a good 

performance at certain force conditions (3N-7N). 
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