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Towards Critical Pair Analysis for the
Graph Programming Language GP 2

Ivaylo Hristakiev? and Detlef Plump

University of York, United Kingdom

Abstract. We present the foundations of critical pair analysis for the
graph programming language GP 2. Our goal is to develop a static
checker that can prove or refute confluence (functional behaviour) for
a large class of graph programs. In this paper, we introduce symbolic
critical pairs of GP 2 rule schemata, which are labelled with expressions,
and establish the completeness and finiteness of the set of symbolic crit-
ical pairs over a finite set of rule schemata. We give a procedure for their
construction.

1 Introduction

A common programming pattern in the graph programming language GP 2 [16]
is to apply a set of attributed graph transformation rules as long as possible. To
execute a set of rules {r1, . . . , rn} for as long as possible on a host graph, in each
iteration an applicable rule is selected and applied. As rule selection and rule
matching are non-deterministic, different graphs may result from such an itera-
tion. Thus, if the programmer wants the loop to implement a function, a static
analysis that establishes or refutes functional behaviour would be desirable.

GP 2 is based on the double-pushout approach to graph transformation with
relabelling [8]. Programs can perform computations on labels by using rules
labelled with expressions (also known as attributed rules). GP 2’s label algebra
consists of integers, character strings, and heterogeneous lists of integers and
strings. Rule application can be seen as a two-stage process where rules are
first instantiated, by replacing variables with values and evaluating the resulting
expressions, and then applied as usual. Hence rules are actually rule schemata.

Conventional confluence analysis in the double-pushout approach to graph
transformation is based on critical pairs, which represent conflicts in minimal
context [15,5]. A conflict between two rule applications arises when one of the
steps deletes or relabels an item matched by the other. In the presence of termi-
nation, one can check if all critical pairs are strongly joinable, and thus establish
that the set of transformation rules is confluent.

However, the conventional notion of critical pairs is not directly applicable
to GP 2 rule schemata. To construct such pairs, one needs to instantiate rule
schemata to an (usually) infinite set of conventional graph transformation rules
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[12], and thus the analysis cannot be automated as part of a confluence checker.
Furthermore, when constructing the labels of critical pairs, it has been observed
[4, p. 198] that syntactic unification of the labels of overlapping graphs is not
sufficient (as proposed by [10]). This is because the constructed set of critical
pairs need not represent all conflicts. Instead, one has to take into account all
equations valid in the attribute algebra. This problem is circumvented in [6,7]
by imposing a severe restriction that avoids the need for unification altogether,
namely to only allow rules labelled with variables or variable-free expressions.

In this paper, we do not use such restrictions. We rather define symbolic
critical pairs which are labelled with expressions, and give an algorithm for their
construction based on our unification algorithm for GP 2 expressions [11]. As
a by-product of this construction, it is easy to show that a finite set of rule
schemata gives rise to a finite set of symbolic critical pairs. We then prove that
the generated critical pairs are complete in that they represent all conflicts of
the given set of rule schemata. This proof is based on the completeness of the
GP 2 unification algorithm.

We assume the reader to be familiar with basic notions of the double-pushout
approach to graph transformation (see [4]).

Related Work. The approach of [14] also defines symbolic critical pairs in the
context of symbolic graph transformation where symbolic graphs are transformed
via symbolic rules (rules equipped with first-order logical formulas). Symbolic
critical pairs represent all possible conflicts between such symbolic rules. How-
ever, it is important to stress the differences with our approach. No construction
algorithm is given for these critical pairs whereas we give a construction for the
GP 2 setting. In fact, that approach treats attribute algebras as a parameter,
and thus a general construction algorithm cannot be given. Even so, a topic of
future work is the relaxed notion of conflict where a minimal pair of derivations
is critical if the pair does not commute when attribute semantics are taken into
account.

The differences with critical pairs in the attributed setting of [4] are similar
to the above. In this setting, graph attributes are represented via special data
nodes and linked to ordinary graph nodes/edges via attribution edges, giving
rise to infinite graphs. Attributed rules contain a data node for each term in the
term algebra T (X). The critical pair construction however is restricted to rules
whose attributes are variables or variable-free, e.g. see [6]. An earlier version
of the construction was based on computing a most general unifier [10], which
renders the critical pairs incomplete. As above, attribute algebras are treated as
parameters.

2 Graphs and Graph Programs

In this section, we present the approach of GP 2 [16,2], a domain-specific lan-
guage for rule-based graph manipulation. The principal programming units of
GP 2 are rule schemata 〈L ← K → R〉 labelled with expressions that operate



on host graphs labelled with concrete values. The language allows to combine
schemata into programs. The definition of GP 2’s latest version, together with
a formal operational semantics, can be found in [2].

2.1 Background

Labelled graphs. We start by recalling the basic notions of partially labelled
graphs and their morphisms.

A (partially) labelled graph G consists of finite sets VG and EG of nodes and
edges, source and target functions for edges sG, tG : EG → VG, and a partial
node/edge labelling function lG : VG + EG → L over a (possibly infinite) label
set L. Given a node or edge x, lG(x) = ⊥ expresses that lG(x) is undefined1.
The graph G is totally labelled if lG is a total function. The classes of partially
and totally labelled graphs over a label set L are denoted by G⊥(L) and G(L).

A premorphism g : G → H consists of two functions gV : VG → VH and
gE : EG → EH that preserve sources and targets. A graph morphism g is a
premorphism that preserves labels of nodes and edges, that is lH

(
g(x)

)
= lG(x)

for all x ∈ Dom(lG). A morphism g preserves undefinedness if it maps unlabelled
items of G to unlabelled items in H. Morphism g is an inclusion if g(x) =
x for all items x in G. Note that inclusions need not preserve undefinedness.
Morphism g is injective (surjective) if gV and gE are injective (surjective), and
is an isomoprhism (denoted by ∼=) if it is injective, surjective and preserves
undefinedness. The class of injective label preserving morphisms is denoted asM
for short, and the class of injective label and undefinedness preserving morphisms
is denoted as N .

Partially labelled graphs and label-preserving morphisms constitute a cate-
gory [9,8]. Composition of morphisms is defined componentwise. What is special
about this category is that pushouts need not always exist, and not all pushouts
along M-morphisms are natural2.

GP 2 labels. The types int and string represent integers and character strings.
The type atom is the union of int and string, and list represents lists of atoms.
Given lists l1 and l2, we write l1 : l2 for the concatenation of l1 and l2 (not to be
confused with the list-cons operator in Haskell). Atoms are lists of length one.
The empty list is denoted by empty. Variables may appear in labels in rules and
are typed over the above categories. Labels in rule schemata are built up from
constant values, variables, and operators - the standard arithmetic operators
for integer expressions (including the unary minus), string concatenation for
string expressions, length operator for list and string expressions, indegree

and outdegree operators for nodes. In pictures of graphs, nodes or edges that
are shown without a label are implicitly labelled with the empty list, while
unlabelled items in interfaces are labelled with ⊥ to avoid confusion.

1 We do not distinguish between nodes and edges in statements that hold analogously
for both sets.

2 A pushout is natural if it is also a pullback.
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Fig. 1: A direct derivation

Additionally, a label may contain an optional mark which is one of red,
green, blue, grey and dashed (where grey and dashed are reserved for nodes
and edges, respectively). The mark component of labels is represented graphi-
cally rather than textually. For example, all edges of the rule schema series in
Figure 2 have the label (empty, dashed).

Rule schemata and direct derivations. In order to compute with labels, it is
crucial that nodes and edges can be relabelled. The double-pushout approach
with partially labelled interface graphs is used as a formal basis [8].

To apply a rule schema to a graph, the schema is first instantiated by eval-
uating its labels according to some assignment α. An assignment α maps each
variable occurring in a given schema to a value in GP 2’s label algebra. Its unique
extension α∗ evaluates the schema’s label expressions according to α. For short,
we denote GP 2’s label algebra as A. Its corresponding term algebra over the
same signature is denoted as T (X), and its terms are used as graph labels in
rule schemata. Here X is the set of variables occurring in schemata. To avoid
an inflation of symbols, we sometimes equate A or T (X) with the union of its
carrier sets.

A GP 2 rule schema r = 〈L ← K → R〉 consists of two inclusions K → L
and K → R such that L and R are graphs in G(T (X)) and K is a graph in
G⊥(T (X)). Consider a graph G in G⊥(T (X)) and an assignment α : X → A.
The instance Gα is the graph in G⊥(A) obtained from G by replacing each label
l with α∗(l). The instance of a rule schema r = 〈L ← K → R〉 is the rule
rα = 〈Lα ← Kα → Rα〉.

A direct derivation via rule schema r and assignment α between host graphs
G,H ∈ G(A) consists of two natural pushouts as in Figure 1. We denote such a

derivation by G
r,g,α
=⇒H. Rules may also be applied to graphs in G(T (X)). In this

case assignments become substitutions σ : X → T (X). This will be useful later
for critical pairs which are labelled over T (X).

In [8] it is shown that in case the interface graph K has unlabelled items, their
images in the intermediate graph D are also unlabelled by the condition that the
pushouts are natural. Given a rule r and a graph G together with an injective
match g : L → G satisfying the dangling condition (no node in g(L) − g(K) is



incident to an edge in G − g(L)), there exists a unique double natural pushout
[8, Theorem 1].

When a rule schema is graphically declared as done in Figure 2, the interface
is represented by the node numbers in L and R. Nodes without numbers in L are
to be deleted and nodes without numbers in R are to be created. All variables
in R have to occur in L so that for a given match of L in a host graph, applying
the rule schema produces a graph that is unique up to isomorphism.

Program constructs. A GP 2 program consists of declarations of rule schemata
and macros, and a main command sequence which controls their application
order. The language offers several operators for combining subprograms - the
postfix operator ‘!’ iterates a program as long as possible; sequential composi-
tion ‘P; Q’; a rule set {r1, . . . , rn} tries to non-deterministically apply any of
the schemata (failing if none are applicable); if C then P else Q allows for
conditional branching (C,P,Q are arbitrary command sequences) meaning that
if the program C succeeds on a copy of the host graph then P is executed on
the original, if C fails then Q is executed on the original host graph.

Simple lists. The values of rule schema variables at execution time are deter-
mined by graph matching. To ensure that matches induce unique “actual pa-
rameters”, expressions on the left-hand side of a rule schema must have a simple
shape. A simple list expression [2] contains no arithmetic, length or degree op-
erators, at most one occurrence of a list variable, at most one occurrence of a
string variable per string expression. For example, a:x and y:n:n are simple
expressions (a,n are atom variables; x,y are list variables) whereas n ∗ 2 or x:y
are not simple.

Assumptions. In this paper, we make several assumptions. First, we further
restrict simple lists to not contain string concatenation (.) and unary minus
(-) operators. These operators inflate the unification algorithm of [11] which we
use for the construction of critical pairs, without posing a substantial challenge.
Second, a proper treatment of GP 2 conditional rule schemata requires extra
technicalities, and hence we consider unconditional schemata only. Third, we
assume rule schemata to be left-linear (see Section 3).

2.2 Example: Recognition of series-parallel graphs

As a motivating example, consider a GP program that recognizes series-parallel
graphs. These graphs have been introduced as models of electrical networks [3],
and are interesting from a complexity point of view since many graph problems,
some of which NP-complete, are solvable in linear time for these graphs e.g.
maximum matching, maximum independent set, Hamiltonian completion.

These graphs are recognized by means of graph reduction: for a host graph
G, apply a set of size-reducing rules Reduce = {series, parallel} as long
as possible, obtaining a result graph H, then check whether H is isomorphic to

(ignoring labels) to decide whether the original graph G is series-parallel.



Main = unlabel!; Reduce!; delete; if nonempty then fail

Reduce = {series, parallel}

1 2

⇒x

1

y

2

a

unlabel(a,x,y:list) delete

⇒ ∅

1 2

⇒
1 2

series

1 2

parallel

⇒
1 2

⇒x

1

x

1

nonempty(x:list)

Fig. 2: GP 2 program recognizing series-parallel graphs.

A GP 2 program implementing the above algorithm is presented in Figure 2.
Given a host graph G, the program works as follows. First, it removes all labels
by applying the unlabel rule as long as possible (labels do not play a role in
whether a graph is series-parallel or not). Applying unlabel amounts to non-
deterministically selecting a subgraph of the host graph that matches unlabel’s
left graph, relabelling the matched nodes with the empty list and recreating the
connecting edge as dashed to avoid non-termination.

Afterwards, the Reduce rules are applied as long as possible. To determine
whether the resulting graph has the correct shape, the program first attempts
to delete the correct result graph (see above) then checks whether this yields
the empty graph. If either the deletion or the non-empty check fails, then the
program fails. In this context, termination of the program with a proper graph
means the host graph G is series-parallel, and failure means G is not series-
parallel.

However, if the non-deterministic reduction results in a graph other than
, we need to be sure that no other reduction sequence ends in that

graph. Therefore, the correctness of the above recognition algorithm depends on
the confluence of the loops unlabel! and Reduce!.

Confluence [15] is a property of a rewrite system that ensures that any pair
of derivations on the same host graph can be joined again thus leading to the
same result, and is an important property for many kinds of graph transforma-
tion systems. A confluent computation is globally deterministic despite possible
local non-determinism. The main technique for confluence analysis is based on
the study of critical pairs which are conflicts in minimal context. However, the
previous results in critical pair analysis do not cover rule schemata and GP. This
raises the question of how to check whether loops such as unlabel! and Reduce!

are confluent or not.

Infinity of conventional critical pairs. To construct critical pairs for the above
case, we can consider the infinite set of all rules obtained by arbitrary instanti-
ations of the schemata and compute conventional critical pairs over those (see,
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Fig. 3: A conventional critical pair of unlabel with itself.

for example, [4]). Since there would be an infinite number of rule instances to
consider, the set of conventional critical pairs would also be infinite.

For example, consider the conflicting pair of derivations in Figure 3. The
middle graph is obtained by overlapping the left-hand graph of unlabel with
itself, and the graphs on either side are the results of applying the schema in
conflicting ways. The pair is in conflict because both derivations relabel a com-
mon node (2) to the empty list. The instantiating assignment of unlabel and
its copy is α = {x1 → 1, y1 → 2, x2 → 2, y2 → 3, a1 → 4, a2 → 5} where the
variables are indexed to signify from which unlabel instance they originate.

3 Unification of GP 2 List Expressions

Below we review the problem of unifying GP 2 list expressions. The problem
arises when having to overlap graphs labelled with expressions to compute criti-
cal pairs. Unification has a long history in the automated deduction community,
see for instance [1] for an introduction. We use our AU-unification algorithm
[11] as a solution, and its properties - namely completeness and termination. As
mentioned in the Introduction, the use of our algorithm is motivated by the need
to respect the axioms valid in the label algebra. (See Section 6 for more on the
relation between critical pairs and unification.)

A substitution maps GP variables to expressions σ : X → T (X). For exam-
ple, we write σ = {x 7→ x + 1} for the substitution that maps x (an integer vari-
able) to x + 1 and every other variable to itself. Applying a substitution σ to an
expression t, denoted by tσ, means to replace every variable x in t by σ(x) simul-
taneously. In the above example, (x : −x)σ = (x + 1) : −(x + 1). Composition of
substitutions λ and σ is written as λ◦σ (λ after σ). Given substitutions σ1, . . . , σn
with pairwise disjoint domains, their composition σ1 ◦ . . . ◦ σn is commutative.
A substitution σ is more general on a set of variables X than a substitution θ if
there exists a substitution λ such that xθ =AU (xσ)λ for all x ∈ X. In this case
we write σ 5X θ and say that θ is an instance of σ on X. Here =AU is the equiva-
lence relation on expressions generated by the axioms of associativity and unity of
list concatenation AU = {x : (y : z) = (x : y) : z, empty : x = x, x : empty = x},
where x, y, z are list variables. If one considers ordinary equality =, then the
unification is called syntactic.

A unification problem is an equation P of the form s =? t where s and
t are simple list expressions without common variables. A unifier of P is a
substitution σ over the set of variables occurring in P (denoted as Var(P )) such
that sσ =AU tσ.



A set C of unifiers is a complete set of unifiers of a unification problem P
if for each unifier θ there exists σ ∈ C such that σ 5Var(P ) θ. This essentially
means that any substitution that is a unifier is an instance of some unifier in C.
The set C is also minimal if each pair of distinct unifiers in C are incomparable
w.r.t. 5Var(P ). If a unification problem is not unifiable, then by convention ∅ is
its minimal complete set of unifiers.

The paper [11] gives an algorithm for solving unification problems between
GP 2 list expressions. The algorithm produces a finite complete set of unifiers for
a given problem. The assumptions of the algorithm are: 1) simple expressions,
as presented in Section 2; 2) left-linearity (see below); 3) infinite pool of fresh
variables. We can summarize the results of [11] as the following theorem.

Theorem 1 (Unification algorithm). There exists an algorithm solving the
following problem:

Input: A unification problem s =? t between simple list expressions s
and t without common variables

Output: A finite complete set of unifiers UNIF(s =? t)

We write UNIF(P ) for the set of unifiers returned by the unification algorithm.
For a finite system of independent unification problems (P1, . . . , Pn)3, the ex-
tension of UNIF is defined to be the set of unifiers obtained by combining the
unifiers of each individual unification problem:

UNIF(P1, . . . , Pn) =
{
σ1 ◦ . . . ◦ σn | σi ∈ UNIF(Pi), 1 ≤ i ≤ n

}
For example, if UNIF(P1) = {α, β} and UNIF(P2) = {λ}, then UNIF(P1, P2) =
{α ◦ λ, β ◦ λ}. By the above result, this set is finite. It is also complete since it
contains all combinations of unifiers.

Left-linearity. The left-linearity assumption states that no list variables are
shared between items in a left-hand graph of a rule schema. This is sufficient
to ensure that we can apply our generalized algorithm in the construction of
critical pairs (Theorem 2) as the system of equations resulting from overlap-
ping left-hand graphs will have a finite set of solutions. Without this assumption
it is easy to construct two rule schemata that induce the system of equations
{x : 1 =? y, 1 : x =? y}. The system is not independent as the list variables x

and y are shared between the two equations. We can solve each equation sepa-
rately, but the composition of their unifiers does not produce a unifier for the
system. In fact, this system has an infinite minimal complete set of solutions
{x 7→ empty, y 7→ 1}, {x 7→ 1, y 7→ 1 : 1}, {x 7→ 1 : 1, y 7→ 1 : 1 : 1}, . . ..

Unification example. The minimal complete set of unifiers of the problem 〈a : x =?

y : 2〉 (where a is an atom variable and x,y are list variables) is {σ1, σ2} with
σ1 = {a 7→ 2, x 7→ empty, y 7→ empty} and σ2 = {x 7→ z : 2, y 7→ a : z}.
We have (a : x)σ1 = 2 : empty =AU 2 =AU empty : 2 = (y : 2)σ1 and (a : x)σ2 =
a : (z : 2) =AU (a : z) : 2 = (y : 2)σ2. Other unifiers such as σ3 = {x 7→ 2, y 7→ a}
are instances of σ2, hence set of unifiers {σ1, σ2, σ3} is complete but not minimal.

3 Two unification problems are independent if they do not share list variables.



4 Symbolic Critical Pairs

In this section, we define the notions of independence and conflicts for rule
schema rewriting as done in [12]. Then we develop the notion of symbolic critical
pairs describing conflicts in minimal context. Symbolic critical pairs allow for the
realization of a static confluence checker.

Independence of schema derivations. Two schema derivations are independent
if neither derivation deletes or relabels any common item. This can be expressed
as an ‘existence-of-morphisms’ condition. Independent derivations can be in-
terchanged, leading to the same result. This property is known as the Local
Church-Rosser Theorem, shown in [12] for the case of rule schemata.

In the rest of the paper we assume that the variables occurring in different
rule schemata are distinct, which can always be achieved by variable renaming.

Definition 1 (Independence of derivations). Two rule schema direct deriva-

tions G
r1,m1,α

=⇒ H1 and G
r2,m2,α

=⇒ H2 are independent if the plain derivations with

relabelling G
rα1 ,m1
=⇒ H1 and G

rα2 ,m2
=⇒ H2 are independent, meaning that there exist

morphisms i : Lα1 → D2 and j : Lα2 → D1 such that f2 ◦ i = m1 and f1 ◦ j = m2.

G

Lα1Kα
1Rα1

L1K1R1

Lα2 Kα
2 Rα2

L2 K2 R2

D1 D2H1 H2

m1 im2j
f1 f2

Two direct derivations are in conflict if they are not independent. There are
different types of conflict that can arise between two direct derivations. One
option is to have that either derivation deletes graph elements which are used by
the other (delete-use conflict). The other option is that one derivation relabels
graph elements used by the other (relabelling conflict).

Example of conflict. Figure 4 shows two direct derivations H1 ⇐ G⇒ H2 that
use instances of the rule schema unlabel. The derivations are in conflict - there
are no morphisms L1 → D2 and L2 → D1 with the desired properties. The
problem is that node 2 gets relabelled. Note that the edge from node 1 to 3 is
never matched and is therefore preserved during both derivations.

Symbolic critical pairs

Critical pairs allow for the static confluence analysis of rule schema rewriting.
Each conflict that may occur during the graph transformation is represented
by a critical pair. Hence, it is possible to foresee each conflict by computing all
critical pairs statically. Each pair of rule schemata induces a set of critical pairs.
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Fig. 4: Conflict due to relabelling.

We define critical pairs that are labelled with expressions rather than from a
concrete data domain. Each symbolic critical pair represents a possibly infinite
set of conflicting host graph derivations. What is special about our critical pairs
is that they show the conflict in the most abstract way.

A pair of derivations T1
r1,m1,σ⇐= S

r2,m2,σ
=⇒ T2 between graphs labelled with ex-

pressions is a critical pair if it is in conflict and minimal. Minimality means the
pair of matches (m1,m2) is jointly surjective – the graph S can be considered as
a suitable overlap of Lσ1 and Lσ2 . Two items x ∈ L1 and y ∈ L2 are overlapped if
m1(x) = m2(y), which induces a unification problem l(x) =? l(y) between their
labels. Formally, overlapping graphs Lσ1 and Lσ2 induces a system of unification
problems:

EQ(Lσ1
m1−−→ S

m2←−− Lσ2 ) = {lLσ
1
(a)

?
= lLσ

2
(b) | (a, b) ∈ Lσ1×Lσ2 with m1(a) = m2(b)}

The substitution σ is taken from a complete set of unifiers of the above system of
problems and is used to instantiate the schemata. To avoid a circular definition,
the system can instead be constructed over the induced premorphisms Li → S
rather than over Lσi → S, i = 1, 2.

To disambiguate between the critical pairs of our approach and conventional
critical pairs found in literature (e.g. [15]), we introduce them as symbolic4.

Definition 2 (Symbolic Critical Pair). A symbolic critical pair is a pair of

direct derivations T1
r1,m1,σ⇐= S

r2,m2,σ
=⇒ T2 on graphs labelled with expressions such

that:

(1) σ is a substitution in UNIF(EQ(L1
m1−−→ S

m2←−− L2)) where L1 and L2 are
the left-hand graphs of r1 and r2, m1 and m2 are premorphisms, and

(2) the pair of derivations is in conflict, and
(3) S = m1(Lσ1 ) ∪m2(Lσ2 ), meaning S is minimal, and
(4) rσ1 = rσ2 implies m1 6= m2. ut
We assume the derivations are via left-linear rule schemata for UNIF to return a
finite set of unifiers. Terms appearing in left-hand graphs are restricted to simple
lists with an optional mark component as presented in Section 2.

4 The paper [14] introduces symbolic critical pairs in the setting of symbolic graph
transformation where graphs are combined with first-order logic formulas.
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Fig. 5: A symbolic critical pair of unlabel with itself.

Critical pairs of the Series-Parallel Program. An example symbolic critical pair
of the rules in Figure 2 is shown in Figure 5 where the middle graph is obtained
by overlapping the left-hand graph of the unlabel schema with itself, and the
graphs on either side are the results of applying the schema in conflicting ways.
The pair is in conflict because both derivations relabel a common node (2) to the
empty list. Note that this symbolic critical pair looks very similar to the pair of
conflicting derivations in Figure 3. In fact, they are related by the instantiation
λ = {x1→ 1, y1→ 2, y2→ 3, a1→ 4, a2→ 5} where the variables are indexed
(as usual) to signify from which unlabel instance they originate.

There are 4 more symbolic critical pairs obtained by self-overlapping unlabel.
In addition, the set Reduce gives rise to 3 symbolic critical pairs. Both loops
unlabel! and Reduce! can be shown to be locally confluent by analysing these
critical pairs under a suitable notion of critical pair joinability (to be published
elsewhere). It follows that the program in Figure 2 is correct.

5 Construction and Finiteness of Symbolic Critical Pairs

We give an algorithm for the construction of symbolic critical pairs that respects
the equations of GP’s label algebra, namely the associativity and unit laws of
list concatenation. The construction is given as the following theorem.

Theorem 2 (Construction of Symbolic Critical Pairs). Given left-linear
rule schemata r1 = 〈L1 ← K1 → R1〉 and r2 = 〈L2 ← K2 → R2〉, the following
construction computes all symbolic critical pairs of r1 and r2:

1. Compute all overlaps of L1 and L2, giving rise to pairs of jointly surjective
premorphsisms (m1,m2) into an unlabelled graph S.

2. For each overlap check that m1 and m2 satisfy the dangling condition w.r.t.
r1 and r2.

3. For each overlap compute the set of unifiers UNIF(EQ(L1
m1→ S

m2← L2).
4. For each unifier σ from the above set and its overlap do the following:

(a) Instantiate r1 and r2 via σ to obtain the rules rσ1 and rσ2 , and if rσ1 = rσ2
check that m1 6= m2.

(b) Define the labelling function of S as

lS(x) =

{
lLσ

1
(x′) if ∃x′ ∈ Lσ1 such that m1(x′) = x

lLσ
2
(x′) if ∃x′ ∈ Lσ2 such that m2(x′) = x

(c) Construct the derivations T1
r1,m1,σ⇐= S

r2,m2,σ
=⇒ T2.



(d) If the pair of derivations is in conflict, then it is a symbolic critical pair.

Proof. We show that the above construction produces exactly all symbolic crit-
ical pairs according to Definition 2. The construction computes only symbolic
critical pairs - when Step 4.d is reached, the pair of derivations exists, is minimal
and in conflict, and is labelled using one of the substitutions returned by UNIF.
The construction computes all critical pairs since all overlaps and all unifiers per
overlap are considered. ut

The construction of symbolic critical pairs is similar to that of conventional
critical pairs. The most important difference occurs when overlapping graph
nodes or edges since unification needs to be considered. This process terminates
in finite time - overlapping finite graphs produces a finite number of overlaps
(Step 1), left-linearity allows for UNIF to produce a finite set of substitutions
(Step 3), all other components are either finite checks or constructing a pair
of direct derivations. Recall that the number of conventional critical pairs is
infinite in general due to the infinite number of rules that a schema represents.
Consequently, the computation of symbolic critical pairs is much more suitable
for automation as part of a confluence checker.

Corollary 1 (Finiteness of Symbolic Critical Pairs). For each pair of left-
linear rule schemata r1 and r2, the set of symbolic critical pairs induced by r1
and r2 is finite.

Proof sketch. Since the above construction computes all critical pairs and ter-
minates, then the set of symbolic critical pairs must be finite. ut

6 Completeness of Symbolic Critical Pairs

Completeness of critical pairs means that each pair of conflicting direct deriva-
tions is an instance of a symbolic critical pair. Formally, we state the result as a
theorem. We start by discussing the link between unification of expressions and
completeness of critical pairs.

Critical Pairs and Unification. As shown in Section 2.2, one needs to consider
critical pairs labelled with expressions rather than concrete values. This means
one needs an algorithm to compute their labels which are expressions resulting
from overlapping left-hand graphs of rules. If one does not severely restrict the
shape of labels, this computation involves unification. However, the type of uni-
fication becomes crucial when considering whether the constructed critical pairs
are complete, as we show below.

Consider two rule schemata with left-hand sides 1:x and y:1 where x and

y are list variables. Overlapping these graphs induces the unification problem
P = 〈1 : x =? y : 1〉. This problem can be syntactically unified via its most
general unifier σ = {x, y→ 1}. However, the problem has an infinite number of



AU-unifiers: {x, y→ empty}, {x, y→ 1}, {x, y→ 1 : 1}, . . . , none of which are
instances of σ except one. As a consequence, critical pairs labelled using most
general unifiers are incomplete. To our knowledge this problem has been first
observed in [4, p. 198] in the context of attributed graph transformation. Their
solution is to restrict the shape of labels/attributes to variable-free or variable-
only terms which avoids the need for unification.

Our solution to this problem involves using our complete AU-unification algo-
rithm - solving P produces the AU-unifiers {x, y→ empty} and {x→ x′ : 1, y→ 1 : x′}
where x′ is a fresh list variable. (Our algorithm also produces σ making the result
set non-minimal.) Consider any assignment α such that (1 : x)α =AU (y : 1)α.
By Theorem 1, there exists a unifier σ ∈ UNIF(P ) and instantiating substitu-
tion λ such that α = λ ◦ σ. Thus, a symbolic critical pair labelled using σ can
be instantiated via λ to a critical pair of host graph derivations. Consequently,
completeness of our AU-unification algorithm allows for greater representational
power when it comes to critical pairs.

Restriction Lemma. In the following, we present a restriction construction, for-
mulated only for direct derivations, which is in some sense the inverse of extend-
ing a derivation to a larger context. This construction is necessary for the proof
of Theorem 3.

Lemma 1 (Restriction). Given a direct derivation G
r,m,α
=⇒ H, a morphism e :

P → G ∈ N , and a match m′ : Lα → P ∈ N such that m = e ◦m′, then there

is a direct derivation P
r,m′,α
=⇒ Q leading to the (extension) diagram below.

Lα Kα Rα

P N Q

G D H

m′

m

e

(2) (3)

(1) (4)

Proof. See the long version of this paper [13].

Completeness of symbolic critical pairs. Next we state our Completeness Theo-
rem. The technical aspects of its proof (see [13]) are concerned with the prop-
erties of partially labelled graphs G⊥ and the classes of horizontal and vertical
morphisms in direct derivations (M and N ). These basic properties have al-
ready been studied in [9,8]. Below we give a proof sketch, including only of the
important steps.

Theorem 3 (Completeness of Symbolic Critical Pairs). For each pair of

conflicting rule schema applications H1
r1,m1,α⇐= G

r2,m2,α
=⇒ H2 between left-linear

schemata r1 and r2 there exists a symbolic critical pair T1
r1⇐= S

r2=⇒ T2 with
(extension) diagrams between H1 ⇐ G⇒ H2 and an instance of T1 ⇐ S ⇒ T2.



PQ1 Q2⇐= =⇒

GH1 H2⇐= =⇒

ST1 T2⇐= =⇒

Proof sketch. We start by decomposing the pair of matches (m1 : Lα1 → G,m2 :
Lα2 → G) (Figure 6) to obtain a graph P = m1(Lα1 )∪m2(Lα2 ) = m′1(Lα1 )∪m′2(Lα2 )
together with jointly surjective matches (m′1 : Lα1 → P,m′2 : Lα2 → P ) and
morphism e : P → G ∈ N .

G

P

Lα1Kα
1Rα1 Lα2 Kα

2 Rα2

N1Q1

D1H1

N2 Q2

D2 H2

m1 m2

m′
1 m′

2

e(1) (5)

(2) (6)(3) (7)

(4) (8)

Fig. 6: Decomposed pushouts

Next we apply Lemma 1 twice to obtain the restricted derivations P ⇒
Q1 and P ⇒ Q2. It is not difficult to show that Q1 ⇐ P ⇒ Q2 is minimal
and in conflict using the commutativity of (1), the properties of (m′1,m

′
2), and

Definition 1 (e.g. see the proof of Lemma 6.22 in [4]). This concludes the first
part of the proof.

For the second part we will show that Q1 ⇐ P ⇒ Q2 is an instance of a
symbolic critical pair T1 ⇐ S ⇒ T2. We use the fact that the assignment α
is an AU-unifier for the system of equations EQ(L1, L2,m1,m2) and therefore,
by Theorem 1 (r1 and r2 are left-linear), α is an instance of a unifier σ ∈
UNIF(EQ(L1, L2,m

′
1,m

′
2)) such that α = λ ◦ σ where λ is some assignment.

Next we construct the symbolic critical pair T1 ⇐ S ⇒ T2. The graphs have
the same node/edge sets as Q1 ⇐ P ⇒ Q2 but different labels. First, instantiate
L1 and L2 via σ to obtain graphs Lσ1 and Lσ2 . Then define S = m′1(Lσ1 )∪m′2(Lσ2 ).
This definition is sound because σ is a unifier. It is easy to show that P ∼= Sλ

using α = λ ◦ σ.

We proceed by constructing the derivation S
r1,m

′
1,σ=⇒ T1 - the double-pushout

is (9+10) of Figure 7 together with the instantiation squares right above it. The
same construction is applied to obtain S ⇒ T2. By Definition 2, it follows that

T1
r1,m

′
1,σ⇐= S

r2,m
′
2,σ=⇒ T2 is a symbolic critical pair – (m′1,m

′
2) are jointly surjective,

σ is a unifier, and it can be shown the derivations are in conflict since Q1 ⇐
P ⇒ Q2 is in conflict. ut



Sλ ∼= P

S

Lσ1Kσ
1Rσ1

L1K1R1

Lα1σσ σ

α

λ

O1T1

N1Q1

λ

m′
1

λ

(9)

λ

(10)

Fig. 7: Construction of S ⇒ T1 .

Example of completeness. Consider the pairs of derivations in Figure 3, Figure 4
and Figure 5. They form the layers of the diagram in Theorem 3. The morphism
e : P → G is an inclusion where G contains the extra edge from node 1 to 3.
The assignment λ linking the symbolic critical pair to its instance is λ = {x1→
1, y1→ 2, y2→ 3, a1→ 4, a2→ 5}.

7 Conclusion and Future Work

We have presented the foundations of critical pair analysis for the graph pro-
gramming language GP 2. Our goal is to develop a static checker that can verify
or refute confluence (functional behaviour) for a large class of graph programs.
We have introduced symbolic critical pairs of GP 2 rule schemata, which are
labelled with expressions, and established the completeness and finiteness of the
set of symbolic critical pairs over a finite set of rule schemata. We have given a
procedure for constructing that set.

We are currently working on proving the Local Confluence Theorem for GP 2,
which establishes local confluence of sets of rule schemata for the case that all
symbolic critical pairs are strongly joinable. The precise definition of joinabil-
ity is an interesting problem from an algorithmic point of view, and so is the
development of a procedure that determines program confluence by analysing
critical pairs. Another interesting topic is the role of SMT solvers for deciding
label equivalences and implications in the context of isomorphism checking and
joinability analysis.
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