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Abstract. A wide range of network management tasks such as balanc-
ing bandwidth usage, firewalling, anomaly detection and differentiating
traffic pricing, depend on accurate traffic classification. Due to the di-
versity and variability of network applications, port-based and statistical
signature detection approaches become inefficient and hence, behavioral
classification approaches have been considered recently. However, so far,
there is no automated general method to obtain the behavioral mod-
els of applications. In this research, we propose an automatic procedure
to infer a transition system model from generated traffic of an applica-
tion. Our approach is based on passive automata learning theory and
evidence driven state merging technique using the rules of the network
domain. We consider the behavior of well-known network protocols to
generate the model which includes unobserved behaviors and excludes
invalid ones as much as possible. To this aim, we present a new equiv-
alence relation regarding the given protocol behaviors to induce proper
state merging conditions. This idea has led the time complexity order of
the algorithm to be linear rather than exponential. Finally, we apply the
model of some real applications to evaluate the precision and execution
time of our approach.

1 Introduction

The importance of traffic classification for network administration tasks such as
ensuring the security and quality of service of applications in computer networks
has long been acknowledged. The growing number of network applications and
protocols has limited the efficiency of classical methods. In the past, packets
were easily classified by their transport layer ports. As the use of random or non-
standard ports is dramatically increasing, payload inspection [1,2] and statistical
methods [3, 4] are proposed. However, drawbacks of these techniques such as
insufficiency in encrypted traffic and their high computation cost lead to the
emergence of behavioral classifiers. The merit of the behavioral classification is
to use the behavioral pattern of an application instead of the content of packets
or flow statistics. This point makes these classifiers useful for encrypted traffic or
unknown protocols. But, so far, no automated method to obtain the behavioral



model of applications is provided which currently requires human inspection.
There are a few studies for automating inference of the behavioral patterns
which are application specific and cannot be widely used, for instance [5] has
been presented for P2P-TV traffic.

To overcome the challenges of traffic classification and behavioral pattern
detection approaches, we aim at providing an automatic approach to derive
formal behavioral models, i.e., transition systems, for applications in the domain
of the network. Our focus is mainly on programs at the application layer of the
TCP/IP model [6]. We reduce our problem to the automata learning problem [7]
which aims at inferring an automaton which accepts the set of given words. If the
input traffic is considered as the given words of the language, then the desired
model will be the identified automaton. However, the classical approaches in the
literature of automata learning are not efficient to derive the most general model
such that not only it subsumes valid unobserved traces as much as possible, but
also disallows invalid traces. This is not achievable unless concepts of the domain
are utilized to tailor the basic algorithm.

Intuitively, we assume that the behavior of an application can be identified
in terms of how it executes well-known network protocols (below the application
layer) Therefore, given the formal specification of well-known network protocols
and execution traces of a program, we automatically generate a transition sys-
tem. Hence, we customize the automata learning algorithm of [8] using rules in
the network context to derive the most general model. Noting to the fact that
each trace of a program is an interleaving of network protocol execution traces,
the inferred model must preserve the behavior of each network protocol. In other
words, the model of various applications differ in how they interleave the traces
of well-known network protocols. Therefore, we take advantage of a behavioral
pre-order relation in the theory of transition systems to conduct the process of
model generation such that invalid traces are prohibited. Due to our abstraction
(of application variables), the states of the inferred model which identify the
same state with the same number of the flows for each network protocol, can be
aggregated together using the counter abstraction technique [9] to include not
observed behaviors.

To illustrate the applicability of our approach, we have implemented our
algorithm in a tool and applied it on two version control system applications
and two remote desktop sharing programs. Our results indicate that the tech-
niques that are used to generalize the model, are sufficiently conservative. and
unobserved behaviors are covered with a high precision. Furthermore, the worst
case time complexity order of our algorithm is linear rather than exponential in
contrast to the related automata learning techniques.

2 Preliminaries

In this section, we describe the necessary network background, an overview of
automata learning, the definitions of the main concepts related to transition
systems and the counter abstraction technique used to find the equivalent states.



2.1 Network Background

Each packet transferred across a network is composed of two parts: the header
and the content. The header includes the control information needed by the
corresponded protocol and is appended to the beginning of the content. Protocols
defined over the Internet follow the TCP/IP layered architecture [6]. This model
consists of four layers: Application, Transport, Internet, and Link. The layered
architecture means that the packet content of each layer is the built packet of
its upper layer.

To send a message over the network, at first, the Application layer receives the
user message from the software which is running (e.g., email client, web browser,
instant messaging software, etc.), and passes it to the lower layer. The Transport
layer segments data from the upper levels, then establishes a connection between
the packet’s point of origin and where it has to be received, and ensures that the
packets are reassembled in the correct order [10]. The Network layer is responsi-
ble for the packet’s addressing and routing. Finally, the Link layer manages the
formats of packets based on the mediums being used in transmitting the pack-
ets. For each layer, a number of different protocols is standardized. Protocols
are divided into connection-less and connection-oriented categories. Connection-
oriented are those that need to establish a connection before data transmission.
Thus there are handshake (initialization) and finalization phases in these proto-
cols. These phases are not required in connection-less protocols. They just send
a request packet for each desired data. A sequence of packets which have the
same value for the parameters source IP, source port, destination IP, destination
port, and the protocol name is called flow. An execution of an application gives
rise to initiating a number of flows. These flows are the connections which are
established between the initiator system and the other end systems.

2.2 Automata Learning

There are equivalent keywords in the literature to automata learning such as
grammar inference or regular inference, language or automata identification. The
goal of automata learning is to find a (non-unique) smallest automaton which is
consistent with the set of given examples [11]. Gold has proved that this problem
when the alphabet is finite, the two input sets of positive and negative samples
are given, and the number of the states of the output automaton is determined,
is a NP-complete problem [7]. If all of the words with the size equal and less
than n are given, then it is possible to solve the problem in the polynomial time.
The algorithms of this problem can be divided into the two categories: active
and passive.

The active techniques are based on Angluin L∗ algorithm which solves the
problem in polynomial time by asking some membership or equivalence queries
[12]. It is assumed that there is an oracle than answer the required queries. Pas-
sive techniques tend to build tree-like automata, called prefix tree automata,
from input examples and then by merging their states according to some heuris-
tics evidence, achieve the smallest deterministic finite automata (this technique



is called Evidence Driven State Merging (EDSM) [8]). In this category, there is
no oracle and the algorithm should find the solution only from the positive and
negative words of the language.

Since we aim to infer the behavioral model only from the input traces when
there is no oracle system, our solution in this paper is based on the passive
techniques. The most important challenge of these techniques is how to find the
candidate states which should be merged to include unobserved traces. KTail
algorithm merges states which have K common future (i.e., states that accept
the same set of strings of length K) [13]. Several research has been conducted to
decrease the O(n2) search space of the states which should be merged. Red-Blue
is one of them and becomes a popular framework which limits the number of
pairs of states by determining sufficient conditions on their colors.

2.3 Transition Systems

In this section we define the concepts used in the proposed methodology which
are related to transition systems. These definitions have been adapted from [14].

Definition 1 (Transition System). A transition system is a tuple TS =
(S,Act ,→, s0, ↓) where S is a set of states, Act is a set of actions, →⊆ S ×
Act ×S is a transition relation, s0 is the initial state, and ↓⊆ S is a set of final
states. We use s

α−→ t to denote (s, α, t) ∈→.
TS is called action-deterministic if for all s ∈ S, there are not (s, α, t) ∈→

and (s, α, v) ∈→, where α ∈ Act and t, v ∈ S, such that t ̸= v.

From this definition, the transition system in the left side of Fig. 1 is action-
deterministic. A finite execution fragment η = s0α0s1α1 . . . αnsn+1 of TS is an
alternating sequence of states and actions starting with the initial state and
ending with a final state such that (si, αi, si+1) ∈→ where 0 ≤ i ≤ n. A finite
sequence of actions ϱ = α0α1 . . . αn of TS is an execution trace if ∃s0, . . . , sn+1 ∈
S such that η = s0α0s1α1 . . . αnsn+1 is an execution fragment. For instance,
s0 x s1 a s2 x s3 a s4 y s5 b s6 y s7 and s0 a s8 a s9 x s10 b s11 y s12
are the execution fragments of the transition system in the left side of Fig. 1.
By eliminating states from these sequences, the execution traces are generated
(x a x a y b y and a a x b y respectively).

There is an abstraction operator which has the responsibility to hide some
actions of a transition system to make them internal and thus unobservable to
external entities. We formally define the abstraction operator in the following
definition:

Definition 2 (Abstraction Operator). Let TS = (S,Act ,→, s0, ↓) be a tran-
sition system. The abstraction of TS via a set of actions L ⊆ Act, denoted by
τL(TS ), is (S,Act \ L,→′, s0, ↓) such that: →′= {(s, α, t) | (s, α, t) ∈→, α /∈
L} ∪ {(s, τ, t) | (s, α, t) ∈→, α ∈ L}

To compare the behavior of transition systems, several behavioral pre-order
and equivalence relations have been proposed ranging from strict to liberal ones.



The Simulation relation is a finest pre-order relation which requires a transition
system to precisely mimic transitions of another one [15]. In the case of existing
internal actions in the system, the Weak Simulation relation is defined to relax
the conditions only for the observable actions.

Let
τ−→

∗
be reflexive and transitive closure of τ -transitions:

– t
τ−→

∗
t;

– t
τ−→

∗
s and s

τ−→ r, then t
τ−→

∗
r.

Definition 3 (Weak Simulation Relation). A binary relation R on the set
of states S is a weak simulation relation if for any s1, s′1, and t1 ∈ S and
α ∈ Act, s1 R t1 implies:

– s1
α−→ s′1 ⇒ (α = τ ∧ s′1 R t1) ∨ (∃ t′1, t′′1 , t′′′1 ∈ S : t1

τ−→
∗
t′′′1

α−→ t′′1
τ−→

∗

t′1 ∧ s′1 R t′1);

– s1 ∈↓⇒ (∃ t′1 ∈↓: t τ−→
∗
t′).

For the given transition systems TS i = (Si,Act i,→i, s0i, ↓i), where i ∈ {1, 2},
TS 1 is weakly simulated by TS 2 or TS 2 simulates TS 1, denoted by TS1 ⪯w TS 2,
if s01 R s02 for some weak simulation relation R.

A weak simulation relation R is minimal, if for all simulation relation R′

witnessing TS1 ⪯w TS2, R ⊆ R′. Hence, a minimal weak simulation relation R
is not necessarily unique.

2.4 Counter Abstraction

The Counter Abstraction is a technique to abstract states of a system. The idea
is to represent each state as a vector of counters one per each value instead of a
vector of state variables. For instance, consider there are three integer variables
x, y and z. The states {x = 1, y = 2, z = 1}, {x = 2, y = 1, z = 1} and
{x = 1, y = 1, z = 2} are equivalent because they have the identical counter
abstracted state {count(1) : 2, count(2) : 1}. This technique has been used in
various applications. In symmetry reduction which is a technique to avoid state
space explosion problem, the counter abstraction has the role of finding identical
clusters of states space so as to reduce the symmetry states and decrease the
cost of model checking [16]. This concept is also used in [9] in order to abstract
a parameterized system of an unbounded size into a finite-state system to be
verifiable.

3 Methodology

In this section, our proposed methodology for learning the network behavioral
model of an application is discussed.



3.1 Problem Statement

The captured traffic is the sequence of packets sent or received as the result of the
execution of an application during a specified time. Each packet contains data
and headers of layers as the result of encapsulation. We only consider information
of the upper layer instead of the whole headers and data (for instance, we only
take into account information of the application layer of HTTP packets while
they subsume information of the TCP layer).

To facilitate the processing of each packet content and close up the concept
to the automata theory, a function is exploited which corresponds each packet
to its equivalent action-like abstract representation. This function is defined
as PM apper : Packets → Act where Packets is the set of possible packets
captured through the pre-processing step. For example, a received TCP packet
in the handshake phase is mapped to TCPInitI which is a member of the model
actions set. In Section 4 we explain how the action set is defined in terms of
the packet information. Therefore, by applying the PMapper function to each
captured packet, we obtain a trace of actions. Hence, one input of our problem
is N executions of an application which are transformed by the PMapper into
the N action traces (packet trace) denoted by PT , ranged over by π. Let πi

indicate the ith action of the trace π, and len(π) show the length of the trace.
We remark that the length of each input execution is arbitrary, and in potentially
independent of the length of other traces.

Besides the packet traces, another important input of our problem is the spec-
ifications of K network protocols. We assume that the specifications are provided
in the form of action-deterministic transition systems Pi = (Si,Act i,→i, s0i, ↓i)
where 1 ≤ i ≤ K, τ ̸∈ Act i , and ∀i, j ≤ K : (Act i ∩ Actj = ∅). We remark that
each action trace π is the interleaving of a set of flows f1, f2, . . . where fi is an
execution trace of Pj (j ≤ K).

The goal of our problem is to derive a model in the form of transition system,
i.e., M = (SM ,ActM ,→M , s0M , ↓M ) such that ActM =

∪
π∈PT{πi | 1 ≤ i ≤

len(π)}, and π ∈ Traces(M ), where Traces(M ) is the set of the execution traces
of M . In fact, each of the input traces is an execution trace of the desired
transition system.

3.2 Projection Relation

Initially, a tree-like automaton which consists of all action traces is generated.
Intuitively, each application needs to establish a number of connections with
other systems in order to perform each of its functionality. Each connection
follows a protocol specification. For instance, an execution of theMap application
of Windows 8 contains four flows where two are for the DNS protocol, one
for the TCP and one for the TLS protocols. Hence, each state of the initial
transition system can be considered as a vector of states, each of which identifies
a state of the corresponding protocol. Note that the size of the vector is equal
to the number of flows. To generalize the initial transition system to cover more
behavior, some states are selected to merge together. Hence, the new model



accepts extra not observed valid behavior. Merged states are those called project
equivalent. Two states are project equivalent if their vectors (of flow states)
are identical with respect to the counter abstraction technique. For the sake of
efficiency, the resulting transition system is determined.

Before describing the method, we mention some definitions and theorems.
As we explained, each packet from the application execution belongs to a flow.
We assume the total number of the flows of the all input traces is denoted by F .
Furthermore, the auxiliary function Flow : S×Act ×S → Nat, defined over the
initial transition system, maps each packet, specified by the transition with the
corresponding action of the packet, to its flow number such that Flow(s, α, t) ≤
F , where s, t ∈ S and α ∈ Act . From the flow definition each flow has a protocol
attribute. Let function Protocol identify the protocol name of a flow, denoted by
Protocol : Nat → Nat, such that ∀ f ≤ F : Protocol(f) ≤ K.

Definition 4 (Projection Relation). Let TS i = (Si,Act i,→i, s0i, ↓i), for
i = 1, 2, be transition systems such that TS 1 ⪯w TS2 witnessed by a minimal
weak simulation relation R. Two states s1 and s2 of S1 have projection relation
under TS 2 if ∃ t ∈ S2 : s1 R t ∧ s2 R t. Then, we say that s1 and s2 are the
same projection of t under the transition system TS 2, denoted by s1 ∼⇂TS2 s2.

To define states that are project equivalent, the following lemma identifies
the conditions under which the project relation can act as an equivalence rela-
tion, and consequently can partition states. If a transition system has a tree-like
structure, any of its two states can be connected by a unique simple path.

Lemma 1. Let TS i = (Si,Act i,→i, s0i, ↓i), for i = 1, 2, be transition systems
such that TS 1 is a tree-like transition system and TS 2 is an action-deterministic
transition system without any τ -transition (i.e., τ ̸∈ Act2). If TS 1 is weakly
simulated by TS2, witnessed by a minimal weak simulation R, then each state
of S1 relates to only one state of S2 under R:

∀ s ∈ S1,∀ t1, t2 ∈ S2 : s R t1 ∧ s R t2 ⇒ t1 = t2

Theorem 1. Let TS i = (Si,Act i,→i, s0i, ↓i), for i = 1, 2, be transition systems
such that TS 1 is a tree-like transition system and TS 2 is an action-deterministic
transition system without any τ -transition (i.e., τ ̸∈ Act2). The projection rela-
tion under the transition system TS 2 over the states of TS 1 is an equivalence
relation.

See [17] for the proof of Lemma 1 and Theorem 1. As a consequence of
Theorem 1, the states of a transition system can be partitioned into equivalance
classes by a projection relation. The equivalence class for projection relation is
defined in the following definition.

Definition 5 (Projection Relation Partitioning). Let TS i = (Si,Act i,→i

, s0i, ↓i), for i = 1, 2, be transition systems such that TS1 is a tree-like transition
system and TS 2 is an action-deterministic transition system without any τ -
transition (i.e., τ ̸∈ Act2). States of TS 1 are partitioned under the projection



relation under TS 2 into the equivalence classes each of which is identified by
the unique state t ∈ S2 such that:[t]TS1∼⇂TS2

= {s ∈ S1 | s R t} where R is a
minimal weak simulation relation.
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Fig. 1: Left: The initial transition system and the specification of Protocols.
Right: Applying the steps of proposed method on an example.

Running Example. Consider the specifications of two sample protocols in the
right side of Fig. 1, we assume that two input traces x a x a y b y and a a x b y
are given. In the first trace, there are three flows, two are of the protocol P2 and
one of the protocol P1. They are given such that the first x and the last y belongs
to a flow and the second x and the first y are related together. In the second
trace, there are two flows each of which is instantiated from each protocol. It is
assumed that the flows are enumerated by the order of their first packets. We
use this example in the rest of this section.

3.3 Step 1: Building the Initial Transition System

From Section 2, there is an execution fragment for each execution trace. We
generate for each input trace π, its corresponding execution fragment ηπ =
s0π1s

π
1π2 . . . πlen(π)s

π
len(π). Note that the initial state in the fragments of the

all traces are intentionally identical. In the first step, the tree-like transition
system M0 is built from aggregating the execution fragments of the input traces.
Therefore, the initial transition system M0 = (S,Act ,→, s0, ↓) is obtained as
follows:

– S = {sπi | 1 ≤ i ≤ len(π), π ∈ PT} ∪ {s0},
– Act = {πi | 1 ≤ i ≤ len(π), π ∈ PT},



– →=
∪

π∈PT ({(sπk , πk+1, s
π
k+1) | 1 ≤ k ≤ len(π)} ∪ {(s0, π1, s

π
1 )}),

– ↓= {sπlen(π) | π ∈ PT}.

The transition system in the left side of Fig. 1 is the result of performing
this step. This initial transition system does not cover new execution traces of
the application which are not given in the input. Therefore, some operations
are needed to generalize the initial transition system and cover more execution
traces. Next steps (step 2 and 3) are the efforts to reach this goal.

3.4 Step 2: Generalizing by Counter Abstraction

The generalization method in this step is addressed in two sub-steps.

1. Finding Equivalent States Intuitively, two states are equivalent under the
flow f , if they belong to the same equivalence class based on the projection rela-
tion under the transition system of the attributed protocol of f , i.e., Protocol(f).
To this aim, we introduce the flow-based abstraction operator, which renames
actions not included in the flow f to τ . By generalizing this intuition, two states
s1 and s2 of transition system M0 are equivalent if and only if they are equivalent
under all flows of the initial transition system M0.

Definition 6 (Flow-based Abstraction Operator). Let TS = (S,Act ,→
, s0, ↓) be a transition system. Then τf̄ (TS ) = (S,Act ′,→′, s0, ↓) such that: →′=
{(s, α, t) ∈→| Flow(s, α, t) = f} ∪ {(s, τ, t) | ∃(s, α, t) ∈→ (Flow(s, α, t) ̸= f)}
and Act ′ = Act i where Protocol(f) = i and Pi = (Si,Act i,→i, s0i, ↓i).

We remark that if the abstraction operator is defined under protocol ac-
tions instead of a flow, then the resulting abstracted transition system may not
preserve the protocol behavior due to interleaving of flows. For instance, the
abstraction of the transition system in Fig. 1 under the protocol P2 contains
the sequence of x τ x τ y τ y at its left branch which does not have any weak
simulation relation with P2.

Let count(s, t) denote the number of flows like fi that the state t of the
protocol Pj weakly simulates s in the abstraction of M0 under fi:

count(s, t) = |{fi ≤ F | s ∈ [t]τf̄i (TS(M0))∼⇂Pj
}| .

We remark that each state s is uniquely simulated by a state t as the result of our
projection relation. The two states s1 and s2 can be aggregated together under
the counter abstraction technique if and only if ∀ j ≤ K, t ∈ Sj : count(s1, t) =
count(s2, t).

The results of applying the counter abstraction on the states of the initial
transition system of the running example are presented in [17].For each state
of obtained model, a vector of count values for all states of the transition sys-
tems of protocols is calculated. To obtain each vector, at first, the projection
relation under abstraction of each flow is computed. After that, the number of



flows in each state of protocols is counted. For example, for s0, the vector is
< 5, 0, 0, 5, 0 > which is the value of < c(s, t1), c(s, t2), c(s, t3), c(s, v1), c(s, v2) >
where c is the abbreviation of count. It shows that all the flows are related to
the initial states of the protocols. Because of the transition (s0, x, s1) of flow
f1, the state of s1 is simulated by the state v2 of the protocol P2, and hence,
the counter of flows in the state v1 decreases by one and the counter of flows in
the state v2 increases by one. Hence, the projection relation partitioning for s1
produces < 5, 0, 0, 4, 1 >. After calculating the counters for each state, the set of
equivalent states are achieved: {(s2, s5, s10), (s3, s4), (s6, s11), (s7, s12), (s8, s9)}.

2. Merging Equivalent States After finding the set of equivalent states of
M0, merging process should be done. Let [s] donote the equivalence class of the
state s, i.e., ∀ s′ ∈ S : s′ ∈ [s] ⇔ s′ ≡ s. A merged state inherits the union of
the incoming and outgoing transitions of its origin states. By applying all merge
candidates, the final transition system M1 = (S′,Act ,→′, s′0, ↓′) is obtained,
where S′ = {[s] | ∀ s ∈ S}, →′= {([s], α, [t]) | ∃ s, t ∈ S : (s, α, t) ∈→},
s′0 = [s0], and ↓′= {[s] | ∀ s ∈↓}. Fig. 1 (without the tick transition a on the
state s3) is the final result of performing this step. After this step, the resulting
transition system is action-deterministic. We have proved this fact in the [17].

3.5 Step 3: Generalizing by Completing Transitions

The next generalization idea is completing the transitions set according to the
transition systems of the network protocols. We add self-loops of each protocol
state t ∈ Pi, for some i ≤ K, to the state [s] if count(s, t) > 0. Adding such
transitions does not affect the equivalent classes of M1. Then, after applying this
step, the resulting generalized transition system isMg = (S′,Act ,→g, s

′
0, ↓′) such

that:

→g=→′ ∪{([s], α, [s]) | ∀j ≤ K, t ∈ Sj , ∀ s ∈ S : count(s, t) > 0∧ (t, α, t) ∈→j}.

After applying this step, the tick transition a on state s3 is added to the Fig. 1.
The time complexity of the algorithm is linear in the size of the input. See [17]
for the psuedocode of the algorithm and a discussion of the time complexity.

4 Evaluation

To evaluate the proposed method, we have implemented our algorithm in Java
and applied it to some applications. Two categories of applications,version con-
trol system and remote desktop sharing, are selected for testing our methodology.
For the first category, two applications TortoiseSVN client of SVN 1and Source
Tree Client of GIT 2 are selected. The traffic of the update command of these

1 https://tortoisesvn.net/
2 https://www.atlassian.com/software/sourcetree



applications are gathered as their captured packet traces. Also, we have selected
two remote desktop sharing applications, namely TeamViewer 3 and JoinMe 4,
for which their traffic is encrypted. Hence, they cannot be easily identified by
signature based approaches on the content of packets. Each one has run for 100
times and their network traces are captured via the Wireshark 5 tool. Packets
of the application layer protocols (used by these programs), namely TCP, SSL,
SSLv2, TLSv1, TLSv1.2, HTTP and UDP have been considered and the oth-
ers are filtered. The more protocols are considered, the more precision will be
achieved. Some preprocessing operations have been performed to eliminate the
repetitive and truncated packets. Also, we have reassembled segments of frag-
mented packets. The mapper function which is responsible for translating the
packets to their corresponding actions is defined such that it assigns the con-
catenation of the packet protocol name, the control phase and the direction to
each packets. We divide the operation of each protocol into a set of phases to
abstractly consider its progress. The control phases are assumed to be Init, Data,
and Fin for connection-oriented protocols and Init and Data for connection-less
ones. Intuitively, Init indicates to the establishment of the connection, Data to
the transmission of data, and Fin to the termination of the connection. The
direction is a binary tag which can be either I or O to indicate that the packet
is sent or received, respectively. The amount of detail about packets embedded
in their corresponded actions, shows how much the final generated model is sen-
sitive to packet variations. By this mapper function, different manners of each
control phase (initialization/ transferring data/ finalization) are considered to
be the same.

We assume that the specifications of protocols are given in the form of tran-
sition systems and defined according to the mapper function abstraction level.
By applying the mapper function on the packet traces, 100 action traces have
been obtained for each application. These traces are divided into the train and
test sets. The train traces are the input of our proposed method to infer the
behavioral model which should accept the test traces. The overall scheme of an
obtained model is shown in [17].We use the cross validation technique for 100
times to calculate the average value of precision with a reasonable confidence
interval. Table 1 shows the final result of our experiments. Regarding to im-
possibility of measuring the real value of false positive rate (because it is not
possible to gather all negative traces), researchers tend to consider the traces of
the other applications which have the same functionality. Thus, we use traces of
applications in the same category crossly to calculate the false positive rates.

The major point is that by applying our proposed generalization steps, the
false positive rate does not grow. This means that our conservative approach
prevents over-generalization from occurring. Each generalization step improves
the completeness of the model. Note that since the update command of SVN
and GIT generates a short packet trace, their captured traffic are similar and

3 https://www.teamviewer.com/en/
4 https://www.join.me/
5 https://www.wireshark.org/



Table 1: The average result of applying the proposed approach step by step, run
on system with CPU Corei7 and 2G RAM. TPR stands for true positive rate.

Step App
States

FP
TPR TPR Train Test

Num (observed) (unobserved) time time

Initial SVN 3982 100% 100% 2 %

< 5sec < 1sec
Transition GIT 4115 100% 100% 1 %
System TeamViewer 8637 0 100% 0%

JoinMe 34484 0 100% 0%

Applying SVN 78 100% 100% 55 %

< 2min < 1sec
Counter GIT 45 100% 100% 100%

Abstraction TeamViewer 407 0 100% 36%
JoinMe 5458 0 100% 25 %

Completing SVN 78 100% 100% 100%

< 5min < 1sec
Self-Loop GIT 45 100% 100% 100%
Transitions TeamViewer 407 0 100% 98 %

JoinMe 5458 0 100% 56 %

Relaxing SVN * 100% 100% 100%

* *
Unnecessary GIT * 100% 100% 100%

Orders* TeamViewer * 0 100% 100 %
JoinMe * 0 100% 91 %

misclassified. As a future work, we plan to map packets to parametric actions in
order to enhance the precision of the classifier. Adding (self-loop) transitions has
increased our precision by 31 percent in the worst case. In the next step, we aim
to relax unnecessary interleaving which stems from the concurrent development
of applications or parallel network connections. Such a step which is our future
work increases our precision to 100 or 91 percent. Now, we have applied the
step manually, by examining the counter examples of the previous step. Those
traces which can be covered by the generated model via modifying the orders of
packets, is counted as the successful result for this step. We plan to automate this
idea so as to automatically induce strict orders among transitions and relax the
unnecessary ones in our future work. Our approach fails to recognize 9 percent
of test traces (the last row of the Table 1) which are mainly those that include
new unpredictable subsequences based on the train set.

4.1 Comparison with other packet classification methods.

To clarify the applicability of our methods, it should be compared with other
packet classification techniques which we have described in Section 1. Port-
based detection method does not have the ability of detecting most of the cur-
rent applications because that they tend to use random or non-standard ports.
Due to growing usage of encrypted traffic payload inspection methods be-
come useless and it can not be used in our dataset. Furthermore, the proposed
behavioral classification methods are application specific (e.x. for P2P appli-
cations) and they are not enough general to apply to our selected applications.



Finally statistical classification methods are the only related work which
we can compare our work with. To this aim, Netmate 6 is used to obtain the
feature vectors of flows of captured traffic. Then, using Weka tool-set7, the aver-
age precision of classification and false positive metrics among three algorithms
SVM, Native Bayes and C4.5 were measured. The final result of these metrics
are reported in Table 2.

Table 2: The result of statistical classification
Method FP TPR Train Time Test Time

TeamViewer 0.12 % 83 % 3 sec < 1 sec

JoinMe 0.10 % 87 % 5 sec < 1 sec

5 Related Work

Two research areas are related to our problem. In the following we explore related
work in each area.
Automata Learning. Some research has been conducted to extend the expres-
siveness of inferred models. The KTail algorithm is extended in [18] with the aim
to generate models from methods invocation traces. This approach is conducted
in four steps. At first, the traces with the identical sequence of methods (those
differ in the values of parameters) are merged together. Next, constraints on
parameters are obtained via Daikon invariant detector [19]. At the third step, a
prefix tree automaton is built. Finally, the states are merged according to a cri-
terion which can be equivalence of method and parameters, weak subsumption
or strong subsumption for their next k actions. In [20], the authors extends the
Angluin L∗ algorithm to infer relationships between input and output parame-
ters in the form of the Mealy machines. In [21], the automate learning problem
is extended to infer deterministic timed automata.

Some studies address the application of automata learning problem. Among
them, [22] is the most related work to ours which elaborates on inferring mealy
machine models of communication protocols. The authors indicate that the pa-
rameters in the message format of protocols such as sequence number, config-
uration parameter and session id, result in infinite-states model. To minimize
the state space, the abstract representation of protocol states are derived auto-
matically in terms of operations that a requester and responder may perform.
Hence, they have a similar assumption to ours which is the existence of protocol
specifications. Their algorithm is based on query evaluation (active automata
learning), while, we have extended the passive automata learning. Also, there
are other applications of automata learning in different areas, especially in soft-
ware specification mining [23,24] which are not directly related to our work and
we do not elaborate on.

Reverse Engineering of Protocol Specification. In this part we enumer-
ate the works that focus on inferring protocol specifications from traffic. These
works are related to ours because of their restriction on inferring a model by

6 https://dan.arndt.ca/projects/netmate-flowcalc/
7 http://www.cs.waikato.ac.nz/ml/weka/



observing the behavior of the application in a black-box style. In [25], a proba-
bilistic method was investigated to obtain a finite state machine of a protocol. It
was assumed that the format of protocol messages is not determined. At the first
step, messages are segmented into l-length bytes and clustered with the aim of
recognizing their control parts. Next, the most frequent patterns are selected as
message units by statistical analysis. Then, the main messages of the protocols
are defined by computing the centers of the clusters. Finally, the finite state
machine is constructed whose states are the main messages and probabilistic
transitions are the frequencies of each pairs of messages.

In ReverX algorithm [26], a prefix tree automaton is built from traces and
then the states which are the destination of identical transitions, are merged.
Therefore, transitions with the same source and destination are created. They
claim that if these transitions are merged the parameters of message headers are
induced. Actually, despite their work is similar to us in using passive automata
learning, we differ in the conditions for state merging. If the states are just
similar in their 1-future action, they merge them, while we have investigated a
domain specific condition based on well-known protocol.

6 Conclusion

The classical methods which identify the traffic based on packet header informa-
tion or statistical metrics, are not effective anymore. Classification approaches
based on the behavioral patterns of applications are of a new trend to this
problem. No general and automated method to derive behavioral models has
been provided. We proposed a method to reach this goal based on the automata
identification problem and evidence driven state merging technique combined
by transition system theories. Intuitively, we assumed that the behavior of an
application can be identified in terms of how it executes well-known network
protocols, abstracting the state variables of the application. Hence, we have in-
troduced our merging conditions to identify the equivalent states based on the
specification of a set of well-known network protocols such as TCP, TLS, SSL,
etc. To this aim, we have provided the projection relation to identify the states
with the same number of the flows for each network protocol which can be
counted together using the counter abstraction technique.

We have presented two extra steps to complete the inferred model to cover
unobserved behaviors At first, the model is completed by including the self-loop
behaviors of the network protocols. After that, the possible valid interleaving of
the packets based on the repetition of their orders is predicted. The model is
extended to subsume such predicted orders. We also implemented and evaluated
our procedure which does not require human inspection. The experiments show
very encouraging results that the generalization steps significantly increase the
accuracy from 0% to 91% in the worst case. The future work is to mechanize
the last step which induces the essential orders with the aim of relaxing the
unnecessary ones. We plan to extend our case study and compare the result of
our method with the real traffic classification tools.
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