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Abstract. While mutation testing is considered to be an effective technique in 

software testing, there are some impediments to its widespread use in industrial 

projects. One of these challenges is the equivalent mutant problem, and a line of 

research is dedicated to proposing new methods for addressing this problem. 

Trivial Compiler Equivalence (TCE) method is recently introduced as a simple 

technique that actually relies only on the optimizations made by the compiler. It 

is shown by empirical studies that employing TCE with the gcc compiler results 

in a fast and effective technique for detecting equivalent mutants in C programs.  

However, considering the fact that the Java compilers generally do not perform 

noticeable optimizations, the question is how effectively does TCE perform on 

Java programs? In this paper, experimental evaluations are discussed which 

demonstrate that using TCE technique with javac compiler results in very poor 

performance. As a result, this paper proposes to use the Java obfuscators as the 

complementary component, because of the optimizations they make. The exper-

imental evaluations confirm that using TCE with the ProGuard obfuscation tool 

provides an effective and efficient method for detecting equivalent mutants in 

Java programs. 

Keywords: mutation testing; equivalent mutant; trivial compiler equivalence; 

Java.  

1 Introduction 

Mutation testing is considered to be an effective approach to evaluate and also to 

improve an existing test set [1]. It works based on the notion of mutants, where each 

mutant is created by making a simple modification on the program under test. The set 

of possible modifications are defined by the mutation operators that are defined for the 

programming language of the target program. If there is a test set that the program has 

successfully executed on, then mutation testing can be applied to provide a measure of 

the quality of that test set. This is performed by running each mutant M on the test cases 

to investigate whether the test cases are powerful enough to detect the injected fault, 

i.e. the mutation. If the result of running the mutant on a test cases is different from the 
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result of running the original program on that test case, then the test case has been able 

to distinguish, or kill, that mutant. The greater ratio of the mutants of the program are 

killed by the test set, the higher is the score of that test set. Finally, if there remains any 

live mutant, i.e. mutants that are not killed by any test case, then there are two possible 

cases for each live mutant: 1) whether this is a sign of the weakness of the test set, or 

2) the mutant is an equivalent mutant, i.e. the corresponding mutation has made a syntax 

change without changing the semantic, and hence, the mutant cannot be killed by any 

test case.  

When applying mutation testing, a method is necessary to distinguish which of the 

above cases holds for a live mutant. Without differentiating these two cases, it is pos-

sible that the test case designer wastes his time and effort in trying to find a test case 

for killing an equivalent mutant, which is actually not killable. Further, an equivalent 

mutant may cause the quality of the test set to be underestimated.  

While mutation testing has been empirically proven to be able to simulate real-world 

programming errors [24], and hence to be an effective method for evaluating and im-

proving test sets, there some non-negligible impediments towards its application in in-

dustrial software. The first problem is that mutation testing is a costly method, since the 

number of possible mutants, even for a relatively small program is usually high. Creat-

ing the mutants, compiling and executing them over the test cases and comparing the 

execution result usually requires noticeable time and computation resources.  

Another problem is the equivalent mutants introduced before. Consequently, differ-

ent approaches have been introduced during the last two decades for addressing this 

problem by employing different techniques like machine learning [14], logical con-

straint solving [15], data flow pattern analysis [8], gamification [17], program slicing 

[10] and code similarity measures [13]. One of the approached introduced recently, is 

the Trivial Compiler Equivalence (TCE) approach [12] which is a simple, fast and ef-

fective technique for detecting equivalent mutants.  

The TCE technique actually relies on the optimizations performed by the compiler, 

and it tries to determine equivalence of a mutant by comparing it with the original pro-

gram, in their binary, i.e. compiled, format. TCE has been evaluated in [12] on C pro-

grams using the gcc compiler that is capable of performing different levels of optimi-

zations when compiling the program. The evaluations have shown that TCE is an ef-

fective method for equivalent mutant detection in C programs. Considering Java pro-

grams, however, TCE is not expected to perform noticeably, since the Java compiler 

performs almost no specific optimization, and it leaves the optimizations to be per-

formed by Java Virtual Machine at runtime (JVM) [26]. We believe there is room for 

evaluating the TCE technique on Java programs. Hence, in this paper, we experimen-

tally evaluate performance of TCE on Java programs, and further, we introduce TCE+ 

as an extension of TCE which utilizes the ProGuard1 Java obfuscator in addition to the 

compiler to address the lack of compiler optimizations.  

The rest of the paper is organized as follows. Section 2 briefly reviews the related 

works. In Section 3, the experimental evaluation of the TCE and TCE+ techniques on 

Java programs is discussed. Finally, Section 4 concludes the paper.  

                                                           
1 http://proguard.sourceforge.net/  

http://proguard.sourceforge.net/
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2 Related Work 

In order to address the equivalent mutant problem in the mutation testing domain, 

different approaches have been proposed during the last two decades. This problem, in 

its general form is an undecidable problem [2, 3] and therefore it is not expected to be 

able to find an automated method that can solve every instance of this problem correctly 

and completely. As a result, some of the proposed approaches employ heuristics or limit 

the characteristics of the program under study, for instance restricting the number of 

iterations of the loops [25]. A literature review on the approaches for tackling with the 

equivalent mutant problem is provided in [4], where it is concluded that the equivalent 

mutant detection techniques are still “far from perfect”.  

Some works attempt to deterministically determine whether a specific mutant is 

equivalent or not. For instance, in [8, 18] a set of 9 data flow patterns is introduced that 

result in equivalent mutants. In addition, a framework is proposed which uses static 

analysis of data flow to check each mutant of a program against these patterns. If a 

mutant follows one of the predefined patterns, then it is equivalent, otherwise it is con-

sidered to be non-equivalent. As another example, [15] introduces a technique that ex-

tracts a set of logical constraints from a mutant such that solving those constraints 

proves that the mutant is equivalent to the original program. Then, the constraints are 

given to a constraint solver tool for the purpose of detecting equivalent mutants. The 

method assumes certain characteristics on the mutants which limits applicability of the 

method (e.g. recursive functions are not supported). A similar approach based on con-

straint solving techniques is also introduced in [16].  

Some works implicitly use the idea that for an undecidable problem, it is not possible 

to provide a complete automated solution and hence human intervention is unavoidable. 

Therefore, they try to help the human experts in analyzing the mutants and in making 

decision about their equivalence. This help can be provided in form of identifying the 

mutants that are more likely to be equivalent. Therefore, these methods follow a inexact 

approach and generate a recommended list of mutants, ordered by their equivalence 

probability, that need to be manually analyzed by the human expert to make the final 

decision. For instance, in [11], the idea is that the probability that a mutant is not equiv-

alent is related to how its coverage on a specific test set differs from the coverage of 

the original program. In other words, the greater the coverage is affected, the lower is 

the probability of the mutant being equivalent. A similar approach for determining 

equivalent mutants based on the coverage impact is also proposed in [6, 5]. Machine 

learning techniques are also used in some works like [14] to provide a probabilistic 

approach to detection of equivalent mutants.  

Another example of the works that count on human involvement for detection of 

equivalent mutants is [17] that uses gamification technique. It introduces a two-player 

game in which one player tries to create mutants that are hard to kill, and the other one 

tries to introduce test cases that kill the mutants. The game indirectly can contribute to 

detecting mutants that are more likely to be equivalent. 

Another group of works try to avoid creation of equivalent mutants by more ad-

vanced mutation generation techniques. For instance, [19] proposes to consider the fact 
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that different mutation operators perform differently from the point of view of the dif-

ficulty of killing their resulting mutants. This can be employed to selectively use muta-

tion operators that less frequently create equivalent mutants. Another group of works 

have shown that using higher order mutants instead of first-order mutants can reduce 

the number of equivalent mutants generated for a program [9, 20, 21, 22].  

Other techniques that have been used for exact equivalent mutant detection include 

code similarity measures and clone detection techniques [13], program slicing tech-

niques [10], co-evolution algorithms [7]. 

An interesting approach that is recently proposed for detection of the equivalent mu-

tants is the TCE approach [12], which uses a very simple and straightforward technique. 

TCE works based on the idea that the advanced optimizations performed by a compiler 

can remove some type of the mutations that have not affected the semantic of the pro-

gram, and hence if the equivalent mutant is compiled, the result of compiling can be 

the same as the result of compiling the original program. It is demonstrated through 

experimental evaluations that the TCE technique is successful in effectively detecting 

equivalent mutants of a C program using the gcc compiler optimizations. However, 

since the Java compilers generally do not perform noticeable optimizations, the perfor-

mance of TCE on Java programs needs to be investigated. As a result, current paper 

proposes TCE+ technique as an extension of TCE that utilizes ProGuard for the purpose 

of optimizing Java code. In addition to performing different optimizations, e.g. dead 

code removal, unused variable removal and peephole optimizations, ProGuard is also 

able to obfuscate, shrink and pre-verify Java byte codes. However, TCE+ uses 

ProGuard only for the purpose of optimizations and it does not use obfuscation or 

shrinking capabilities of ProGuard. It is beyond the scope of this paper to describe the 

optimization techniques employed by ProGuard or gcc, however, Table 1 briefly men-

tions some of the main optimizations performed by each of these tools. 

In [12], TCE has been shown to be able to find, in addition to equivalent mutants, 

the duplicated mutants, i.e. mutants that are equivalent to each other, but not necessarily 

equivalent to the original program. Since there is no advantage in using two duplicated 

mutants, it is interesting to be able to detect duplicated mutants. In this paper, we eval-

uate the TCE and TCE+ methods for the purpose of detecting equivalent and duplicated 

mutants of Java programs. 

Table 1. Some of the optmization techniques employed by the subject tools 

Tool Optimization Techniques 

gcc Compiler Dead Code Elimination, Transforming Conditional Jumps, Constant Folding, De-
Virtualization, Function Inlining, Predictive Commoning, Elimination of Useless 

Null Pointer Checks, Peephole Optimization, Global Common Subexpression Elimi-

nation 

ProGuard Dead Code Elimination, Peephole Optimization, Marking Classes as Final,  

Variable Allocation Optimization, Method Inlining, Return Value Propagation, Re-

moving Write-only Fields 
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3 Experimental Study 

In this section, the experimental evaluation of the TCE and TCE+ approaches over 

Java programs is discussed. First, the research questions are introduced and then, dif-

ferent elements of the experiments are described. Finally, the results of the experiments 

are discussed.  

3.1 Research Questions 

Since the TCE approach has been shown to be both effective and efficient in detect-

ing equivalent and duplicated mutants in C programs, the main research question this 

paper seeks to answer is: 

RQ. How do the TCE and TCE+ approaches perform on Java programs? 

To answer this question, two more specific research questions are introduced: 

RQ1. How effective are the TCE and TCE+ approaches at detecting equivalent and 

duplicated mutants in Java programs? 

To answer this question, the number of equivalent and duplicated mutants detected 

by the TCE and TCE+ techniques, and also the ratio of the detected equivalent mutants 

to the existing equivalent mutants is reported. 

RQ2. How efficient is TCE+ for the purpose of equivalent mutant detection? 

This question is answered by computing the execution time of the TCE+ approach 

to see if it is efficient enough to be used in practice. While we have not evaluated TCE+ 

on large programs, we believe that the efficiency of the technique for the large programs 

can be estimated based on the results obtained for the small programs.  

3.2 Dataset and Golden Standard 

For the purpose of the experimental evaluations, first, a dataset is prepared including 

5 java programs, and then, for each program, its mutants are created by the MuJava 

mutation testing tool [23]. Table 2 shows the name of each program, its size in terms 

of physical Source Line of Code (SLOC) and the number of its mutants. The mutation 

operators that MuJava has applied on the subject programs are mentioned in Table 3.  

In addition, a golden standard is created by manually checking each mutant of the 

subject programs to determine whether it is equivalent to the original program. This 

manual analysis is performed separately by three experts who have had more than 10 

years of experience in object oriented programming in Java. After each expert has fin-

ished his job, the results have been compared so that any possible conflict is resolved. 

Actually, there were 7 such cases that needed the experts to discuss with each other to 

agree on the result. 
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Table 2. Dataset used in the experiments 

Program Subject Program Physical SLOC Number of Mutants 

P1 BubbleSort 15 111 

P2 Bisect 25 189 

P3 Triangle 46 456 

P4 QuickSort 50 341 

P5 java.util.StringTokenizer 174 772 

Table 3. Mutation operators applied by MuJava on the subject programs 

Operator Operator Definition 

AODS: Short-cut Arithmetic Operator Deletion {(x,remove(x)) | x ∈ {++, --}} 

AODU: Unary Arithmetic Operator Deletion {(-v, v)} 

AOIS: Short-cut Arithmetic Operator Insertion {(v, --v), (v, v--), (v, ++v), (v, v++)} 

AOIU: Unary Arithmetic Operator Insertion {(v, -v)} 

AORB: Binary Arithmetic Operator Replacement {(x,y) | x,y ∈ {+, -, *, /, %} ∧ x ≠ y} 

AORS: Shortcut Arithmetic Operator Replacement {(x,y) | x,y ∈ {++, --} ∧ x ≠ y} 

ASRS: Shortcut Assignment Operator Replacement {(x,y) | x,y ∈ {+=, -=, *=, /=, %=} ∧ x ≠ y} 

CDL: Constant DeLetion 
{(op c, remove(op c)) | op ∈ {+, -, *, /, %, >, 
>=, <, <=}} 

COD: Conditional Operator Deletion {(!(e), e) | e ∈ {if(e), while(e), for(s; e; s)}} 

COI: Conditional Operator Insertion {(e, !(e)) | e ∈ {if(e), while(e), for(s; e; s)}} 

COR: Conditional Operator Replacement {(x,y) | x,y ∈ {&&, ||, ^} ∧ x ≠ y} 

LOI: Logical Operator Insertion {(v, ~v)} 

ODL: Operator DeLetion 

{(v op, remove(v op)), (op v, remove(op v)) | 

op  ∈ {+, -, *, /, %, <, <=, >, >=}}, {(v++, v), 

(v--, v) , (--v, v) , (++v, v)  | op  ∈ {++, --}} 

ROR: Relational Operator Replacement {(x,y) | x,y ∈ {>, >=, <, <=, ==, !=} ∧ x ≠ y} 

SDL: Statement DeLetion {(s, remove(s))} 

VDL: Variable DeLetion 
{(v [op], remove(v [op])) | op  ∈ {+, -, *, /, %, 
++, --, <, <=, >, >=} 

3.3 Experimental Environment 

All the experiments are performed on a PC with Microsoft Windows 7 operating 

system, Intel Core i5-4400 processor and 8GB RAM. Further, we have used the Ora-

cle’s Java compiler javac version 1.8.0_60 to compile the programs and the mutants, 

and also ProGuard 5.3 to optimize the compilation results. Finally, for the purpose of 

comparing the binary files, the Windows utility program FC is used with the parameters 

/B and /LB1. 

3.4 Experiments 

To answer the research questions, four experiments are designed. The first two ex-

periments evaluate the TCE and TCE+ techniques for the purpose of equivalent mutant 

detection and the second two experiments evaluate them for detecting duplicated mu-

tants. The processes used in these experiments are shown in Fig. 1 to Fig. 4.  
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Input: P (original program) 

Output: EM (list of the equivalent mutants of P) 

 

//compile step 

compile P to Pclass 

for each mutant M of P 

  compile M to Mclass 

//comparison step 

for each mutant M of P 

  result = compare Mclass to Pclass 

  if (result == 'no difference') 

    add M to EM 

return EM 

Fig. 1. Process of experiment 1: TCE for equivalent mutant detection 

Input: P (original program) 

Output: EM (list of the equivalent mutants of P) 

 

//compile step 

compile P to Pclass 

for each mutant M of P 

  compile M to Mclass 

//optimization step 

convert Pclass to Pjar 

optimize Pjar to Pjar,op 

extract Pclass,op from Pjar,op 

Pclass = Pclass,op 

for each mutant M of P 

  convert Mclass to Mjar 

  optimize Mjar to Mjar,op 

  extract Mclass,op from Mjar,op 

  Mclass = Mclass,op 

//comparison step 

for each mutant M of P 

  result = compare Mclass to Pclass 

  if (result == 'no difference') 

    add M to EM 

return EM 

Fig. 2. Process of experiment 2: TCE+ for equivalent mutant detection 
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In the first experiment, for each subject program P, P is compiled to Pclass and each 

mutant M of P is compiled to Mclass. Then each compiled mutant Mclass is compared to 

the Pclass. If no difference is identified in this comparison, it is considered that TCE has 

determined the corresponding mutant as an equivalent mutant.  

The second experiment evaluates the TCE+ approach by including an optimization 

phase before the comparison step. In order to perform the optimization, first a jar file is 

created from the compiled file, i.e. Pclass or Mclass. The jar file is then given to ProGuard 

to do the optimizations. The resulting jar file is then decompressed to extract the opti-

mized compiled file which then goes through the binary comparison. 

In the third experiment, each compiled mutant of the program is compared to all 

other compiled mutants of that program that have the same file size. If there is no dif-

ference between the corresponding binary files, those two mutants are added as a pair 

to the list of duplicated mutants. After processing all the mutants, a simple algorithm 

shown in Fig. 3 is used to determine the list of mutants that can be removed.  

The fourth experiment is very similar to the third experiment and the only difference 

is that it compares the optimized version of the compiled mutants which are created by 

the process described for the second experiment. 

 

Input: P (original program) 

Output: DM (list of the removable duplicated mutants of 

P) 

 

//compile step 

for each mutant M of P 

  compile M to Mclass 

//comparison step 

Pairs: empty list 

for each mutant M1 of P 

  for each mutant M2 of P 

    if (M1 != M2 and filesize(M1class)==filesize(M2class)) 

        result = compare M1class to M2class 

        if (result == 'no difference') 

          add pair(M1, M2) to Pairs 

//removal step 

sort Pairs based on the first element of the pairs 

for each Pair in Pairs 

    M1 = first element of Pair 

  M2 = second element of Pair 

  if not (DM contains M1) 

      add M2 to DM 

return DM 

Fig. 3. Process of experiment 3: TCE for duplicated mutant detection  
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Input: P (original program) 

Output: DM (list of the removable duplicated mutants of 

P) 

 

//compile step 

for each mutant M of P 

 compile M to Mclass 

//optimization step 

for each mutant M of P 

 convert Mclass to Mjar 

 optimize Mjar to Mjar,op 

 extract Mclass,op from Mjar,op 

 Mclass = Mclass,op 

//comparison step 

Sort mutations based on their file size 

for each mutant M1 of P 

  if (M1 in DM) 

    continue; 

 for each mutant M2 of P 

    if (M2 in DM) 

      continue; 

    if (M1 != M2  

      and filesize(M1class) == filesize(M2class)) 

      result = compare M1class to M2class 

      if (result == 'no difference') 

       add M2 to DM 

    else 

        break; 

return DM 

Fig. 4. Process of experiment 4: TCE+ for duplicated mutant detection 

3.5 Result Analysis 

The results of the first two experiments are shown in Table 4. As it is shown in this 

table, TCE approach has not detected any equivalent mutant in the subject programs. 

Therefore, it can be concluded that since the Java compiler does not perform noticeable 

optimizations [26], applying TCE on Java programs is not effective for detecting equiv-

alent mutants. However, the TCE+ technique, which compensates the limitation of the 

Java compiler by utilizing ProGuard’s optimizations, has identified some equivalent 

mutants for each of the subject programs. Therefore, TCE+ has been able to address 

the shortcomings of the TCE method. However, the number of detected equivalent mu-

tants is small and at the best case, i.e. the Bisect program, it accounts for only 7% of all 
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the mutants. The worst case is also the BubbleSort program that the detected equivalent 

mutants are only 2% of all the mutants.  

In order to judge the effectiveness of the TCE+ approach, it is required to know the 

ratio of the detected equivalent mutants to all the existing equivalent mutants. There-

fore, the results of the first two experiments have been compared with the golden stand-

ard. As shown in the last column of Table 4, TCE+ has been able to detect from 18% 

to 100% of all the existing equivalent mutants. It has missed 9, 2 and 7 equivalent mu-

tants respectively for the BubbleSort, QuickSort and StringTokenizer programs. For the 

other two programs, i.e. Bisect and Triangle, all the existing equivalent mutants have 

been found by TCE+.  

Based on these results, we conclude that TCE+ is generally effective and it is suc-

cessful in detecting a good ratio of the existing equivalent mutants. However, it is in-

teresting to analyze the detected and undetected equivalent mutants based on their mu-

tation operators.  

The distribution of the mutation operators over all the generated mutants is shown 

in Table 5. The top-3 mutation operators that have created the greatest proportion of 

the mutants are AOIS, ROR and SDL, which have created respectively 33%, 20% and 

10% of all the mutants. There are some operators like AOSE and AODU that have 

negligible contribution to the number of mutants created.  

Table 4. Results of Experiments 1 and 2: Detecting Equivalent Mutants 

Program 

Number of Detected 

Equivalent Mutants 

Percentage of Detected 

Equivalent Mutants to All 

Mutants 

Percentage of Detected Equiva-

lent Mutants to All Existing 

Equivalent Mutants 

TCE TCE+ TCE TCE+ TCE TCE+ 

P1 0 2 0 2 0 18 

P2 0 14 0 7 0 100 

P3 0 23 0 5 0 100 

P4 0 10 0 3 0 83 

P5 0 34 0 4 0 83 

Table 5. Distribution of the Mutation Operators Over All the Mutants 

Program 

Mutation Operator 

A
O

D
S

 

A
O

D
U

 

A
O

IS
 

A
O

IU
 

A
O

R
B

 

A
O

R
S

 

A
S

R
S

 

C
D

L
 

C
O

D
 

C
O

I 

C
O

R
 

L
O

I 

O
D

L
 

R
O

R
 

S
D

L
 

V
D

L
 

P1   30 3 16 2  4  3  11 8 19 10 5 

P2   80 13 32   2  3   16 19 14 10 

P3   128 11 36   3  24 14 43 32 119 31 15 

P4 2  108 18 36 6  8  9  40 20 55 28 11 

P5  2 262 33  7 20  6 39 20 80 33 163 100 7 

Total 2 2 608 78 120 15 20 17 6 78 34 174 109 375 183 48 

Ratio (%) 1 < 1 < 1 33 4 6 1 1 1 < 1 4 2 9 6 20 10 3 

1 percentage to all the mutants 
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In Table 6, the distribution of the mutation operators over all the existing equivalent 

mutants is shown. An interesting point is that the AOIS operator which has created 

about 33% of all the mutants is also responsible for creating about 77% of all the equiv-

alent mutants in the golden standard. Further, the ROR operator has created about 14% 

of all the equivalent mutants. From another point of view, about 13% of the mutants 

created by the AOIS operator have been equivalent. This value for the ROR operator 

has been about 4%. This means that the performance of the TCE+ technique over these 

two mutation operators is of greater importance, compared to other mutation operators. 

The distribution of the mutation operators over all the equivalent mutants that are 

found by TCE+ is shown in Table 7. Comparing this table with Table 6 shows that 

TCE+ has successfully detected all the equivalent mutants created by the AOIS opera-

tor, which account for about 77% of all the equivalent mutants. Hence, considering the 

ratio of AOIS-generated equivalent mutants, it can be concluded that the TCE+ ap-

proach is an effective method for detection of equivalent mutants in Java programs. 

However, it is also important to note that TCE+ has not detected any of the 14 equiva-

lent mutants created by the ROR operator (5 for BubbleSort, 2 for QuickSort and 7 for 

StringTokenizer). It also has missed 4 other equivalent mutants of BubbleSort, 2 cre-

ated by the AORB operator, 1 by ODL and 1 by the CDL operator. 

Regarding detection of the duplicated mutants, the results of the third and the fourth 

experiments are presented in Table 8. This table shows that TCE and TCE+ have iden-

tified respectively from 8% to 14% and from 13% to 23% of the mutants of the subject 

programs as being duplicated. Since the duplicated mutants do not contribute to the 

mutation testing results, they can be removed from the mutants. Considering all the five 

subject programs, TCE and TCE+ have identified respectively 9% and 16% of all the 

mutants as being duplicated. As a result, we conclude that while TCE+ noticeably out-

performs TCE, both approaches are effective in detecting duplicated mutants.  

Table 6. Distribution of the Mutation Operators Over the Existing Equivalent Mutants 

Program 

Mutation Operator 

A
O

D
S

 

A
O

D
U

 

A
O

IS
 

A
O

IU
 

A
O

R
B

 

A
O

R
S

 

A
S

R
S

 

C
D

L
 

C
O

D
 

C
O

I 

C
O

R
 

L
O

I 

O
D

L
 

R
O

R
 

S
D

L
 

V
D

L
 

P1   2  2   1     1 5   

P2   12 2             

P3   20 1         1   1 

P4   10           2   

P5   34           7   

Total 0 0 78 3 2 0 0 1 0 0 0 0 2 14 0 1 

Ratio (%) 1 0 0 77 3 2 0 0 1 0 0 0 0 2 14 0 1 

1 Percentage to Existing Equivalent Mutants 
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Table 7. Distribution of the Operators Over the Equivalent Mutants Detected by TCE+ 

Program 

Mutation Operator 

A
O

D
S

 

A
O

D
U

 

A
O

IS
 

A
O

IU
 

A
O

R
B

 

A
O

R
S

 

A
S

R
S

 

C
D

L
 

C
O

D
 

C
O

I 

C
O

R
 

L
O

I 

O
D

L
 

R
O

R
 

S
D

L
 

V
D

L
 

P1   2              

P2   12 2             

P3   20 1         1   1 

P4   10              

P5   34              

Total 0 0 78 3 0 0 0 0 0 0 0 0 1 0 0 1 

Ratio (%) 1 0 0 94 4 0 0 0 0 0 0 0 0 1 0 0 1 

1 Percentage to All Equivalent Mutants Detected by TCE+  

Table 8. Results of Experiments 3 and 4: Detecting Duplicated Mutants 

Program 

Number of Detected Du-

plicated Mutants 

Percentage of Detected Duplicated Mu-

tants to All Mutants 

TCE TCE+ TCE TCE+ 

P1 15 25 14 23 

P2 16 31 8 16 

P3 52 89 11 20 

P4 34 59 10 17 

P5 60 99 8 13 

 

An interesting point is that while TCE has not detected any equivalent mutant, but it 

has detected non-negligible number of duplicated mutants. Further analysis of the re-

sults reveals that the detected duplicated mutants are not a result of the optimizations 

made by TCE, but they are resulted from the fact that applying some MuJava mutation 

operators on some program statements may create exactly the same syntactic changes. 

In other words, for each pair of duplicated mutants detected by TCE, both mutants are 

syntactically-equal. An example pair is shown in Table 9. While TCE+ has detected all 

the duplicated mutants found by TCE, it has also detected other results which are syn-

tactically different but semantically duplicated. An example is shown in Table 10.  

Another interesting point is that, as shown in Table 11, 44% of all the duplicated 

mutants detected by TCE are created by the ROR operator. The other 23% are associ-

ated with the VDL operator. Only about 1% of the detected duplicated mutants are 

results of the AOIS operator. The results for the TCE+ technique are also presented in 

Table 12. This table shows that, compared to TCE, the TCE+ technique is able to detect 

the duplicated mutants that are created by a wider set of mutation operators. Actually, 

TCE+ has detected duplicated mutants of type AOI, AORB, CDL and LOI operators, 

of which none is detected by the TCE method.  

Finally, to answer RQ1, we conclude that TCE is not effective for detecting equiva-

lent mutants of Java programs, but it can effectively detect the duplicated mutants. Fur-

ther, TCE+ is effective for detecting both equivalent and duplicated mutants.  
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Table 9. An Example Duplicated Mutant Detected by TCE 

Original Statement Mutant by ODL Operator Mutant by CDL Operator 

x = (M + x) / 2; x = M + x; x = M + x; 

Table 10. An Example Duplicated Mutant Detected by TCE+ but Missed by TCE 

Original Statement Mutant by AOIS Operator Mutant by AOIS Operator 

public  void setEpsilon(double 

epsilon) { 

   this.mEpsilon = epsilon; } 

public  void setEpsilon(double 

epsilon) { 

   this.mEpsilon = epsilon--; } 

public  void setEpsilon(double 

epsilon) { 

   this.mEpsilon = epsilon++; } 

Table 11. Distribution of the Operators Over the Duplicated Mutants Detected by TCE 

Program 

Mutation Operator 
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P1                         4 3 3 5 

P2                         4   2 10 

P3                         3 27 7 15 

P4     2                   10 9 5 8 

P5                         8 39 11 2 

Total 0 0 2 0 0 0 0 0 0 0 0 0 29 78 28 40 

Ratio (%) 1 0 0 1 0 0 0 0 0 0 0 0 0 16 44 16 23 

1 Percentage to All Duplicated Mutants Detected by TCE 

Table 12. Distribution of the Operators Over the Duplicated Mutants Detected by TCE+ 

Program 

Mutation Operator 
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P1   1  4   4     4 4 3 5 

P2   13 2         4  2 10 

P3   19 1 3   1    1 4 38 7 15 

P4   14  6   6     10 10 5 8 

P5   34          8 43 12 2 

Total 0 0 81 3 13 0 0 11 0 0 0 1 30 95 29 40 

Ratio (%) 1 0 0 27 1 4 0 0 4 0 0 0 0 10 31 10 13 

1 Percentage to All Duplicated Mutants Detected by TCE+ 

 

In order to evaluate efficiency of TCE+ for detecting equivalent mutants, its execu-

tion time for different steps, i.e. 1) compiling the mutants, 2) optimization of the com-

piled mutants, and 3) comparison of the optimization results, is separately measured for 

each subject program. The process of detecting duplicated mutants also includes the 

first two steps, but in the third step, it compares the optimization results differently. 

Therefore, the execution time of this step is also measured to evaluate efficiency of 

TCE+ for detecting duplicated mutants. The results are presented in Table 13.  
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Table 13. Execution Time of TCE+ for Detecting Equivalent and Duplicated Mutants 

Program 

Execution Time (sec.) 

Compile Optimization 

Comparison for 

Detecting 

Equivalent Mu-

tants 

Comparison 

for Detecting 

Duplicated 

Mutants 

Total for De-

tecting Equiva-

lent Mutants 

Total for 

Detecting 

Duplicated 

Mutants 

P1 36 68 1 1 105 105 

P2 57 124 3 1 184 182 

P3 137 289 6 3 432 429 

P4 101 188 5 2 294 291 

P5 235 617 12 5 864 857 

 

As shown in Table 13, the execution times of detecting equivalent mutants and du-

plicated mutants do not differ noticeably, and they are about 1 second per mutant. 

Therefore, to answer RQ2, we conclude that TCE+ can be considered as an efficient 

method. Further, the comparison times, both for equivalent and duplicated mutants, are 

negligible. However, the optimization time is about 2-3 times the compile time. It is 

worth noting that the compile time is an inherent overhead of mutation testing, since in 

mutation testing, each mutant should be compiled and executed against the test cases. 

Therefore, the overhead imposed by TCE+ is the optimization time. Considering the 

fact that TCE+ can effectively detect equivalent and duplicate mutants, and these mu-

tants do not need to be executed over the test cases, it means that TCE+ reduces the 

cost of mutation testing by reducing the number of mutants that need to be run and 

specially by removing the mutants that due to their equivalence, can waste the time of 

the test case designers. Hence, we believe the overhead of optimization time which 

involves CPU cycles can be considered as acceptable by the reduction it provides in 

required human effort. Consequently, we conclude that TCE+ is cost effective.  

4 Conclusion 

In this paper, the performance of TCE technique for detecting equivalent mutants in 

Java programs is evaluated. As the experimental evaluations have demonstrated, TCE 

has not detected any equivalent mutant in the subject programs and hence it cannot be 

considered to effective. To address this problem, current paper has proposed the TCE+ 

technique which extends TCE by utilizing an obfuscator like ProGuard, capable of per-

forming some optimizations on Java programs.  

The experimental evaluations show that while there are mutation operators like ROR 

for which TCE+ performance is weak, there are also operators like AOIS that TCE+ is 

able to find all of its equivalent mutants. Considering the contribution of each operator 

to the number of equivalent mutants of a typical program, TCE+ can be considered to 

be an effective and efficient method for detecting both equivalent and duplicated mu-

tants for Java programs. 
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Current paper has investigated performance of TCE+ on small programs. Hence, it 

is required to perform similar experiments on larger Java programs to see how the per-

formance of TCE+ changes as the program size increases. A challenge in this regard is 

preparation of the golden standard, since for large programs, the number of mutants is 

noticeable and it needs considerable effort to build a reliable golden standard. This is a 

main direction of our future work. Further, more precise analysis of the behavior of 

TCE+ on different mutation operators is an important job that we have scheduled for 

our future works. The results of such analysis will provide insights on possible im-

provements on ProGuard from the specific point of view of equivalent mutant detec-

tion. 
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