
HAL Id: hal-01760849
https://inria.hal.science/hal-01760849

Submitted on 6 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

TCE+: An Extension of the TCE Method for Detecting
Equivalent Mutants in Java Programs

Mahdi Houshmand, Samad Paydar

To cite this version:
Mahdi Houshmand, Samad Paydar. TCE+: An Extension of the TCE Method for Detecting Equiva-
lent Mutants in Java Programs. 7th International Conference on Fundamentals of Software Engineer-
ing (FSEN), Apr 2017, Teheran, Iran. pp.164-179, �10.1007/978-3-319-68972-2_11�. �hal-01760849�

https://inria.hal.science/hal-01760849
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

TCE+: an Extension of the TCE Method for Detecting Equivalent

Mutants in Java Programs

Mahdi Houshmand, Samad Paydar

Dependable Distributed Embedded Systems (DDEmS) Laboratory

Computer Engineering Dept., Ferdowsi University of Mashhad

Mashhad, Iran

mahdi.houshmand@mail.um.ac.ir, s-paydar@um.ac.ir

Abstract. While mutation testing is considered to be an effective technique in

software testing, there are some impediments to its widespread use in industrial

projects. One of these challenges is the equivalent mutant problem, and a line of

research is dedicated to proposing new methods for addressing this problem.

Trivial Compiler Equivalence (TCE) method is recently introduced as a simple

technique that actually relies only on the optimizations made by the compiler. It

is shown by empirical studies that employing TCE with the gcc compiler results

in a fast and effective technique for detecting equivalent mutants in C programs.

However, considering the fact that the Java compilers generally do not perform

noticeable optimizations, the question is how effectively does TCE perform on

Java programs? In this paper, experimental evaluations are discussed which

demonstrate that using TCE technique with javac compiler results in very poor

performance. As a result, this paper proposes to use the Java obfuscators as the

complementary component, because of the optimizations they make. The exper-

imental evaluations confirm that using TCE with the ProGuard obfuscation tool

provides an effective and efficient method for detecting equivalent mutants in

Java programs.

Keywords: mutation testing; equivalent mutant; trivial compiler equivalence;

Java.

1 Introduction

Mutation testing is considered to be an effective approach to evaluate and also to

improve an existing test set [1]. It works based on the notion of mutants, where each

mutant is created by making a simple modification on the program under test. The set

of possible modifications are defined by the mutation operators that are defined for the

programming language of the target program. If there is a test set that the program has

successfully executed on, then mutation testing can be applied to provide a measure of

the quality of that test set. This is performed by running each mutant M on the test cases

to investigate whether the test cases are powerful enough to detect the injected fault,

i.e. the mutation. If the result of running the mutant on a test cases is different from the

2 Mahdi Houshmand, Samad Paydar

result of running the original program on that test case, then the test case has been able

to distinguish, or kill, that mutant. The greater ratio of the mutants of the program are

killed by the test set, the higher is the score of that test set. Finally, if there remains any

live mutant, i.e. mutants that are not killed by any test case, then there are two possible

cases for each live mutant: 1) whether this is a sign of the weakness of the test set, or

2) the mutant is an equivalent mutant, i.e. the corresponding mutation has made a syntax

change without changing the semantic, and hence, the mutant cannot be killed by any

test case.

When applying mutation testing, a method is necessary to distinguish which of the

above cases holds for a live mutant. Without differentiating these two cases, it is pos-

sible that the test case designer wastes his time and effort in trying to find a test case

for killing an equivalent mutant, which is actually not killable. Further, an equivalent

mutant may cause the quality of the test set to be underestimated.

While mutation testing has been empirically proven to be able to simulate real-world

programming errors [24], and hence to be an effective method for evaluating and im-

proving test sets, there some non-negligible impediments towards its application in in-

dustrial software. The first problem is that mutation testing is a costly method, since the

number of possible mutants, even for a relatively small program is usually high. Creat-

ing the mutants, compiling and executing them over the test cases and comparing the

execution result usually requires noticeable time and computation resources.

Another problem is the equivalent mutants introduced before. Consequently, differ-

ent approaches have been introduced during the last two decades for addressing this

problem by employing different techniques like machine learning [14], logical con-

straint solving [15], data flow pattern analysis [8], gamification [17], program slicing

[10] and code similarity measures [13]. One of the approached introduced recently, is

the Trivial Compiler Equivalence (TCE) approach [12] which is a simple, fast and ef-

fective technique for detecting equivalent mutants.

The TCE technique actually relies on the optimizations performed by the compiler,

and it tries to determine equivalence of a mutant by comparing it with the original pro-

gram, in their binary, i.e. compiled, format. TCE has been evaluated in [12] on C pro-

grams using the gcc compiler that is capable of performing different levels of optimi-

zations when compiling the program. The evaluations have shown that TCE is an ef-

fective method for equivalent mutant detection in C programs. Considering Java pro-

grams, however, TCE is not expected to perform noticeably, since the Java compiler

performs almost no specific optimization, and it leaves the optimizations to be per-

formed by Java Virtual Machine at runtime (JVM) [26]. We believe there is room for

evaluating the TCE technique on Java programs. Hence, in this paper, we experimen-

tally evaluate performance of TCE on Java programs, and further, we introduce TCE+

as an extension of TCE which utilizes the ProGuard1 Java obfuscator in addition to the

compiler to address the lack of compiler optimizations.

The rest of the paper is organized as follows. Section 2 briefly reviews the related

works. In Section 3, the experimental evaluation of the TCE and TCE+ techniques on

Java programs is discussed. Finally, Section 4 concludes the paper.

1 http://proguard.sourceforge.net/

http://proguard.sourceforge.net/

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

3

2 Related Work

In order to address the equivalent mutant problem in the mutation testing domain,

different approaches have been proposed during the last two decades. This problem, in

its general form is an undecidable problem [2, 3] and therefore it is not expected to be

able to find an automated method that can solve every instance of this problem correctly

and completely. As a result, some of the proposed approaches employ heuristics or limit

the characteristics of the program under study, for instance restricting the number of

iterations of the loops [25]. A literature review on the approaches for tackling with the

equivalent mutant problem is provided in [4], where it is concluded that the equivalent

mutant detection techniques are still “far from perfect”.

Some works attempt to deterministically determine whether a specific mutant is

equivalent or not. For instance, in [8, 18] a set of 9 data flow patterns is introduced that

result in equivalent mutants. In addition, a framework is proposed which uses static

analysis of data flow to check each mutant of a program against these patterns. If a

mutant follows one of the predefined patterns, then it is equivalent, otherwise it is con-

sidered to be non-equivalent. As another example, [15] introduces a technique that ex-

tracts a set of logical constraints from a mutant such that solving those constraints

proves that the mutant is equivalent to the original program. Then, the constraints are

given to a constraint solver tool for the purpose of detecting equivalent mutants. The

method assumes certain characteristics on the mutants which limits applicability of the

method (e.g. recursive functions are not supported). A similar approach based on con-

straint solving techniques is also introduced in [16].

Some works implicitly use the idea that for an undecidable problem, it is not possible

to provide a complete automated solution and hence human intervention is unavoidable.

Therefore, they try to help the human experts in analyzing the mutants and in making

decision about their equivalence. This help can be provided in form of identifying the

mutants that are more likely to be equivalent. Therefore, these methods follow a inexact

approach and generate a recommended list of mutants, ordered by their equivalence

probability, that need to be manually analyzed by the human expert to make the final

decision. For instance, in [11], the idea is that the probability that a mutant is not equiv-

alent is related to how its coverage on a specific test set differs from the coverage of

the original program. In other words, the greater the coverage is affected, the lower is

the probability of the mutant being equivalent. A similar approach for determining

equivalent mutants based on the coverage impact is also proposed in [6, 5]. Machine

learning techniques are also used in some works like [14] to provide a probabilistic

approach to detection of equivalent mutants.

Another example of the works that count on human involvement for detection of

equivalent mutants is [17] that uses gamification technique. It introduces a two-player

game in which one player tries to create mutants that are hard to kill, and the other one

tries to introduce test cases that kill the mutants. The game indirectly can contribute to

detecting mutants that are more likely to be equivalent.

Another group of works try to avoid creation of equivalent mutants by more ad-

vanced mutation generation techniques. For instance, [19] proposes to consider the fact

4 Mahdi Houshmand, Samad Paydar

that different mutation operators perform differently from the point of view of the dif-

ficulty of killing their resulting mutants. This can be employed to selectively use muta-

tion operators that less frequently create equivalent mutants. Another group of works

have shown that using higher order mutants instead of first-order mutants can reduce

the number of equivalent mutants generated for a program [9, 20, 21, 22].

Other techniques that have been used for exact equivalent mutant detection include

code similarity measures and clone detection techniques [13], program slicing tech-

niques [10], co-evolution algorithms [7].

An interesting approach that is recently proposed for detection of the equivalent mu-

tants is the TCE approach [12], which uses a very simple and straightforward technique.

TCE works based on the idea that the advanced optimizations performed by a compiler

can remove some type of the mutations that have not affected the semantic of the pro-

gram, and hence if the equivalent mutant is compiled, the result of compiling can be

the same as the result of compiling the original program. It is demonstrated through

experimental evaluations that the TCE technique is successful in effectively detecting

equivalent mutants of a C program using the gcc compiler optimizations. However,

since the Java compilers generally do not perform noticeable optimizations, the perfor-

mance of TCE on Java programs needs to be investigated. As a result, current paper

proposes TCE+ technique as an extension of TCE that utilizes ProGuard for the purpose

of optimizing Java code. In addition to performing different optimizations, e.g. dead

code removal, unused variable removal and peephole optimizations, ProGuard is also

able to obfuscate, shrink and pre-verify Java byte codes. However, TCE+ uses

ProGuard only for the purpose of optimizations and it does not use obfuscation or

shrinking capabilities of ProGuard. It is beyond the scope of this paper to describe the

optimization techniques employed by ProGuard or gcc, however, Table 1 briefly men-

tions some of the main optimizations performed by each of these tools.

In [12], TCE has been shown to be able to find, in addition to equivalent mutants,

the duplicated mutants, i.e. mutants that are equivalent to each other, but not necessarily

equivalent to the original program. Since there is no advantage in using two duplicated

mutants, it is interesting to be able to detect duplicated mutants. In this paper, we eval-

uate the TCE and TCE+ methods for the purpose of detecting equivalent and duplicated

mutants of Java programs.

Table 1. Some of the optmization techniques employed by the subject tools

Tool Optimization Techniques

gcc Compiler Dead Code Elimination, Transforming Conditional Jumps, Constant Folding, De-
Virtualization, Function Inlining, Predictive Commoning, Elimination of Useless

Null Pointer Checks, Peephole Optimization, Global Common Subexpression Elimi-

nation

ProGuard Dead Code Elimination, Peephole Optimization, Marking Classes as Final,

Variable Allocation Optimization, Method Inlining, Return Value Propagation, Re-

moving Write-only Fields

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

5

3 Experimental Study

In this section, the experimental evaluation of the TCE and TCE+ approaches over

Java programs is discussed. First, the research questions are introduced and then, dif-

ferent elements of the experiments are described. Finally, the results of the experiments

are discussed.

3.1 Research Questions

Since the TCE approach has been shown to be both effective and efficient in detect-

ing equivalent and duplicated mutants in C programs, the main research question this

paper seeks to answer is:

RQ. How do the TCE and TCE+ approaches perform on Java programs?

To answer this question, two more specific research questions are introduced:

RQ1. How effective are the TCE and TCE+ approaches at detecting equivalent and

duplicated mutants in Java programs?

To answer this question, the number of equivalent and duplicated mutants detected

by the TCE and TCE+ techniques, and also the ratio of the detected equivalent mutants

to the existing equivalent mutants is reported.

RQ2. How efficient is TCE+ for the purpose of equivalent mutant detection?

This question is answered by computing the execution time of the TCE+ approach

to see if it is efficient enough to be used in practice. While we have not evaluated TCE+

on large programs, we believe that the efficiency of the technique for the large programs

can be estimated based on the results obtained for the small programs.

3.2 Dataset and Golden Standard

For the purpose of the experimental evaluations, first, a dataset is prepared including

5 java programs, and then, for each program, its mutants are created by the MuJava

mutation testing tool [23]. Table 2 shows the name of each program, its size in terms

of physical Source Line of Code (SLOC) and the number of its mutants. The mutation

operators that MuJava has applied on the subject programs are mentioned in Table 3.

In addition, a golden standard is created by manually checking each mutant of the

subject programs to determine whether it is equivalent to the original program. This

manual analysis is performed separately by three experts who have had more than 10

years of experience in object oriented programming in Java. After each expert has fin-

ished his job, the results have been compared so that any possible conflict is resolved.

Actually, there were 7 such cases that needed the experts to discuss with each other to

agree on the result.

6 Mahdi Houshmand, Samad Paydar

Table 2. Dataset used in the experiments

Program Subject Program Physical SLOC Number of Mutants

P1 BubbleSort 15 111

P2 Bisect 25 189

P3 Triangle 46 456

P4 QuickSort 50 341

P5 java.util.StringTokenizer 174 772

Table 3. Mutation operators applied by MuJava on the subject programs

Operator Operator Definition

AODS: Short-cut Arithmetic Operator Deletion {(x,remove(x)) | x ∈ {++, --}}

AODU: Unary Arithmetic Operator Deletion {(-v, v)}

AOIS: Short-cut Arithmetic Operator Insertion {(v, --v), (v, v--), (v, ++v), (v, v++)}

AOIU: Unary Arithmetic Operator Insertion {(v, -v)}

AORB: Binary Arithmetic Operator Replacement {(x,y) | x,y ∈ {+, -, *, /, %} ∧ x ≠ y}

AORS: Shortcut Arithmetic Operator Replacement {(x,y) | x,y ∈ {++, --} ∧ x ≠ y}

ASRS: Shortcut Assignment Operator Replacement {(x,y) | x,y ∈ {+=, -=, *=, /=, %=} ∧ x ≠ y}

CDL: Constant DeLetion
{(op c, remove(op c)) | op ∈ {+, -, *, /, %, >,
>=, <, <=}}

COD: Conditional Operator Deletion {(!(e), e) | e ∈ {if(e), while(e), for(s; e; s)}}

COI: Conditional Operator Insertion {(e, !(e)) | e ∈ {if(e), while(e), for(s; e; s)}}

COR: Conditional Operator Replacement {(x,y) | x,y ∈ {&&, ||, ^} ∧ x ≠ y}

LOI: Logical Operator Insertion {(v, ~v)}

ODL: Operator DeLetion

{(v op, remove(v op)), (op v, remove(op v)) |

op ∈ {+, -, *, /, %, <, <=, >, >=}}, {(v++, v),

(v--, v) , (--v, v) , (++v, v) | op ∈ {++, --}}

ROR: Relational Operator Replacement {(x,y) | x,y ∈ {>, >=, <, <=, ==, !=} ∧ x ≠ y}

SDL: Statement DeLetion {(s, remove(s))}

VDL: Variable DeLetion
{(v [op], remove(v [op])) | op ∈ {+, -, *, /, %,
++, --, <, <=, >, >=}

3.3 Experimental Environment

All the experiments are performed on a PC with Microsoft Windows 7 operating

system, Intel Core i5-4400 processor and 8GB RAM. Further, we have used the Ora-

cle’s Java compiler javac version 1.8.0_60 to compile the programs and the mutants,

and also ProGuard 5.3 to optimize the compilation results. Finally, for the purpose of

comparing the binary files, the Windows utility program FC is used with the parameters

/B and /LB1.

3.4 Experiments

To answer the research questions, four experiments are designed. The first two ex-

periments evaluate the TCE and TCE+ techniques for the purpose of equivalent mutant

detection and the second two experiments evaluate them for detecting duplicated mu-

tants. The processes used in these experiments are shown in Fig. 1 to Fig. 4.

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

7

Input: P (original program)

Output: EM (list of the equivalent mutants of P)

//compile step

compile P to Pclass

for each mutant M of P

 compile M to Mclass

//comparison step

for each mutant M of P

 result = compare Mclass to Pclass

 if (result == 'no difference')

 add M to EM

return EM

Fig. 1. Process of experiment 1: TCE for equivalent mutant detection

Input: P (original program)

Output: EM (list of the equivalent mutants of P)

//compile step

compile P to Pclass

for each mutant M of P

 compile M to Mclass

//optimization step

convert Pclass to Pjar

optimize Pjar to Pjar,op

extract Pclass,op from Pjar,op

Pclass = Pclass,op

for each mutant M of P

 convert Mclass to Mjar

 optimize Mjar to Mjar,op

 extract Mclass,op from Mjar,op

 Mclass = Mclass,op

//comparison step

for each mutant M of P

 result = compare Mclass to Pclass

 if (result == 'no difference')

 add M to EM

return EM

Fig. 2. Process of experiment 2: TCE+ for equivalent mutant detection

8 Mahdi Houshmand, Samad Paydar

In the first experiment, for each subject program P, P is compiled to Pclass and each

mutant M of P is compiled to Mclass. Then each compiled mutant Mclass is compared to

the Pclass. If no difference is identified in this comparison, it is considered that TCE has

determined the corresponding mutant as an equivalent mutant.

The second experiment evaluates the TCE+ approach by including an optimization

phase before the comparison step. In order to perform the optimization, first a jar file is

created from the compiled file, i.e. Pclass or Mclass. The jar file is then given to ProGuard

to do the optimizations. The resulting jar file is then decompressed to extract the opti-

mized compiled file which then goes through the binary comparison.

In the third experiment, each compiled mutant of the program is compared to all

other compiled mutants of that program that have the same file size. If there is no dif-

ference between the corresponding binary files, those two mutants are added as a pair

to the list of duplicated mutants. After processing all the mutants, a simple algorithm

shown in Fig. 3 is used to determine the list of mutants that can be removed.

The fourth experiment is very similar to the third experiment and the only difference

is that it compares the optimized version of the compiled mutants which are created by

the process described for the second experiment.

Input: P (original program)

Output: DM (list of the removable duplicated mutants of

P)

//compile step

for each mutant M of P

 compile M to Mclass

//comparison step

Pairs: empty list

for each mutant M1 of P

 for each mutant M2 of P

 if (M1 != M2 and filesize(M1class)==filesize(M2class))

 result = compare M1class to M2class

 if (result == 'no difference')

 add pair(M1, M2) to Pairs

//removal step

sort Pairs based on the first element of the pairs

for each Pair in Pairs

 M1 = first element of Pair

 M2 = second element of Pair

 if not (DM contains M1)

 add M2 to DM

return DM

Fig. 3. Process of experiment 3: TCE for duplicated mutant detection

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

9

Input: P (original program)

Output: DM (list of the removable duplicated mutants of

P)

//compile step

for each mutant M of P

 compile M to Mclass

//optimization step

for each mutant M of P

 convert Mclass to Mjar

 optimize Mjar to Mjar,op

 extract Mclass,op from Mjar,op

 Mclass = Mclass,op

//comparison step

Sort mutations based on their file size

for each mutant M1 of P

 if (M1 in DM)

 continue;

 for each mutant M2 of P

 if (M2 in DM)

 continue;

 if (M1 != M2

 and filesize(M1class) == filesize(M2class))

 result = compare M1class to M2class

 if (result == 'no difference')

 add M2 to DM

 else

 break;

return DM

Fig. 4. Process of experiment 4: TCE+ for duplicated mutant detection

3.5 Result Analysis

The results of the first two experiments are shown in Table 4. As it is shown in this

table, TCE approach has not detected any equivalent mutant in the subject programs.

Therefore, it can be concluded that since the Java compiler does not perform noticeable

optimizations [26], applying TCE on Java programs is not effective for detecting equiv-

alent mutants. However, the TCE+ technique, which compensates the limitation of the

Java compiler by utilizing ProGuard’s optimizations, has identified some equivalent

mutants for each of the subject programs. Therefore, TCE+ has been able to address

the shortcomings of the TCE method. However, the number of detected equivalent mu-

tants is small and at the best case, i.e. the Bisect program, it accounts for only 7% of all

10 Mahdi Houshmand, Samad Paydar

the mutants. The worst case is also the BubbleSort program that the detected equivalent

mutants are only 2% of all the mutants.

In order to judge the effectiveness of the TCE+ approach, it is required to know the

ratio of the detected equivalent mutants to all the existing equivalent mutants. There-

fore, the results of the first two experiments have been compared with the golden stand-

ard. As shown in the last column of Table 4, TCE+ has been able to detect from 18%

to 100% of all the existing equivalent mutants. It has missed 9, 2 and 7 equivalent mu-

tants respectively for the BubbleSort, QuickSort and StringTokenizer programs. For the

other two programs, i.e. Bisect and Triangle, all the existing equivalent mutants have

been found by TCE+.

Based on these results, we conclude that TCE+ is generally effective and it is suc-

cessful in detecting a good ratio of the existing equivalent mutants. However, it is in-

teresting to analyze the detected and undetected equivalent mutants based on their mu-

tation operators.

The distribution of the mutation operators over all the generated mutants is shown

in Table 5. The top-3 mutation operators that have created the greatest proportion of

the mutants are AOIS, ROR and SDL, which have created respectively 33%, 20% and

10% of all the mutants. There are some operators like AOSE and AODU that have

negligible contribution to the number of mutants created.

Table 4. Results of Experiments 1 and 2: Detecting Equivalent Mutants

Program

Number of Detected

Equivalent Mutants

Percentage of Detected

Equivalent Mutants to All

Mutants

Percentage of Detected Equiva-

lent Mutants to All Existing

Equivalent Mutants

TCE TCE+ TCE TCE+ TCE TCE+

P1 0 2 0 2 0 18

P2 0 14 0 7 0 100

P3 0 23 0 5 0 100

P4 0 10 0 3 0 83

P5 0 34 0 4 0 83

Table 5. Distribution of the Mutation Operators Over All the Mutants

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 30 3 16 2 4 3 11 8 19 10 5

P2 80 13 32 2 3 16 19 14 10

P3 128 11 36 3 24 14 43 32 119 31 15

P4 2 108 18 36 6 8 9 40 20 55 28 11

P5 2 262 33 7 20 6 39 20 80 33 163 100 7

Total 2 2 608 78 120 15 20 17 6 78 34 174 109 375 183 48

Ratio (%) 1 < 1 < 1 33 4 6 1 1 1 < 1 4 2 9 6 20 10 3

1 percentage to all the mutants

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

11

In Table 6, the distribution of the mutation operators over all the existing equivalent

mutants is shown. An interesting point is that the AOIS operator which has created

about 33% of all the mutants is also responsible for creating about 77% of all the equiv-

alent mutants in the golden standard. Further, the ROR operator has created about 14%

of all the equivalent mutants. From another point of view, about 13% of the mutants

created by the AOIS operator have been equivalent. This value for the ROR operator

has been about 4%. This means that the performance of the TCE+ technique over these

two mutation operators is of greater importance, compared to other mutation operators.

The distribution of the mutation operators over all the equivalent mutants that are

found by TCE+ is shown in Table 7. Comparing this table with Table 6 shows that

TCE+ has successfully detected all the equivalent mutants created by the AOIS opera-

tor, which account for about 77% of all the equivalent mutants. Hence, considering the

ratio of AOIS-generated equivalent mutants, it can be concluded that the TCE+ ap-

proach is an effective method for detection of equivalent mutants in Java programs.

However, it is also important to note that TCE+ has not detected any of the 14 equiva-

lent mutants created by the ROR operator (5 for BubbleSort, 2 for QuickSort and 7 for

StringTokenizer). It also has missed 4 other equivalent mutants of BubbleSort, 2 cre-

ated by the AORB operator, 1 by ODL and 1 by the CDL operator.

Regarding detection of the duplicated mutants, the results of the third and the fourth

experiments are presented in Table 8. This table shows that TCE and TCE+ have iden-

tified respectively from 8% to 14% and from 13% to 23% of the mutants of the subject

programs as being duplicated. Since the duplicated mutants do not contribute to the

mutation testing results, they can be removed from the mutants. Considering all the five

subject programs, TCE and TCE+ have identified respectively 9% and 16% of all the

mutants as being duplicated. As a result, we conclude that while TCE+ noticeably out-

performs TCE, both approaches are effective in detecting duplicated mutants.

Table 6. Distribution of the Mutation Operators Over the Existing Equivalent Mutants

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 2 2 1 1 5

P2 12 2

P3 20 1 1 1

P4 10 2

P5 34 7

Total 0 0 78 3 2 0 0 1 0 0 0 0 2 14 0 1

Ratio (%) 1 0 0 77 3 2 0 0 1 0 0 0 0 2 14 0 1

1 Percentage to Existing Equivalent Mutants

12 Mahdi Houshmand, Samad Paydar

Table 7. Distribution of the Operators Over the Equivalent Mutants Detected by TCE+

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 2

P2 12 2

P3 20 1 1 1

P4 10

P5 34

Total 0 0 78 3 0 0 0 0 0 0 0 0 1 0 0 1

Ratio (%) 1 0 0 94 4 0 0 0 0 0 0 0 0 1 0 0 1

1 Percentage to All Equivalent Mutants Detected by TCE+

Table 8. Results of Experiments 3 and 4: Detecting Duplicated Mutants

Program

Number of Detected Du-

plicated Mutants

Percentage of Detected Duplicated Mu-

tants to All Mutants

TCE TCE+ TCE TCE+

P1 15 25 14 23

P2 16 31 8 16

P3 52 89 11 20

P4 34 59 10 17

P5 60 99 8 13

An interesting point is that while TCE has not detected any equivalent mutant, but it

has detected non-negligible number of duplicated mutants. Further analysis of the re-

sults reveals that the detected duplicated mutants are not a result of the optimizations

made by TCE, but they are resulted from the fact that applying some MuJava mutation

operators on some program statements may create exactly the same syntactic changes.

In other words, for each pair of duplicated mutants detected by TCE, both mutants are

syntactically-equal. An example pair is shown in Table 9. While TCE+ has detected all

the duplicated mutants found by TCE, it has also detected other results which are syn-

tactically different but semantically duplicated. An example is shown in Table 10.

Another interesting point is that, as shown in Table 11, 44% of all the duplicated

mutants detected by TCE are created by the ROR operator. The other 23% are associ-

ated with the VDL operator. Only about 1% of the detected duplicated mutants are

results of the AOIS operator. The results for the TCE+ technique are also presented in

Table 12. This table shows that, compared to TCE, the TCE+ technique is able to detect

the duplicated mutants that are created by a wider set of mutation operators. Actually,

TCE+ has detected duplicated mutants of type AOI, AORB, CDL and LOI operators,

of which none is detected by the TCE method.

Finally, to answer RQ1, we conclude that TCE is not effective for detecting equiva-

lent mutants of Java programs, but it can effectively detect the duplicated mutants. Fur-

ther, TCE+ is effective for detecting both equivalent and duplicated mutants.

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

13

Table 9. An Example Duplicated Mutant Detected by TCE

Original Statement Mutant by ODL Operator Mutant by CDL Operator

x = (M + x) / 2; x = M + x; x = M + x;

Table 10. An Example Duplicated Mutant Detected by TCE+ but Missed by TCE

Original Statement Mutant by AOIS Operator Mutant by AOIS Operator

public void setEpsilon(double

epsilon) {

 this.mEpsilon = epsilon; }

public void setEpsilon(double

epsilon) {

 this.mEpsilon = epsilon--; }

public void setEpsilon(double

epsilon) {

 this.mEpsilon = epsilon++; }

Table 11. Distribution of the Operators Over the Duplicated Mutants Detected by TCE

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 4 3 3 5

P2 4 2 10

P3 3 27 7 15

P4 2 10 9 5 8

P5 8 39 11 2

Total 0 0 2 0 0 0 0 0 0 0 0 0 29 78 28 40

Ratio (%) 1 0 0 1 0 0 0 0 0 0 0 0 0 16 44 16 23

1 Percentage to All Duplicated Mutants Detected by TCE

Table 12. Distribution of the Operators Over the Duplicated Mutants Detected by TCE+

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 1 4 4 4 4 3 5

P2 13 2 4 2 10

P3 19 1 3 1 1 4 38 7 15

P4 14 6 6 10 10 5 8

P5 34 8 43 12 2

Total 0 0 81 3 13 0 0 11 0 0 0 1 30 95 29 40

Ratio (%) 1 0 0 27 1 4 0 0 4 0 0 0 0 10 31 10 13

1 Percentage to All Duplicated Mutants Detected by TCE+

In order to evaluate efficiency of TCE+ for detecting equivalent mutants, its execu-

tion time for different steps, i.e. 1) compiling the mutants, 2) optimization of the com-

piled mutants, and 3) comparison of the optimization results, is separately measured for

each subject program. The process of detecting duplicated mutants also includes the

first two steps, but in the third step, it compares the optimization results differently.

Therefore, the execution time of this step is also measured to evaluate efficiency of

TCE+ for detecting duplicated mutants. The results are presented in Table 13.

14 Mahdi Houshmand, Samad Paydar

Table 13. Execution Time of TCE+ for Detecting Equivalent and Duplicated Mutants

Program

Execution Time (sec.)

Compile Optimization

Comparison for

Detecting

Equivalent Mu-

tants

Comparison

for Detecting

Duplicated

Mutants

Total for De-

tecting Equiva-

lent Mutants

Total for

Detecting

Duplicated

Mutants

P1 36 68 1 1 105 105

P2 57 124 3 1 184 182

P3 137 289 6 3 432 429

P4 101 188 5 2 294 291

P5 235 617 12 5 864 857

As shown in Table 13, the execution times of detecting equivalent mutants and du-

plicated mutants do not differ noticeably, and they are about 1 second per mutant.

Therefore, to answer RQ2, we conclude that TCE+ can be considered as an efficient

method. Further, the comparison times, both for equivalent and duplicated mutants, are

negligible. However, the optimization time is about 2-3 times the compile time. It is

worth noting that the compile time is an inherent overhead of mutation testing, since in

mutation testing, each mutant should be compiled and executed against the test cases.

Therefore, the overhead imposed by TCE+ is the optimization time. Considering the

fact that TCE+ can effectively detect equivalent and duplicate mutants, and these mu-

tants do not need to be executed over the test cases, it means that TCE+ reduces the

cost of mutation testing by reducing the number of mutants that need to be run and

specially by removing the mutants that due to their equivalence, can waste the time of

the test case designers. Hence, we believe the overhead of optimization time which

involves CPU cycles can be considered as acceptable by the reduction it provides in

required human effort. Consequently, we conclude that TCE+ is cost effective.

4 Conclusion

In this paper, the performance of TCE technique for detecting equivalent mutants in

Java programs is evaluated. As the experimental evaluations have demonstrated, TCE

has not detected any equivalent mutant in the subject programs and hence it cannot be

considered to effective. To address this problem, current paper has proposed the TCE+

technique which extends TCE by utilizing an obfuscator like ProGuard, capable of per-

forming some optimizations on Java programs.

The experimental evaluations show that while there are mutation operators like ROR

for which TCE+ performance is weak, there are also operators like AOIS that TCE+ is

able to find all of its equivalent mutants. Considering the contribution of each operator

to the number of equivalent mutants of a typical program, TCE+ can be considered to

be an effective and efficient method for detecting both equivalent and duplicated mu-

tants for Java programs.

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

15

Current paper has investigated performance of TCE+ on small programs. Hence, it

is required to perform similar experiments on larger Java programs to see how the per-

formance of TCE+ changes as the program size increases. A challenge in this regard is

preparation of the golden standard, since for large programs, the number of mutants is

noticeable and it needs considerable effort to build a reliable golden standard. This is a

main direction of our future work. Further, more precise analysis of the behavior of

TCE+ on different mutation operators is an important job that we have scheduled for

our future works. The results of such analysis will provide insights on possible im-

provements on ProGuard from the specific point of view of equivalent mutant detec-

tion.

5 References

1. Jia, Yue, and Mark Harman. "An analysis and survey of the development of mutation testing."

IEEE transactions on software engineering 37.5 (2011): 649-678.

2. Budd, Timothy A., and Dana Angluin. "Two notions of correctness and their relation to test-

ing." Acta Informatica 18.1 (1982): 31-45.

3. Offutt, A. Jefferson, and Jie Pan. "Automatically detecting equivalent mutants and infeasible

paths." Software testing, verification and reliability 7.3 (1997): 165-192.

4. Madeyski, Lech, et al. "Overcoming the equivalent mutant problem: A systematic literature

review and a comparative experiment of second order mutation." IEEE Transactions on Soft-

ware Engineering 40.1 (2014): 23-42.

5. Schuler, David, and Andreas Zeller. "Covering and uncovering equivalent mutants." Software

Testing, Verification and Reliability 23.5 (2013): 353-374.

6. Papadakis, Mike, and Yves Le Traon. "Mutation testing strategies using mutant classifica-

tion." Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, 2013.

7. Adamopoulos, Konstantinos, Mark Harman, and Robert M. Hierons. "How to overcome the

equivalent mutant problem and achieve tailored selective mutation using co-evolution." Ge-

netic and evolutionary computation conference. Springer Berlin Heidelberg, 2004.

8. Kintis, Marinos, and Nicos Malevris. "Using data flow patterns for equivalent mutant detec-

tion." Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Sev-

enth International Conference on. IEEE, 2014.

9. Jia, Yue, and Mark Harman. "Higher order mutation testing." Information and Software Tech-

nology 51.10 (2009): 1379-1393.

10. Hierons, Rob, Mark Harman, and Sebastian Danicic. "Using program slicing to assist in the

detection of equivalent mutants." Software Testing, Verification and Reliability 9.4 (1999):

233-262.

11. Schuler, David, and Andreas Zeller. "(Un-) Covering Equivalent Mutants." 2010 Third Inter-

national Conference on Software Testing, Verification and Validation. IEEE, 2010.

12. Papadakis, Mike, et al. "Trivial compiler equivalence: A large scale empirical study of a sim-

ple, fast and effective equivalent mutant detection technique." 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering. Vol. 1. IEEE, 2015.

13. Kintis, Marinos, and Nicos Malevris. "Identifying more equivalent mutants via code similar-

ity." 2013 20th Asia-Pacific Software Engineering Conference. Vol. 1. IEEE, 2013.

14. Vincenzi, Auri Marcelo Rizzo, et al. "Bayesian-learning based guidelines to determine equiv-

alent mutants." International Journal of Software Engineering and Knowledge Engineering

12.06 (2002): 675-689.

16 Mahdi Houshmand, Samad Paydar

15. Nica, Simona, and Franz Wotawa. "Using constraints for equivalent mutant detection." arXiv

preprint arXiv:1207.2234 (2012).

16. Just, René, Michael D. Ernst, and Gordon Fraser. "Using state infection conditions to detect

equivalent mutants and speed up mutation analysis." arXiv preprint arXiv:1303.2784 (2013).

17. Rojas, José Miguel, and Gordon Fraser. "Code Defenders: A Mutation Testing Game." The

11th International Workshop on Mutation Analysis. IEEE. 2015.

18. Kintis, Marinos, and Nicos Malevris. "MEDIC: A static analysis framework for equivalent

mutant identification." Information and Software Technology 68 (2015): 1-17.

19. Yao, Xiangjuan, Mark Harman, and Yue Jia. "A study of equivalent and stubborn mutation

operators using human analysis of equivalence." Proceedings of the 36th International Con-

ference on Software Engineering. ACM, 2014.

20. Harman, Mark, Yue Jia, and William B. Langdon. "A manifesto for higher order mutation

testing." Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third In-

ternational Conference on. IEEE, 2010.

21. Nguyen, Quang Vu, and Lech Madeyski. "Searching for strongly subsuming higher order mu-

tants by applying multi-objective optimization algorithm." Advanced Computational Methods

for Knowledge Engineering. Springer International Publishing, 2015. 391-402.

22. Omar, Elmahdi, Sudipto Ghosh, and Darrell Whitley. "Constructing subtle higher order mu-

tants for Java and AspectJ programs." 2013 IEEE 24th International Symposium on Software

Reliability Engineering (ISSRE). IEEE, 2013.

23. Ma, Yu-Seung, Jeff Offutt, and Yong-Rae Kwon. "MuJava: a mutation system for Java." Pro-

ceedings of the 28th international conference on Software engineering. ACM, 2006.

24. Just, René, et al. "Are mutants a valid substitute for real faults in software testing?." Proceed-

ings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software En-

gineering. ACM, 2014.

25. Weitao, Wang, and Hirohide Haga. "Improvement of Equivalent Mutant Detection Using

Loop Count Restriction." The International Conference on Software Engineering, Mobile

Computing and Media Informatics (SEMCMI2015). 2015.

26. Diehl, Stephan. "A formal introduction to the compilation of Java." Software-Practice and

Experience 28.3 (1998): 297-327.

