
HAL Id: hal-01760636
https://inria.hal.science/hal-01760636

Submitted on 6 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Unification of Hypergraph λ-Terms
Alimujiang Yasen, Kazunori Ueda

To cite this version:
Alimujiang Yasen, Kazunori Ueda. Unification of Hypergraph λ-Terms. 2nd International Conference
on Topics in Theoretical Computer Science (TTCS), Sep 2017, Tehran, Iran. pp.106-124, �10.1007/978-
3-319-68953-1_9�. �hal-01760636�

https://inria.hal.science/hal-01760636
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Unification of Hypergraph λ-Terms

Alimujiang Yasen and Kazunori Ueda

Dept. of Computer Science and Engineering, Waseda University

Abstract. We developed a technique for modeling formal systems in-
volving name binding in a modeling language based on hypergraph rewrit-
ing. A hypergraph consists of graph nodes, edges with two endpoints and
edges with multiple endpoints. The idea is that hypergraphs allow us to
represent terms containing bindings and that our notion of a graph type
keeps bound variables distinct throughout rewriting steps. We previously
encoded the untyped λ-calculus and the evaluation and type checking of
System F<:, but the encoding of System F<: type inference requires a
unification algorithm. We studied and successfully implemented a uni-
fication algorithm modulo α-equivalence for hypergraphs representing
untyped λ-terms. The unification algorithm turned out to be similar
to nominal unification despite the fact that our approach and nominal
approach to name binding are very different. However, some basic prop-
erties of our framework are easier to establish compared to the ones in
nominal unification. We believe this indicates that hypergraphs provide
a nice framework for encoding formal systems involving binders and uni-
fication modulo α-equivalence.

1 Introduction

Unification solves equations over terms. For a unification problem M = N , a
unification algorithm finds a substitution δ = [X := P, Y := Q, . . .] for unknown
variables X and Y occurring in terms M and N so that applying δ to the original
problem make δ(M) and δ(N) equal. Depending on the terms occurring in the
unification problem, a unification algorithm is classified as (standard) first-order
unification and higher-order unification, where higher-order unification solves
equations over higher-order terms such as λ-terms. First-order unification is
simple in theory and efficient in implementation [7,11], whereas higher-order
unification is more complex both in theory and implementation [5].

The reason why higher-order unification is complex is that they solve equa-
tions of terms modulo α-, β- and possibly η-equivalence, denoted as =αβη.
Alpha-equivalence equates two λ-terms M and N up to the renaming of their
bound variables, denoted as M =α N ; β-equivalence equates two terms under
(λa.M)N =β M [a := N]; and η-equivalence states that (λa.Ma) =η M where a
does not occur free in M . Although higher-order unification is required in logic
programming languages and proof assistants based on higher-order approach [9],
full higher-order unification is undecidable and may not generate most general
unifiers. Higher-order pattern unification is a simple version of higher-order uni-
fication which solves terms modulo αβ0η-equivalence [8], where β0-equivalence

is a form of β-equivalence (λx.M)N =β0
M [x := N] where N must be a vari-

able not occurring free in λx.M . Most importantly, it is an efficient process
with linear-time decidability [8,18]. Higher-order pattern unification is popular
in practice because of that. For instance, the latest implementation of λProlog
is actually an implementation of a sublanguage of λProlog called Lλ, which only
uses higher-order pattern unification [10]. However, the infrastructure for im-
plementing a variant of the λ-calculus is not lightweight, and a restriction to
β0-equivalence asks users for good programming practice to avoid cases which
do not respect the restriction. A first-order style unification algorithm for terms
involving name binding is preferred in these respects.

One such unification algorithm is nominal unification [14], which solves equa-
tions of nominal terms. In nominal terms, names are equipped with the swapping
operation and the freshness condition [4]. The work in [6,2] shows the connection
between nominal unification and higher-order pattern unification; if two nomi-
nal terms are unifiable, then their translated higher-order pattern counterparts
are also unifiable. Alpha-equivalence is assumed for higher-order terms in the-
ory. Yet, in the higher-order approach, implementing a meta-language (a variant
of the typed λ-calculus) means that one must also consider =β0η. In nominal
unification, only =α is needed, and variable capture is allowed during the uni-
fication in the sense that a unifier may bring a name a into the scope of a as
in (λa.X)[X := a]. Nominal unification solves problems in two phases; solving
equations of terms and solving freshness constraints.

Using graphs to represent λ-terms has a long history [19,20]. In our earlier
work, we studied a hypergraph-based technique for representing terms involving
name binding [16], using HyperLMNtal [13] as a representation and implemen-
tation language. The idea was that hypergraphs could naturally express terms
containing bindings; atoms (nodes of graphs) represent constructors such as ab-
straction and application; hyperlinks (edges with multiple endpoints) represent
variables; and regular links (edges with two endpoints) connect constructors with
each other. In this technique, two isomorphic (but not identical) hypergraphs
representing α-equivalent terms containing bindings have two syntactically dif-
ferent textual representations in HyperLMNtal. For example, two instances of
the λ-term λa.aa are represented by α-equivalent but syntactically different hy-
pergraphs such as abs(A,(app(A,A)),L) and abs(B,(app(B,B)),R) as shown
in Fig. 1.

(a) (b)

Fig. 1: Two α-equivalent terms represented as hypergraphs

In Fig. 1, circles are atoms, straight lines are regular links and eight-point
stars with curved lines are hyperlinks. The arrowheads on circles indicate the first
arguments of atoms and the ordering of their arguments. These two hypergraphs,
rooted at L and R, are isomorphic, i.e., have the same shape, but are syntactically
not identical. (Later, we explain why regular links between abs and app atoms
are implicit in the above two terms.)

Our idea was first proposed in [16], where we developed the theory with
the encoding of the untyped λ-calculus. Our formalism separates bound and
free variables by Barendregt’s variable convention [1] and also requires bound
variables to be distinct from each other. A graph type called hlground (meaning
ground graphs made up of hyperlinks) keeps bound variables distinct during
the substitution. For example, λa.M and λa.N do not exist at the same time,
and if λa.M exists, a may occur in M only. Such conventions may look too
strict, but our experiences show that it brings great convenience in practice. For
example, in our recent work [17], we encoded System F<: easily in HyperLMNtal;
implementing the type checking of System F<: required the equality checking of
types containing type variable binders, which was handled by directly applying
α-equality rules in theory. As the next step, we want to implement the type
inference of System F<:, which means that we should study the unification of
terms containing name binding within our formalism.

Hypergraphs representing λ-terms are called hypergraph λ-terms. This paper
considers unification problems for equations over hypergraph λ-terms modulo
=α. Hypergraph λ-terms have nice properties; for two abstractions L=abs(A,M)
and R=abs(B,N), A does not occur in N and B does not occur in M, and A and B

are always different hyperlinks. These properties greatly simplified the reasoning
in our previous work, and we expect such simplicity in this work as well.

The outline of the paper is as follows. In Section 2, we briefly describe hyper-
graph λ-terms and the definition of substitutions. In Section 3, we present the
unification algorithm and related proofs. In Section 4, we give some examples. In
Section 5, we briefly describe the implementation of the unification algorithm.
In Section 6, we review related work and conclude the paper.

2 Hypergraph λ-Terms

HyperLMNtal is a modeling language based on hypergraph rewriting [13] that is
intended to be a substrate language of diverse computational models, especially
those addressing concurrency, mobility and multiset rewriting. Moreover, we
have successfully encoded the λ-calculus with strong reduction in HyperLMNtal
in two different ways, one in the fine-grained approach [12] and the other in
the coarse-grained approach [16]. This paper takes the latter approach that uses
hyperlinks to represent binders, where the representation of λ-terms is called
hypergraph λ-terms. We briefly describe HyperLMNtal and hypergraph λ-terms.

2.1 HyperLMNtal

In HyperLMNtal, hypergraphs consist of graph nodes called atoms, undirected
edges with two endpoints called regular links and edges with multiple endpoints
called hyperlinks. The simplified syntax of hypergraphs in HyperLMNtal is as
follows,

(Hypergraphs) P ::= 0 | p(A1, . . . , Am) | P, P
where link names (denoted by Ai) and atom names (denoted by p) are presup-
posed. Hypergraphs are the principal syntactic category: 0 is an empty hyper-
graph; p(A1, . . . , Am) is an atom with arity m; and P, P is parallel composition.
A hypergraph P is transformed by a rewrite rule of the form H :-G|B when a
subgraph of P matches (i.e., is isomorphic to) H and auxiliary conditions speci-
fied in G are satisfied, in which case the subgraph of P is rewritten into another
hypergraph B. The auxiliary conditions include type constraints and equality
constraints. In HyperLMNtal programs, names starting with lowercase letters
denote atoms and names starting with uppercase letters denote links. An ab-
breviation called term notation is frequently used in HyperLMNtal programs. It
allows an atom b without its final argument to occur as an argument of a when
these two arguments are interconnected by regular links. For instance, f(a,b)
represents the graph f(A,B),a(A),b(B), and C=app(A,B) represents the graph
app(A,B,C). The latter example shows that an n-ary constructor can be repre-
sented by an (n + 1)-ary HyperLMNtal atom whose final argument stands for
the root link of the constructor.

In a rewrite rule, placing a constraint new(A,a) in the guard means that A
is created as a hyperlink with an attribute a given as a natural number. A type
constraint specified in the guard describes a class of graphs with specific shapes.
For example, a graph type hlink(A) ensures that A is a hyperlink occurrence.
A graph type hlground(A, a1, . . . , an) identifies a subgraph rooted at the link
A, where a1, . . . , an are the attributes of hyperlinks which are allowed to occur
in the subgraph. The identified subgraph may be copied or removed according
to rewrite rules. Details appear in Section 2.2.

2.2 Hypergraph λ-Terms

We write hypergraph λ-terms by the following syntax.

(Terms) M ::= A variables
abs(A,M) abstractions
app(M,M) applications

Here, the A are hyperlinks whose attributes are determined as follows: hyperlinks
representing variables bound insideM or in a larger term containingM are given
attribute 1 (denoted A1), while those not bound anywhere are given attribute 2
(denoted A2). Hypergraph λ-terms are straightforwardly obtained from λ-terms.
For example, the Church numeral 2

λx.λy.x(xy)

is written as

R=abs(A,abs(B,app(A,app(A,B)))).

Note that both abs and app are ternary atoms, where their third arguments,
made implicit by the term notation, are links connected to their parent atoms
or represented by the leftmost R.

The following rewrite rules shows how to work with hypergraph λ-terms in
HyperLMNtal.

N=n(2) :- new(A,1), new(B,1) | N=abs(A,abs(B,app(A,app(A,B)))).

init :- r=app(n(2),n(2)).

init.

The first rule creates a hypergraph representing the Church numeral 2. The
second rule creates an application of two Church numerals.

The idea behind the hypergraph-based approach is that it applies the prin-
ciple of Barendregt’s variable convention (bound variables should be separated
from free variables to allow easy reasoning) also to bound variables; all bound
variables should be distinct from each other upon creation and should be kept
distinct from each other during substitution. Besides keeping bound variables
distinct, one should avoid variable capture during substitution.

In a substitution (λy.M)[x := N], replacing x with N in M will not lead
to variable capture if y is kept distinct from the variables of N . The idea
is to ensure that variables appear distinctly in M1 and M2 in an applica-
tion M1M2. Concretely, in a substitution (M1M2)[x := N], we generate two
α-equivalent but syntactically different copies of N , say N1 and N2, to have
(M1[x := N1])(M2[x := N2]). For a hypergraph λ-term with distinct vari-
ables, applying such strategy in the substitution ensures that y /∈ fv(N) for
(λy.M)[x := N]. To summarize, we use distinct hyperlinks with appropriate
attributes to represent distinct variables of λ-terms and don’t allow multiple
binders of the same variable.

We use sub atoms to represent substitutions; R=sub(X,N,M) represents
M [x := N]. The definition of substitutions for hypergraph λ-terms is given in
Fig. 2, where each rule is prefixed by a rule name. The rule beta implements
β-reduction, and the other four rules implement substitutions. When the rule
var2 is applied, a subgraph matched with hlground(N,1) is removed. When
the rule app is applied, two α-equivalent but syntactically different copies of a
subgraph matched by hlground(N,1) are created. The hlink(X) checks if X is
a hyperlink.

The graph type hlground(N,1) identifies a subgraph rooted at N, then rewrit-
ing may copy or remove the subgraph. When copying a subgraph identified by
hlground(N,1) in a rule, it creates fresh copies of hyperlinks which have the
attribute 1 and have no occurrences outside of the subgraph, while it shares hy-
perlinks which have the attribute 1 but have occurrences outside of the subgraph
between the copies of the subgraph. It always shares hyperlinks which have an
attribute different from 1 between the copies of the subgraph. When removing a

beta@@ R=app(abs(X,M),N) :- R=sub(X,N,M).

var1@@ R=sub(X,N,X) :- hlink(X) | R=N.

var2@@ R=sub(X,N,Y) :- X\=Y, hlground(N,1) | R=Y.

abs@@ R=sub(X,N,abs(Y,M)) :- R=abs(Y,sub(X,N,M)).

app@@ R=sub(X,N,app(M1,M2)):- hlink(X), hlground(N,1) |

R=app(sub(X,N,M1), sub(X,N,M2)).

Fig. 2: Definition of substitutions on hypergraph λ-terms

(a) (b) (c) (d)

Fig. 3: Applying a substitution on an application

subgraph identified by hlground(N,1) in a rule, it removes the subgraph along
with all hyperlink endpoints in the subgraph.

For example, the rule app rewrites R=sub(A,abs(B,B),app(A,A)) in Fig. 3a
to R=app(sub(A,abs(K,K),A),sub(A,abs(H,H),A)) in Fig. 3b, where the con-
straint hlground(N,1) identifies a subgraph N=abs(B,B) which is copied into
abs(K,K) and abs(H,H). The rule var2 rewrites R=abs(A,sub(B,A,C)) in Fig. 3c
to R=abs(A,C) in Fig. 3d, where hlground(N,1) identifies a subgraph N=A and
then the subgraph containing one endpoint of A is removed. For more details of
hlground, readers are referred to our previous work [16].

3 Unification

We extend hypergraph λ-terms with unknown variables of unification prob-
lems, denoted by X,Y, . . . , in a standard manner. Let A,B,C,D be hyperlinks,
M,N,P be some hypergraph λ-terms, and L,R be regular links occurring as the
last arguments of the atoms representing λ-term constructors.

The assumed equality between hypergraph λ-terms in our unification is α-
equivalence with freshness constraints. When no confusion may arise, we write
= instead of =α for the sake of simplicity. For a unification problem M = N of
two hypergraphs M and N containing unknown variables X,Y, . . . , the goal is
to find hypergraph λ-terms which replace X,Y, . . . and ensure the α-equivalence
of M and N . To reason about the equality of non-ground hypergraph λ-terms
(hypergraphs containing unknown variables), we use the concepts of swapping
↔ and freshness # from the nominal approach [4].

Lemma 1. In hypergraph λ-terms, for an abstraction L=abs(A,M), the hyper-
link A occurs in M only.

Proof. Follows from the construction of hypergraph λ-terms.

Henceforth, note that the last arguments of atoms representing λ-term con-
structors are implicit in terms related by = and #.

Lemma 2. For two α-equivalent hypergraph λ-terms

abs(A,M) = abs(B,N) ,

the following holds,

– A#N and B#M ,
– M = [A ↔ B]N and [A ↔ B]M = N ,

where A#N denotes that A is fresh for N (or A is not in N) and [A ↔ B]N
denotes the swapping of A and B in N .

Proof. Follows from Lemma 1 and the fact that hyperlinks representing bound
variables are distinct in hypergraph λ-terms.

In Lemma 2, we could use renaming M = [A/B]N and [B/A]M = N instead
of swapping, where [A/B]N means replacing B by A in N . Moving [A/B] to the
left-hand side of = requires the switching of A and B. Using swapping saves us
from such switching operation in the implementation. Another point is that it
is clear from their definitions that swapping subsumes renaming. In [A ↔ B]N ,
swapping [A ↔ B] applies to every hyperlink in N until it reaches an unknown
variableX occurring inN . We suspend swapping when it encounters an unknown
variable X until X is instantiated to a non-variable term in the future.

Definition 1. Let π be a list of swappings [A1 ↔ B1, . . . , An ↔ Bn], var(π) =
{A1, B1, . . . , An, Bn}, and π−1 = [An ↔ Bn, . . . , A1 ↔ B1]. Applying π to a
term M is written as π ·M . When M is an unknown variable X, we call π ·M a
suspension. The inductive definition of applying swappings to hypergraph λ-terms
is defined as follows, where π@π′ is a concatenation of π and π′.

π@[A ↔ C] ·B def
= π ·B (A ̸= B,B ̸= C)

π@[A ↔ C] ·A def
= π · C

π@[C ↔ A] ·A def
= π · C

π · abs(A,M)
def
= abs(A, π ·M)

π · app(M,N)
def
= app(π ·M,π ·N)

π · (π′ ·M)
def
= π@π′ ·M

[] ·M def
= M

We don’t apply swapping to hyperlinks representing the bound variables of
an abs (the fourth rule in Definition 1) because all bound variables are distinct
in hypergraph λ-terms, and a swapping is only created from two abstractions
using the rule =abs in Fig. 4. We use a freshness constraint # in the equality
judgment of non-ground hypergraph λ-terms, and write θ ⊢ M = N to denote
that M and N are α-equal terms under a set θ of freshness constraints called a
freshness environment. For example,

{A#X, B#X} ⊢ abs(A,X) = abs(B,X)

is a valid judgment. Likewise, we write θ ⊢ A#M to say that A#M holds
under θ. For example, A#X ⊢ A#app(X,B) is a valid judgment. With swapping
and freshness constraints, judging the equality of two non-ground hypergraph
λ-terms is simple, as shown in Fig. 4.

θ ⊢ A = A
=hlink

θ ⊢ M = [A ↔ B] ·N θ ⊢ A#N θ ⊢ B#M

θ ⊢ abs(A,M) = abs(B,N)
=abs

θ ⊢ M1 = M2 θ ⊢ N1 = N2

θ ⊢ app(M1, N1) = app(M2, N2)
=app

(A#X) ∈ θ for all A ∈ var(π@π′)

θ ⊢ π ·X = π′ ·X =susp

A ̸= B

θ ⊢ A#B
#hlink

θ ⊢ A#N

θ ⊢ A#abs(B,N)
#abs

θ ⊢ A#M θ ⊢ A#N

θ ⊢ A#app(M,N)
#app

(π−1 ·A#X) ∈ θ

θ ⊢ A#π ·X #susp

Fig. 4: The equality and freshness judgments for non-ground hypergraph λ-terms

The soundness of most of the rules in Fig. 4 should be self-evident. Below we
give some lemmas to justify =susp and #susp. It is important to note that the
rules in Fig. 4 are assumed to be used in a goal-directed manner starting from
hypergraph λ-terms M and N . In the following lemmas, “obtained by applying
rules in Fig. 4 and Definition 1” means that we use the rules in Fig. 4 in
goal-directed, backward manner and the rules in Definition 1 in the left-to-right
direction. By doing so, we come up with a set of unification rules which works
on two unifiable terms and fails for two non-unifiable terms.

When judging the equality of two non-ground hypergraph λ-terms using the
rules in Fig. 4, swappings are only generated by the rule =abs, and these swap-
pings are applied to terms by the rules in Definition 1. During such process, we
may have terms such as θ ⊢ π·M = π′ ·N and θ ⊢ A#π·M . As mentioned before,
a swapping is always created from two abstractions which have distinct bound
hyperlinks. Therefore, in a judgment, swappings enjoy the following properties:
Each swapping always has two distinct hyperlinks, and two swappings generated
by the rule =abs have no hyperlinks in common. For example, in a judgment,
there are no swappings such as [A ↔ A] and [A ↔ B,B ↔ C].

Lemma 3. If the judgment

θ ⊢ π ·M = π′ ·N

is obtained by applying rules in Fig. 4 and Definition 1, then var(π)∩var(π′) = ∅
holds.

Proof. Follows from the fact that hyperlinks of a swapping are distinct.

Note that the rules in Fig. 4 and Definition 1 generate non-empty swappings
only to the right-hand side of equations, so the π above is actually empty. Nev-
ertheless, we have non-empty swappings in the left-hand side in this and the
following lemmas because the claims generalize to equations generated by the
unification algorithm described later in Fig. 5.

Lemma 4. If the judgment

θ ⊢ π · abs(A,M) = π′ · abs(B,N),

is obtained by applying rules in Fig. 4 and Definition 1, then A /∈ var(π@π′)
and B /∈ var(π@π′) hold.

Proof. The same as the proof of Lemma 3.

The next lemma states how swappings move between two sides of = in a
judgment.

Lemma 5. θ ⊢ M = π ·N obtained by applying rules in Fig. 4 and Definition 1
holds if and only if θ ⊢ π−1 ·M = N holds.

Proof. (⇒) Let π = [A1 ↔ B1, . . . , An ↔ Bn]. Because freshness constraints are
generated only from the rule =abs, we can assume that A1, . . . , An occur only in
N , that B1, . . . , Bn occur only in M , and that θ contains {A1#M, . . . , An#M,
B1#N, . . . , Bn#N}. If N = Ai for some i, then M = Bi by assumption and
the rule =hlink, in which case π−1 · M = Ai and the lemma holds. If N is a
hyperlink not in var(π), then M and N are the same hyperlink not in var(π)
and the lemma holds obviously. If N is an unknown variable, the lemma is again
obvious from the rule =susp. The other cases are straightforward by structural
induction.
(⇐) The proof of the other direction is similar.

The next lemma justifies the rule #susp in Fig. 4.

Lemma 6. θ ⊢ A#π ·M obtained by applying rules in Fig. 4 and Definition 1
holds if and only if θ ⊢ π−1 ·A#M holds.

Proof. (⇒) By Lemma 4 and the fact that freshness constraints are created by
the rule =abs, we know that A ̸∈ var(π). Therefore, if θ ⊢ A#π · M , θ ⊢
π−1 ·A#M holds.
(⇐) For the same reason, A ̸∈ var(π−1). Therefore, if θ ⊢ π−1 · A#M holds,
θ ⊢ A#π ·M holds.

The next lemma justifies the rule =susp in Fig. 4.

Lemma 7. θ ⊢ π ·M = π′ ·M obtained by applying rules in Fig. 4 and Defini-
tion 1 holds for π and π′ if and only if A#M ∈ θ for all A ∈ var(π@π′).

Proof. (⇒) By lemma 3, we know that var(π)∩var(π′) = ∅. Therefore, in order
for θ ⊢ π ·M = π′ ·M to hold, π and π′ should have no effects on M , which means
var(π@π′)∩var(M) = ∅, which is the same as A#M ∈ θ for all A ∈ var(π@π′).
(⇐) If A#M ∈ θ for all A ∈ var(π@π′), obviously, θ ⊢ π ·M = π′ ·M holds.

Theorem 1. The relation = defined in Fig. 4 is an equivalence relation, i.e.,

(a) θ ⊢ M = M ,
(b) θ ⊢ M = N implies θ ⊢ N = M ,
(c) θ ⊢ M = N and θ ⊢ N = P implies θ ⊢ M = P .

Proof.
(a) When M is a hyperlink A, then A = A follows from the rule =hlink. When
M is an abstraction, note that M stands for an α-equivalence class. For example,
M stands for either M=abs(A,A) or M=abs(B,B). Assume P = P (as induc-
tion hypothesis), A#P , and that B occurs in P , then P = [A ↔ B]@[B ↔ A] ·P
holds. Let N = [B ↔ A] · P , then it is clear that B#N . Clearly, abs(B,P) =
abs(A,N) holds, therefore M = M holds for abstractions. When M is an ap-
plication, the proof is again by structural induction. The equivalence of terms
containing suspension follows from the rule =susp and Lemma 7.
(b) When M and N are hyperlinks, ⊢ M = N by the rule =hlink simply implies
⊢ N = M . WhenM andN areM=abs(A,N1) andN=abs(B,N2) respectively,
⊢ M = N leads to ⊢ N1 = [A ↔ B] · N2, ⊢ A#N2 and ⊢ B#N1 by the rule
=abs. By Lemma 5 and the induction hypothesis, we have ⊢ N2 = [A ↔ B] ·N1,
⊢ A#N2 and ⊢ B#N1 which leads to abs(B,N2) = abs(A,N1). When M
and N are applications, the proof is by the rule =app and using the induction
hypothesis twice. The equivalence of terms containing suspension follows from
the rule =susp and Lemma 7.
(c) When M,N and P are hyperlinks, it holds. When M,N and P are M =
abs(A,M1), N = abs(B,M2) and P = abs(C,M3), we have ⊢ M1 = [A ↔
B] · M2, ⊢ A#M2, ⊢ B#M1 and ⊢ M2 = [B ↔ C] · M3, ⊢ B#M3, ⊢ C#M2

by =abs. By Lemma 1, we know that A#M3 and C#M1. By Lemma 5 and the

=hln {A = A} ∪ P, δ =⇒ P, δ

=abs {abs(A,M) = abs(B,N)} ∪ P, δ =⇒ {M = [B ↔ A]N,A#N,B#M} ∪ P, δ

=app {app(M1, N1) = app(M2, N2)} ∪ P, δ =⇒ {M1 = M2 , N1 = N2} ∪ P, δ

=rm {π ·X = π′ ·X} ∪ P, δ =⇒ P, δ

=var
{M = π ·X}
{π ·X = M}

}
∪ P, δ =⇒

δ′(P), δ′ ◦ δ, where δ′ = [X := π−1 ·M]

provided X does not occur in M

#hln {A#B} ∪ P, δ, =⇒ P, δ

#abs {A#abs(B,N)} ∪ P, δ =⇒ {A#N} ∪ P, δ

#app {A#app(M,N)} ∪ P, δ =⇒ {A#M,A#N} ∪ P, δ

#sus {A#π ·X} ∪ P, δ =⇒ {π−1 ·A#X} ∪ P, δ

Fig. 5: Unification of hypergraph λ-terms

induction hypothesis, we have {A#M3, C#M1} ⊢ M1 = [A ↔ B]@[B ↔ C]·M3,
which is the same as {A#M3, C#M1} ⊢ M1 = [A ↔ C] · M3, which leads
to ⊢ abs(A,M1) = abs(C,M3) by =abs. The proof of applications is trivial.
The equivalence of terms containing suspension follows from the rule =susp and
Lemma 7.

A substitution δ is a finite set of mappings from unknown variables to terms,
written as [X := M1, Y := M2, . . .] where its domain, dom(δ), is a set of distinct
unknown variables {X,Y, . . . }. Applying δ to a term M is written as δ(M) and is
defined in a standard manner. A composition of substitutions is written as δ ◦ δ′
and defined as (δ ◦ δ′)(M) = δ(δ′(M)). The ε denotes an identity substitution.
Substitution commutes with swapping ; i.e., δ(π ·M) = π · (δ(M)). For example,
applying [X := A] to [A ↔ B]·app(N,X) will result in app(N,B). For two sets
of freshness constraints θ and θ′, and substitutions δ and δ′, writing θ′ ⊢ δ(θ)
means that θ′ ⊢ A#δ(X) holds for all (A#X) ∈ θ, and θ ⊢ δ = δ′ means that
θ ⊢ δ(X) = δ′(X) for all X ∈ dom(δ) ∪ dom(δ′).

The definitions of unification, most general unifiers and idempotent unifiers
are similar to the ones in nominal unification [14]. A unification problem P is a
finite set of equations over hypergraph λ-terms and freshness constraints. Each
equation M = N may contain unknown variables X,Y, A solution of P
is a unifier denoted as (θ, δ), consisting of a set θ of freshness constraints and
a substitution δ. A unifier (θ, δ) of a problem P equates every equation in P ,
i.e., establishes θ ⊢ δ(M) = δ(N). U(P) denotes the set of unifiers of a problem
P . For P , a unifier (θ, δ) ∈ U(P) is a most general unifier if for any unifier
(θ′, δ′) ∈ U(P), there is a substitution δ′′ such that θ′ ⊢ δ′′(θ) and θ′ ⊢ δ′′◦δ = δ′.
A unifier (θ, δ) ∈ U(P) is idempotent if θ ⊢ δ ◦ δ = δ.

The unification algorithm is described in Fig. 5, where P is a given unifica-
tion problem and δ is a substitution which is usually initialized to ε. Each rule

arbitrarily selects an equation or a freshness constraint from P and transforms
it accordingly. The rule =abs transforms an equation and creates two freshness
constraints, where all freshness constraints we need are obtained. That is why the
rule =rm simply deletes an equation without creating any freshness constraints.
The rule =var creates a substitution δ′ from an equation (if X /∈ M), applies δ′

to P and adds δ′ to δ. The rules in Fig. 5 essentially correspond to the rules in
Fig. 4 except for the rule =var. The next lemma justifies the rule =var.

Lemma 8. Substitution generated by the rule =var in Fig. 5 preserves = and
obtained by applying rules in Fig. 4. That is,

(a) If θ′ ⊢ δ(θ) and θ ⊢ M = N hold, then θ′ ⊢ δ(M) = δ(N) holds.

(b) If θ′ ⊢ δ(θ) and θ ⊢ A#M hold, then θ′ ⊢ A# δ(M) holds.

Proof. The proof of both is by structural induction. (a) We only show the case
of abstraction. Assume M = abs(A,X), N = abs(B,Y), δ = [X := P1, Y := P2].
Then we have θ = {A#Y, B#X}, θ ⊆ θ′, A#P2, and B#P1. From θ ⊢ M = N , we
have X = [B ↔ A]Y . Using A#P2 and B#P1, and by the induction hypothesis,
P1 = [B ↔ A]P2 holds. Therefore, θ′ ⊢ δ(abs(A,X)) = δ(abs(B,Y)) holds. (b)
The proof is by structural induction.

Terms in the hypergraph approach and the nominal approach are first-order
terms without built-in β-reduction. To represent bound variables, the nominal
approach uses concrete names and the hypergraph approach uses hyperlinks
which are identified by names when writing hypergraph terms as text. Our uni-
fication and nominal unification both assume α-equality for terms. Therefore,
it is not surprising that our unification algorithm happens to be similar to the
nominal unification algorithm. Nevertheless, there are differences. Our algorithm
does not have a rule for handling two abstractions with the same bound variable.
Also, the rule =rm is different from the ≈?-suspension rule in nominal unifica-
tion [14]. This is because Lemma 7 is different from its counterpart in nominal
unification: the former states the freshness of every variable of π@π′ and the
latter states the freshness of the variables in the disagreement set of π and π′.

Theorem 2. For a given unification problem P , the unification algorithm in
Fig. 5 either fails if P has no unifier or successfully produces an idempotent
most general unifier.

Proof. Given in Appendix with related lemmas. The structure of the proof in [14]
applies to our case basically, though our formalization allows the interleaving of
the = and # rules of the algorithm.

4 Examples of The Unification

We apply the unification algorithm in Fig. 5 to three unification problems.

Example 1. A unification problem

abs(A,abs(B,X)) = abs(C,abs(D,X))

has a solution.

{abs(A,abs(B,X)) = abs(C,abs(D,X))}, ε
{abs(B,X) = [C ↔ A] · abs(D,X), A#abs(D,X), C#abs(B,X)}, ε (=abs)

{X = [D ↔ B, C ↔ A] ·X, A#X, C#X, B#[C ↔ A] ·X, D#X}, ε (=abs,#abs,#hln)

{A#X, C#X, B#X, D#X}, ε (=rm,#sus)

Success

The problem has the most general unifier ({A#X, C#X, B#X, D#X}, ε), which
says that X can be any term not containing A, B, C or D.

Example 2. A unification problem

abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))

has no solution.

{abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))}, ε
{abs(B,app(X,B)) = [C ↔ A] · abs(D,app(D,X)), (=abs)

A#abs(D,app(D,X)), C#abs(B,app(X,B))}, ε
{app(X,B) = [D ↔ B] · app(D,[C ↔ A] ·X), (=abs,#abs,#app,#hln)

A#X, C#X, B# app(D,[C ↔ A] ·X), D#app(X,B)}, ε
{X = B, B = [D ↔ B, C ↔ A] ·X, A#X, C#X, D#X, B#X}, ε (=app,#app,#hln,#sus)

{B = D, B#B}, [X := B] (=var,#hln)

Failure

The problem is unsolvable; it fails due to both B = D and B#B.

Example 3. A unification problem

abs(A,app(X,Y)) = abs(B,app(app(B,Y),X))

has no solution.

{abs(A,app(X,Y)) = abs(B,app(app(B,Y),X))}, ε
{app(X,Y) = [B ↔ A] · app(app(B,Y),X), (=abs)

A#app(app(B,Y),X), B#app(X,Y)}, ε
{X = app(A,[B ↔ A] · Y), Y = [B ↔ A] ·X, (=app,#app,#hln)

A#X, A#Y , B#X, B#Y }, ε
{Y = [B ↔ A] · app(A,[B ↔ A] · Y), A#app(A,[B ↔ A] · Y), (=var)

A#Y , B#app(A,[B ↔ A] · Y), B#Y }, [X := app(A,[B ↔ A] · Y)]
{Y = app(B,[B ↔ A, B ↔ A] · Y), A#Y , B#Y , A#Y , A#A, B#Y }, (#app,#hln,#sus)

[X := app(A,[B ↔ A] · Y)]
Failure

The problem is unsolvable; it fails due to A#A.

5 Implementation

We implemented the unification of hypergraph λ-terms in HyperLMNtal in a
straightforward manner1. There are a total of 52 rewrite rules in the implemen-
tation; 12 rewrite rules corresponding to the 9 rules in Fig. 5 (4 rules for the =var
rule), 14 rules for the occur-check, 7 rules for implementing applying swapping
to terms, 7 rewrite rules for substitution, and several auxiliary rules for list man-
agement. Interestingly, the implementation of substitution M [X := N] turned
out to be essentially the same as that for the λ-calculus, i.e., sub(X,N,M) in
Fig. 2. The implementation solved a number of unification problems, including
the examples in this paper. HyperLMNtal brought simplicity in the sense that
the rewrite rules of the implementation are extremely close to the unification
rules discussed in this paper.

6 Related Work and Conclusion

Complexity of formalizing unification over terms containing name binding is
largely determined by the approach taken for representing such terms. There
are two prominent unification algorithms: higher-order pattern unification [8]
and nominal unification [14].

A higher-order approach implements a variant of the λ-calculus as a meta-
language, which is used to encode formal systems involving name binding [9].
The meta-language implicitly handles substitution and implicitly restricts bound
variables to be distinct. Users reason about formal systems indirectly through
the meta-language, in which terms are higher-order terms. Higher-order pattern
unification unifies equations of terms modulo =αβ0η. It finds functions to substi-
tute unknown variables, which means that variable capture never happens. The
characteristics of higher-order pattern unification are the result of letting the
meta-language handle everything implicitly. In the nominal approach, bound-
able names are equipped with swapping and freshness to ensure correct substi-
tutions [4]. Users reason on formal systems through nominal terms which are
first-order terms. As the result, nominal unification solves equations of terms
modulo =α, because =βη is not needed for first-order terms, and allows for
variable capture in the unification while preserving α-equivalence. We believe
that having no restrictions on bound variables is the cause of somewhat com-
plex proofs in the nominal unification. One observation is that using a higher-
order meta-language implicitly ensures the distinctness of bound variables in
the higher-order approach. In the nominal approach, such restriction on bound
variables does not exist.

Our approach uses hyperlinks to represent variables, hypergraphs to rep-
resent terms and hlground followed by hypergraph copying to avoid variable
capture. Unlike the nominal approach, we use fresh hyperlinks whenever needed
and hlground manages hyperlinks. In our approach, it is natural to restrict a hy-
perlink to be bound only once and every abstraction is syntactically unique. Just

1 Implementation is available at https://gitlab.com/alimjanyasin .

like nominal unification, our unification only considers α-equivalence and allows
variable capture in the unification. The key idea of our technique is that im-
plementing α-renaming (as the copying of hypergraphs identified by hlground)
leads to the simplification of overall reasoning. Urban pointed out that the proofs
of nominal unification in [14] are clunky and presented simpler proofs in [15].
Proofs in this paper are even somewhat simpler than the proofs in [15]. In our
unification algorithm, the basic properties are easy to establish; Lemmas 4, 5, 6
and 7 are intuitive and simple. In particular, we proved equivalence relation
(Theorem 1) without much efforts.

To conclude, we worked on the unification of hypergraph λ-terms and the
result shows that our approach has taken the promising strategy as indicated
by simple proofs of fundamental properties needed for the unification algorithm.
We successfully implemented the unification algorithm in HyperLMNtal. This
work suggests that our hypergraph rewriting framework provides a convenient
platform to work with formal systems involving name bindings and unification
of their terms. In the future, we plan to use this unification algorithm to encode
type inferences of formal systems involving name binding. Besides, it should
be interesting to reformalize logic programming languages such as αProlog [3]
using our hypergraph-based approach and implement them in HyperLMNtal to
see how much simplicity our approach can provide in practice.

Acknowledgement

The authors are indebted to anonymous referees for their useful comments and
pointers to the literature. This work is partially supported by Grant-In-Aid for
Scientific Research ((B)26280024), JSPS, Japan, and Waseda University Grant
for Special Research Projects.

References

1. H. Barendregt: The Lambda Calculus: its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics, North-Holland, 103 (1984).

2. James Cheney: Relating Nominal and Higher-Order Pattern Unification. In Pro-
ceedings of the 19th International Workshop on Unification, LNCS 3132, Springer-
Verlag, 104–119 (2005).

3. James Cheney, Christian Urban: αProlog: A Logic Programming Language with
Names, Bindings and α-Equivalence. In Proceedings of the 20th International Con-
ference on Logic Programming, 269–283 (2004).

4. M. J. Gabbay, A. M. Pitts: A New Approach to Abstract Syntax with Variable
Binding. Formal Aspects of Computing, 13, 341–363 (2002).

5. G. J. Huet: A Unification Algorithm for Typed λ-Calculus. Theoretical Computer
Science,1(1), 27–57 (1975).

6. Jordi Levy, Mateu Villaret: Nominal Unification from a Higher-Order Perspective.
In Proceedings of Rewriting Techniques and Applications, LNCS 5117, Springer-
Verlag, 246–260 (2008).

7. Alberito Martelli, Ugo Montanari: An Efficient Unification Algorithm. ACM Trans-
actions on Programming Languages and Systems, 4(2), 258–282 (1982).

8. Dale Miller: A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unification. J. Logic and Comput, 1, 497–536 (1991).

9. Frank Pfenning, Conal Elliott: Higher-Order Abstract Syntax. In Proceedings of the
ACM SIGPLAN conference on Programming language design and implementation,
199–208 (1988).

10. Xiaochu Qi: An Implementation of the Language Lambda Prolog Organized around
Higher-Order Pattern Unification. Ph. D. thesis, University of Minnesota (2009)

11. J. A. Robinson: A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1), 23–41 (1965).

12. Kazunori Ueda: Encoding the Pure Lambda Calculus into Hierarchical Graph
Rewriting. In Proceedings of Rewriting Techniques and Applications, LNCS 5117,
Springer-Verlag, 392–408 (2008).

13. Kazunori Ueda, Seiji Ogawa: HyperLMNtal: An Extension of a Hierarchical Graph
Rewriting Model. Küstliche Intelligenz, 26(1), 27–36 (2012).

14. C. Urban, A.M. Pitts, M.J. Gabbay: Nominal unification. J. Theoretical Computer
Science, 323(1–3), 473-497 (2004).

15. C. Urban: Nominal Unification Revisited. In Proceedings of UNIF 2010, 1–11
(2010).

16. Alimujiang Yasen, Kazunori Ueda: Hypergraph Representation of Lambda-Terms.
In Proceegins of 10th International Symposium on Theoretical Aspects of Software
Engineering, 113–116 (2016).

17. Alimujiang Yasen, Kazunori Ueda: Name Binding is Easy with Hypergraphs. sub-
mitted.

18. Zhenyu Qian: Linear unification of higher-order patterns. In Proceedings of the
International Joint Conference CAAP/FASE on Theory and Practice of Software
Development, LNCS 668, Springer-Verlag, 391–405 (1993).

19. N. Bourbaki: Théorie des ensembless, Hermann (1970).

20. Ian Mackie: Efficient λ-Evaluation with Interaction Nets. In Proceedings of Rewrit-
ing Techniques and Applications, LNCS 3091, Springer-Verlag, 155–169 (2004).

A Appendix

A.1 Adequacy of Equivalence

The relation = defined in Fig. 4 and the standard α-equivalence =α (based on
graph isomorphism) for ground hypergraph λ-terms are the same.

Proposition 1 (adequacy). For ground hypergraph λ-terms M and N , the
relation M =α N holds if and only if ∅ ⊢ M = N holds in Fig. 4, and ∅ ⊢ A#M
holds if and only if A in not in the set fv(M), defined by

fv(A)
def
= {A} (A is a hyperlink),

fv(abs(A,M))
def
= fv(M)\{A},

fv(app(M,N))
def
= fv(M) ∪ fv(N).

Proof. Let M and N be hyperlinks. If M =α N holds, then ∅ ⊢ M = N holds
by the rule =hlink. The other direction is similar. Let M and N be abs(A,M1)

and abs(B,N1), respectively. If M =α N , this means M1 =α N1[B := A], A is
not in N1 and B is not in M1. Therefore, ∅ ⊢ M = N holds by the rule =abs.
If ∅ ⊢ M = N , M =α N is clear from the premise of =abs. Let M and N be
M1M2 and N1N2. If M =α N , then we have M1 =α N1 and M2 =α N2. Clearly,
∅ ⊢ M = N from the rule =app. The other direction is similar.

It is easy to see that ∅ ⊢ A#M in Fig. 4 and A not being in fv(M) are the
same for ground hypergraph λ-terms. If one of them holds, so does the other.

A.2 Correctness of Unification

Here, we give the details of the correctness proof of the unification algorithm in
Fig. 5.

Lemma 9. The unification algorithm always terminates.

Proof. To show that the algorithm terminates, we need to define the size of
terms |M | as follows.

|A| def= 1

|abs(A,M)| def= 1 + |M |

|app(M,N)| def= 1 + |M |+ |N |

|π ·X| def= 1

For a unification problem P , a measure of the size of P is a lexicographically
ordered pair of natural numbers (n,m), where n is the number of different un-
known variables in P and m is the size of all equations in P , defined as

m
def
=

∑
(M=N)∈P

|M |+ |N |.

The = rules in Fig. 5 decrease (n,m). The rule =var eliminates one unknown
variable, so n decreases. The rule =rm decreases m and may decrease n. Other =
rules decrease m and do not change n.

The # rules decrease the size of freshness constraints, which is
∑

(A#M)∈P |M |.
Eventually, all remaining freshness constraints in a solvable problem P will have
the form A#X, for which there are no applicable rules.

For an unsolvable problem P , the algorithm terminates with P containing
terms of equations which cannot be made α-equivalent and invalid freshness
constraints: (i) A = B where A and B are different hyperlinks; (ii) M = N
where M and N start with different constructors such as abs and app; (iii) one
of M and N is a hyperlink and another is a constructor; (iv) π ·X = M where
M is either abs(A,M1) or app(M2,N) with X occurring in M1, M2 and N ;
(v) having a freshness constraint such as A#A.

By these facts, we can conclude that the algorithm terminates in both success
and failure cases.

Lemma 10. if θ ⊢ δ(π ·X) = δ(M) then θ ⊢ δ ◦ [X := π−1 ·M] = δ.

Proof. By commuting δ and π and by Theorem 1 (b), we have θ ⊢ δ(M) =
π · δ(X). By Lemma 5 and commuting again, we have θ ⊢ δ(π−1 ·M) = δ(X),
which implies θ ⊢ δ ◦ [X := π−1 ·M] = δ.

Lemma 11. For a problem P , (θ, δ) ∈ U(δ1(P)) iff (θ, δ ◦ δ1) ∈ U(P).

Proof. Follows from the definition of substitution composition.

In Fig. 5, the only rule that creates substitution is the rule =var. It is easy
to see that =var creates a substitution [X := π−1 ·M] with X ̸∈ dom(δ).

When applying the unification rules, the =hln, =app, =rm and all # rules
just simplifies some of equations and freshness constraints or removes some of
them, without creating anything really new. Interesting ones are the rule =abs

which creates new freshness constraints and the rule =var which creates a new
mapping. Therefore, in the following Lemmas, we focus on these two rules.

Lemma 12.

(a) If (θ, δ) ∈ U(P) and P, δ =⇒ P ′, δ′′ ◦ δ using the rule =var creating δ′′ =
[X := π−1 ·M], then (θ, δ) ∈ U(P ′) and θ ⊢ δ ◦ δ′′ = δ.

(b) If (θ, δ) ∈ U(P) and P, δ =⇒ P ′, δ using the rule =abs creating θ′′ =
{A#N,B#M}, then (θ, δ) ∈ U(P ′) and θ ⊢ δ(θ′′).

Proof.
(a) We can write P, δ =⇒ P ′, δ′′ ◦ δ as P, δ =⇒ δ′′(P), δ′′ ◦ δ. By (θ, δ) ∈ U(P)
and (π ·X = M) or (M = π ·X) is in P , θ ⊢ δ(π ·X) = δ(M) holds, which leads
to θ ⊢ δ ◦ δ′′ = δ by Lemma 10. By Lemma 11, we have (θ, δ) ∈ U(P ′) which is
the same as (θ, δ ◦ δ′′) ∈ U(P).
(b) By the assumption, we have θ ⊢ δ(abs(A,M)) = δ(abs(B,N)) and θ′′ =
{A#N,B#M}. In order to derive the above, Fig.4 tells that we must have
θ ⊢ A#δ(N), θ ⊢ B#δ(M) and θ ⊢ δ(M) = [A ↔ B] · δ(N), from which the
conclusions follow.

Lemma 13.

(a) If (θ, δ) ∈ U(P ′) and P, δ =⇒ P ′, δ′′ ◦ δ using the rule =var creating δ′′ =
[X := π−1 ·M], then (θ, δ ◦ δ′′) ∈ U(P).

(b) If (θ, δ) ∈ U(P ′) and P, δ =⇒ P ′, δ using the rule =abs creating θ′′ =
{A#N,B#M}, then (θ, δ) ∈ U(P).

Proof.
(a) P, δ =⇒ P ′, δ′′◦δ can be written as P, δ =⇒ δ′′(P), δ′′◦δ. Clearly, (θ, δ◦δ′′) ∈
U(P) follows from Lemma 11 and the assumption (θ, δ) ∈ U(δ′′(P)).
(b) The proof is similar to the proof of second part of Lemma 12, but in the
opposite direction.

Theorem 2. For a given unification problem P , the unification algorithm in
Fig. 5 either fails if P has no unifier or successfully produces an idempotent most
general unifier.

Proof. For a unification problem which has no unifiers, the algorithm fails as
explained in Lemma 9. For a solvable unification problem P0, the proof proceeds
in three steps: (i) a unifier is generated, (ii) it is most general, and (iii) it is
idempotent.

First, the algorithm transforms P0 as

P0, δ0 =⇒ P1, δ1 =⇒ · · · =⇒ Pn, δn ̸=⇒

by substitutions δ
′

1, . . . , δ
′

n and freshness constraints θ
′

1, . . . , θ
′

m where δ0 = ε,
δ1 = δ

′

1 ◦ δ0, . . . , δn = δ
′

n ◦ δn−1, and the θ
′

i stands for freshness constraints
created by the ith application of the rule =abs. By the # rules in Fig. 5, we
know that Pn consists only of freshness constraints of the form A#X. Let us
denote Pn as θ. By Lemma 13 and (θ, ε) ∈ U(Pn), we have (θ, δ) ∈ U(P0) where
δ = δ

′

n ◦ · · · ◦ δ′

1.
Second, for any other unifier (θ′, δ′) ∈ U(P0), by Lemma 12 we have θ′ ⊢

δ′ ◦δ′

1 = δ′, . . . , θ′ ⊢ δ′ ◦δ′

n = δ′ and θ′ ⊢ δ′(θ
′

1), . . . , θ
′ ⊢ δ′(θ

′

m). From the former,
we have θ′ ⊢ δ′ ◦ δ′

n ◦ · · · ◦ δ′

1 = δ′, which is the same as θ′ ⊢ δ′ ◦ δ = δ′. From the
latter, we have θ′ ⊢ δ′(θ′′) where θ′′ = θ

′

1 ∪ · · · ∪ θ
′

m. From θ′ ⊢ δ′ ◦ δ = δ′ and
θ′ ⊢ δ′(θ′′), we have θ′ ⊢ (δ′ ◦ δ)(θ′′). Since we know that δ(θ′′) is transformed
into θ, we have θ′ ⊢ δ′(θ). Therefore (θ, δ) is the most general unifier.

Third, since δ′ is any unifier, we have θ ⊢ δ ◦ δ = δ. Therefore (θ, δ) is the
idempotent most general unifier.

	Unification of Hypergraph -Terms

