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Chapter 11

API-BASED FORENSIC ACQUISITION
OF CLOUD DRIVES

Vassil Roussev, Andres Barreto and Irfan Ahmed

Abstract Cloud computing and cloud storage services, in particular, pose new
challenges to digital forensic investigations. Currently, evidence acqui-
sition for these services follows the traditional method of collecting arti-
facts residing on client devices. This approach requires labor-intensive
reverse engineering effort and ultimately results in an acquisition that
is inherently incomplete. Specifically, it makes the incorrect assumption
that all the storage content associated with an account is fully replicated
on the client. Additionally, there is no current method for acquiring
historical data in the form of document revisions, nor is there a way to
acquire cloud-native artifacts from targets such as Google Docs.

This chapter introduces the concept of API-based evidence acqui-
sition for cloud services, which addresses the limitations of traditional
acquisition techniques by utilizing the officially-supported APIs of the
services. To demonstrate the utility of this approach, a proof-of-concept
acquisition tool, kumodd, is presented. The kumodd tool can acquire ev-
idence from four major cloud drive providers: Google Drive, Microsoft
OneDrive, Dropbox and Box. The implementation provides command-
line and web user interfaces, and can be readily incorporated in estab-
lished forensic processes.

Keywords: Cloud forensics, cloud drives, API-based acquisition

1. Introduction
Cloud computing is emerging as the primary model for delivering in-

formation technology services to Internet-connected devices. It abstracts
away the physical computing and communications infrastructure, and
enables customers to effectively rent (instead of own and maintain) as
much infrastructure as needed. According to NIST [14], cloud comput-
ing has five essential characteristics that distinguish it from previous
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service models: (i) on-demand self service; (ii) broad network access;
(iii) resource pooling; (iv) rapid elasticity; and (v) measured service.

The underpinning technological development that has made the cloud
possible is the massive adoption of virtualization on commodity hard-
ware systems. Ultimately, this allows for a large pool of resources, such
as a data center, to be provisioned and load-balanced at a fine granular-
ity, and for the computations of different users (and uses) to be strongly
isolated.

The first public cloud services – Amazon Web Services (AWS) –
were introduced by Amazon in 2006. According to a 2015 report by
RightScale [18], cloud adoption has become ubiquitous: 93% of busi-
nesses are experimenting with cloud deployments, with 82% adopting
a hybrid strategy that combines the use of multiple providers (usually
in a public-private configuration). Nonetheless, much of the technology
transition is still ahead, as 68% of enterprises have less than 20% of
their application portfolios running in cloud environments. Gartner [8]
predicts that another two to five years will be needed before cloud com-
puting reaches the “plateau of productivity” [9], heralding a period of
mainstream adoption and widespread productivity gains.

Meanwhile, cloud forensics is in its infancy. Few practical solutions
exist for the acquisition and analysis of cloud evidence, and most of
them are minor adaptations of traditional methods and tools. Indeed,
NIST, the principal standardization body in the United States, is still
attempting to build consensus on the challenges involved in performing
forensics of cloud data. A recent NIST report [14] identifies 65 separate
challenges involved in cloud forensics.

This research focuses on a specific problem – the acquisition of data
from cloud storage services. Cloud storage services are extremely popu-
lar, with providers such as Google Drive, Microsoft OneDrive, Dropbox
and Box offering consumers between 2 GB and 15 GB of free cloud stor-
age. Cloud storage is also widely used by mobile devices to share data
across applications that are otherwise isolated from each other. There-
fore, a robust evidence acquisition method is a necessity. Additionally,
due to the wide variety of cloud storage services and the rapid introduc-
tion of new services, evidence acquisition methods and tools should be
adaptable and extensible.

In traditional forensic models, an investigator works with physical ev-
idence containers such as storage media or integrated embedded devices
such as smartphones. In these scenarios, it is easy to identify the proces-
sor that performs the computations as well as the media that store traces
of the computations, and to physically collect, preserve and analyze the
relevant information content. As a result, research has focused on discov-
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ering and acquiring every little piece of log and timestamp information,
and extracting every last bit of discarded data that applications and the
operating system leave behind.

Conceptually, cloud computing breaks this model in two major ways.
First, resources such as CPU cycles, RAM and secondary storage are
pooled (e.g., RAID storage) and then allocated at a fine granularity.
This results in physical media that usually contain data owned by many
users. Additionally, data relevant to a single case can be spread across
numerous storage media and (potentially) among different providers re-
sponsible for different layers in the cloud stack. Applying the conven-
tional model introduces several procedural, legal and technical problems
that are unlikely to have an efficient solution in the general case. Second,
computations and storage records are ephemeral because virtual machine
(VM) instances are continually created and destroyed and working stor-
age is routinely sanitized.

As discussed in the next section, cloud storage forensics treats the
problem as just another instance of application forensics. It applies
basic differential analysis techniques [7] to gain an understanding of the
artifacts present on client devices by taking before and after snapshots
and deducing the relevant cause and effect relationships. During an
actual investigation, an analyst would be interpreting the state of the
system based on these known relationships.

Unfortunately, there are several problems with the application of ex-
isting client-side methods:

Completeness: The reliance on client-side data can exclude crit-
ical case data. An example is the selective replication of cloud
drive data, which means that a client device may not have a local
copy of all the stored data. As usage grows – Google Drive already
offers up to 30 TB of storage – this will increasingly be the typical
situation.

Correctness and Reproducibility: It is infeasible to reverse
engineer all the aspects of an application’s functionality without
its source code; this immediately calls into question the correct-
ness of the analysis. Furthermore, cloud storage applications on
a client are updated frequently with new features introduced on a
regular basis. This places a burden on cloud forensics to keep up
the reverse engineering efforts, making it harder to maintain the
reproducibility of analyses.

Cost and Scalability: Manual client-side analysis is burdensome
and does not scale with the rapid growth and the variety of services
(and service versions).
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This chapter presents an alternative approach for acquiring evidence
from cloud storage services by leveraging the official APIs provided by
the services. This approach, which eliminates the need for reverse engi-
neering, has the following conceptual advantages:

APIs are well-documented, official interfaces through which cloud
applications on a client communicate with services. They tend to
change slowly and any changes are clearly marked; new features
may be incorporated incrementally in an acquisition tool.

It is easy to demonstrate completeness and reproducibility using
an API specification.

Web APIs tend to follow patterns, which makes it possible to adapt
existing code to a new (similar) service with modest effort. It is
often practical to write an acquisition tool for a completely new
service from scratch in a few hours.

To demonstrate the feasibility of the approach and to gain firsthand
experience with the acquisition process, a proof-of-concept tool named
kumodd has been developed. The tool can perform complete (or partial)
acquisition of cloud storage account data. It works with four popu-
lar services, Google Drive, Microsoft OneDrive, Dropbox and Box, and
supports the acquisition of revisions and cloud-only documents. The
prototype is written in Python and offers command line and web-based
user interfaces.

2. Related Work
This section summarizes essential cloud terminology and discusses

related work.

2.1 Cloud Computing
The National Institute of Standards and Technology (NIST) [14] de-

fines cloud computing as “a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction.” With respect to public cloud services –
the most common case – this means that the physical hardware on which
computations take place is owned and maintained by the provider, and
is, thus, part of the deployed software stack. Generally, customers have
the option to pay per unit of CPU, storage and network use, although
other business arrangements are also possible.
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Figure 1. Cloud service models and ownership of layers (public cloud).

Cloud computing services are commonly classified into three canonical
models: (i) software as a service (SaaS); (ii) platform as a service (PaaS);
and infrastructure as a service (IaaS). In practice, the distinctions are
often not clear cut and practical information technology cloud solutions
– and potential investigative targets – may incorporate elements of all
three canonical models. As illustrated in Figure 1, it is useful to de-
compose a cloud computing environment into a stack of layers (from
low to high): (i) hardware; (ii) virtualization (consisting of a hypervisor
that enables the installation of virtual machines); (iii) operating sys-
tem (installed on each virtual machine); (iv) middleware; (v) runtime
environment; (vi) data; and (vii) application.

Depending on the deployment scenario, different layers may be man-
aged by different parties. In a private deployment, the entire stack is
hosted by the owner and the overall forensic picture is very similar to
that of a non-cloud information technology target. Data ownership is
clear, as are the legal and procedural paths to obtain the data; indeed,
the very use of the term “cloud” is mostly immaterial to forensics.

In a public deployment, the SaaS/PaaS/IaaS classification becomes
important because it defines the ownership and management responsi-
bilities over data and services (Figure 1). In hybrid deployments, layer
ownership can be split between the customer and the provider and/or
across multiple providers. Furthermore, this relationship may change
over time; for example, a customer may handle the base load on an
owned infrastructure, but burst to the public cloud to handle peak de-
mand or system failures.

Due to the wide variety of deployment scenarios, the potential targets
of cloud forensics can vary widely. Thus, the most productive approach
for developing practical solutions is to start with specific (but common)
cases and, over time, attempt to incorporate an expanding range. The
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focus of this discussion is the forensics of cloud drive services, starting
with the acquisition process.

2.2 Cloud Drive Forensics
The concept of a “cloud drive” is closely related to network filesystem

shares and is almost indistinguishable from versions of the i-drive (Inter-
net drive) that were popular the late 1990s. The main difference is that
of scale – today, wide-area network (WAN) infrastructures have much
higher bandwidth, which makes real-time file synchronization much more
practical. Also, there are many more providers, most of which build their
services in top of third-party IaaS offerings such as AWS.

Over the last few years, a number of forensic researchers have worked
on cloud drives. Chung et al. [1] analyzed four cloud storage services
(Amazon S3, Google Docs, Dropbox and Evernote) in search of traces
left on client systems that could be used in criminal cases. They reported
that the analyzed services may create different artifacts depending on
specific features of the services and proposed a forensic investigative
process for cloud storage services based on the collection and analysis
of artifacts of cloud storage services recovered from client systems. The
process involves gathering volatile data from a Mac or Windows system
(if available) and then retrieving data from the Internet history, log files
and directories. In the case of mobile devices, Android phones are rooted
to collect data and iTunes is used to obtain information for iPhones (e.g.,
backup iTunes files). The objective was to check for traces of a cloud
storage service in the collected data.

Hale [11] analyzed the Amazon Cloud Drive and discusses the digital
artifacts left behind after an Amazon Cloud Drive account has been
accessed or manipulated from a computer. Two methods may be used
to manipulate an Amazon Cloud Drive Account: one is via the web
application accessible using a web browser and the other is via a client
application from Amazon that can be installed on the system. After
analyzing the two methods, Hale found artifacts of the interface in the
web browser history and cache files. Hale also found application artifacts
in the Windows registry, application installation files in default locations
and a SQLite database for tracking pending upload/download tasks.

Quick and Choo [16] discuss the artifacts left behind after a Drop-
box account has been accessed or manipulated. Using hash analysis
and keyword searches, they attempted to determine whether the client
software provided by Dropbox had been used. This involved extract-
ing the account username from browser history (Mozilla Firefox, Google
Chrome and Microsoft Internet Explorer) and pursuing avenues such as
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directory listings, prefetch files, link files, thumbnails, registry, browser
history and memory captures. In a follow-up work, Quick and Choo [17]
used a similar conceptual approach to analyze the client-side operation
and artifacts of Google Drive and provide a useful starting point for
investigators.

Martini and Choo [13] have researched the operation of ownCloud,
a self-hosted file synchronization and sharing solution. As such, it oc-
cupies a slightly different niche because it is much more likely for the
client and server sides to be under the control of the same person or
organization. Martini and Choo were able to recover several artifacts,
including sync and file management metadata (logging, database and
configuration data), cached files describing the files the user stored on
the client device and uploaded to the cloud environment or vice versa,
and browser artifacts.

Outside of forensics, there has been some interest in analyzing the
implementation of cloud drive services. An example is the work by Drago
et al. [3, 4]. However, its focus was on performance and networking
issues, and, although the results are interesting, their application to
forensic practice is very limited.

2.3 Forensic Uses of Cloud Service APIs
Huber et al. [12] were among the first to utilize cloud service APIs as

part of the forensic process. However, their main goal was to provide a
context for an investigation by acquiring a snapshot of the social network
of the investigative target via the Facebook Graph API.

With regard to commercial tools, Cloud Data eXplorer from Elcom-
Soft [6] offers the ability to acquire (via a service API) user artifacts
from Google accounts, including profile information, messages, contacts
and search history. However, no facilities are available to acquire cloud
drive data, nor is there any support for services other than Google.

2.4 Summary
Previous work on cloud storage forensics has primarily focused on

adapting the traditional application forensics approach to finding client-
side artifacts. This involves blackbox differential analysis, where be-
fore and after images are created and compared to deduce the essential
functions of the application. Clearly, the effectiveness of this approach
depends on the comprehensiveness of the tests performed on a target
system; ultimately, it is nearly impossible to enumerate all the eventu-
alities that may have affected the state of an application. The process
involves a labor-intensive reverse engineering effort, which requires sub-
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Figure 2. Cloud drive service architecture.

stantial human resources. Nevertheless, as discussed in the next section,
the biggest limitation of client-side forensics is that it cannot guarantee
the complete acquisition of cloud drive data.

3. Rationale for API-Based Acquisition
This section discusses the limitations of client-side acquisition and the

benefits of API-based acquisition.

3.1 Limitations of Client-Side Acquisition
The fundamental limitation of client-side acquisition of cloud data is

that it is an acquisition-by-proxy process. In other words, although it
resembles traditional acquisition from physical media, the method does
not target the authoritative source of the data, namely the cloud service.
As illustrated in Figure 2, client content is properly viewed as a cached
copy of cloud-hosted data. This simple fact has crucial implications for
forensic acquisition.

Partial Replication. The most obvious problem is that there is no
guarantee that any of the clients attached to an account have a complete
copy of the cloud drive content. As a point of reference, Google Drive
currently offers up to 30 TB of online storage (at a monthly cost of
$10/TB) whereas Amazon offers unlimited storage at $60/year. As data
accumulates, it will become impractical to maintain complete replicas of
all devices. Indeed, based on current trends, it is likely that most users
will not have a single device containing a complete copy of the data.
From the forensic perspective, direct access is needed to cloud drive
metadata to ascertain its contents. The alternative, blindly relying on
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client cache, would result in an inherently incomplete acquisition with
unknown gaps.

Revisions. Most drive services provide some form of revision history;
the lookback period varies from 30 days to unlimited revision history
depending on the service and subscription terms. This new source of
valuable forensic information has few analogs in traditional forensic tar-
gets (e.g., Volume Shadow Copy service on Windows), but forensic in-
vestigators are not yet familiar with this evidentiary source. Revisions
reside in the cloud and clients rarely have anything but the most recent
versions in their caches. Thus, a client-side acquisition will miss prior
revisions and will not even know that they are missing.

Cloud-Native Artifacts. Due to the wholesale movement to web-
based applications, the digital forensics community must learn to handle
a new problem – digital artifacts that do not have serialized represen-
tations in local filesystems. For example, Google Docs documents are
stored locally as links to the documents that can only be edited via a
web application. Acquiring an opaque link, by itself, is borderline use-
less – it is the content of the document that is of primary interest. It
is often possible to obtain a usable snapshot of the web application ar-
tifact (e.g., in PDF), but this can only be accomplished by requesting
it from the service directly; again, this cannot be accomplished by an
acquisition-by-proxy process.

To summarize, the brief examination in this section reveals that the
client-side approach to drive acquisition has major conceptual flaws that
are beyond remediation. Clearly, what is needed is a different method
that can obtain data directly from the cloud service.

3.2 Benefits of API-Based Acquisition
Fortunately, cloud services provide a front door – an API – to directly

acquire cloud drive content. In broad terms, a cloud drive provides a
storage service similar to that of a local filesystem; specifically, it enables
the creation and organization of user files. Therefore, its API loosely
resembles that of the filesystem API provided by the local operating
system. Before the technical details of the proof-of-concept tool are
described, it is necessary to make the case that the use of the API is
forensically sound.

The main issue to address is that an API-based approach results in
a logical – not physical– evidence acquisition. Traditionally, it has been
an article of faith that obtaining data at the lowest possible level of ab-
straction results in the most reliable evidence. The main rationale is that
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the logical view of the data may not be forensically complete because
data marked as deleted is not shown. Also, a technically-sophisticated
adversary may be able to hide data from the logical view. Until a few
years ago, this view would have been reasonably justified.

However, it is important to periodically examine the accepted wis-
dom in order to account for new technological developments. It is out-
side the scope of this chapter to make a more general argument, but it
should be noted that solid-state drives (SSDs) and even newer genera-
tions of high-capacity hard drives resemble autonomous storage comput-
ers rather than the limited peripherals of ten or more years ago. Some of
them contain ARM processors and execute complex load-balancing and
wear-leveling algorithms, which include background data relocation. Al-
though they support, for example, block-level access, the results do not
directly map to physical data layouts; this makes the acquired images
logical, rather than physical. To obtain (and make sense of) a truly
low-level representation of the data would increasingly require hardware
blackbox reverse engineering. More than likely, this would lead to the
wider acceptance of de facto logical acquisition as forensically sound.

In the case of cloud forensics, the case for adopting API-mediated
acquisition is simple and unambiguous. According to Figure 2, the client
component of the cloud drive (that manages the local cache) utilizes the
exact same interface to perform its operations. Thus, the service API is
the lowest available level of abstraction and is, therefore, appropriate for
forensic processing. Furthermore, the metadata of individual files often
include cryptographic hashes of their contents, which provide strong
integrity guarantees during acquisition.

The service APIs (and the corresponding client software development
kits for different languages) are officially supported by providers and
have well-defined semantics and detailed documentation; this allows for
a formal and precise approach to forensic tool development and testing.
In contrast, blackbox reverse engineering can never achieve provable
perfection. Similarly, acquisition completeness guarantees can only be
achieved via an API – the client cache contains an unknown fraction of
the content.

Finally, software development is almost always easier and cheaper
than reverse engineering followed by software development. The core
of the prototype tool described in this chapter is less than 1,600 lines
of Python code (excluding the web-based GUI) for four services. An
experienced developer could easily add a good-quality driver for a new
(similar) service in a day or two, including test code. The code needs
to be updated infrequently as providers strive to provide continuity and
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backward compatibility; any relevant additions to the API can easily be
identified and adopted incrementally.

4. Tool Design and Implementation
Conceptually, acquisition involves three core phases: (i) content dis-

covery; (ii) target selection; (iii) and target acquisition (Figure 3). Dur-
ing content discovery, the acquisition tool queries the target and obtains
a list of artifacts (files) along with their metadata. In a baseline im-
plementation, this can be reduced to enumerating all the available files;
in an advanced implementation, the tool may leverage the search func-
tionality provided by the API (e.g., Google Drive). During the selection
process, the list of targeted artifacts can be filtered by automated means
or by soliciting user input. The result is a (potentially prioritized) list
of targets that is passed to the tool for acquisition.

Traditional approaches largely short-circuit this process by attempt-
ing to blindly acquire all the available data. However, this “acquire first,
filter later” approach is not sustainable for cloud targets – the amount
of data could be enormous and the available bandwidth could be up to
two orders of magnitude less than the local storage.

The kumodd prototype described in this chapter is designed to be a
minimalistic tool for research and experimentation that can also provide
a basic practical solution for real cases. In fact, kumodd has been made
as simple as possible to facilitate its integration with the existing toolset.
Its basic function is to acquire a subset of the content of a cloud drive
and place it in an appropriately-structured local filesystem tree.

4.1 Architecture
The kumodd tool is split into several modules and three logical layers:

(i) dispatcher; (ii) drivers; and (iii) user interface (Figure 4). The dis-
patcher is the central component, which receives parsed user requests,
relays them to the appropriate driver and returns the results. The drivers
(one for each service) implement the provider-specific protocols via the
respective web APIs. The tool provides two interfaces, a command-line
interface (CLI) and a web-based GUI.
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4.2 Command-Line Interface
The general format of kumodd commands is:

python kumodd.py -s [service] [action] [filter]

The [service] parameter specifies the target service. Currently, the
supported options are gdrive, dropbox, onedrive and box correspond-
ing to Google Drive, Dropbox, Microsoft OneDrive and Box, respec-
tively.

The [action] argument instructs kumodd on the action to be per-
formed on the target drive:

-l lists stored files as a plaintext table.

-d downloads files subject to the [filter] specification.

-csv <file> downloads the files specified by <file> in CSV for-
mat.

The -p <path> option is used to specify the path to which the files
should be downloaded (and override the default, which is relative to the
current working directory).

The [filter] parameter specifies the subset of files to be listed or
downloaded based on file type: all (all files present); doc (Microsoft
Office/Open Office document files: .doc/.docx/.odf), xls (spreadsheet
files), ppt (PowerPoint presentation files); text files (text/source code);
and pdf files.
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In addition, some general groups of files can be specified: officedocs
(all document, spreadsheet and PowerPoint presentation files); image
(all image files); audio (all audio files); and video (all video files).

Some example commands are:

List all the files stored in a Dropbox account:

– python kumodd.py -s dbox -l all

List the images stored in a Box account:

– python kumodd.py -s box -l image

Download the PDF files stored in a Microsoft OneDrive account
to the Desktop folder:

– python kumodd.py -s onedrive -d all -l -p /home/
user/Desktop/

Download the files listed in gdrive list.csv from Google Drive:

– python kumodd.py -s gdrive -csv /home/user/Desktop/
gdrive list.csv

User Authentication. All four services use the OAuth2 (oauth.net/
2) protocol to authenticate a user and to authorize access to an ac-
count. When kumodd is used for the first time to connect to a cloud
service, the respective driver initiates the authorization process, which
requires the user to authenticate with the appropriate credentials (user-
name/password). The tool provides the user with a URL that must be
opened in a web browser, where the standard authentication interface
for the service requests the relevant username and password.

The process for using Google Drive is as follows:

[title=Authentication Step 1: connect to \emph{Google Drive}]
kumo@ubuntu:~/kumodd$ python kumodd.py -s gdrive -d all
Your browser has been opened to visit:
https://accounts.Google.com/o/oauth2/auth?scope=
https%3A%2F%2Fwww.www.Googleapis.com...
...

Figure 5 shows the authentication steps: provide account credentials
(left) and authorize application (right). After supplying the correct cre-
dentials and authorizing the application, the service returns an access
code that the user must input in the command line to complete the au-
thentication and authorization processes for the account. If the authen-
tication is successful, the provided access token is cached persistently in
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Figure 5. Authentication steps.

[caption=Sample processing output (with cached authorization token),
label=lst:auth4]

kumo@ubuntu:~/kumodd$ python kumodd.py -s gdrive -d all
Working...
TIME(UTC) APPLICATION USER FILE-ID REMOTE PATH REVISION LOCAL PATH

HASH(MD5)
2015-06-25 03:48:43.600028 kumodd-1.0 example.dev@gmail.com

1L-7o0rgPT2f6oX60OPtF4ZUFOmOJW1Crktr3DPril8o My Drive/ppt test
v.2 downloaded/example.dev@gmail.com/My Drive/ppt test -

2015-06-25 03:48:44.951131 kumodd-1.0 example.dev@gmail.com
1huaRTOudVnLe4SPMXhMRnNQ9Y_DUr69m4TEeD5dIWuA My Drive/revision doc
test v.3 downloaded/example.dev@gmail.com/My Drive/revision doc
test -

...
2015-06-25 03:48:54.254104 kumodd-1.0 example.dev@gmail.com

0B4wSliHoVUbhUHdhZlF4NlR5c3M My Drive/test folder/stuff/more stuff/
tree.py v.1 downloaded/example.dev@gmail.com/My Drive/test folder/
stuff/more stuff/tree.py 61366435095ca0ca55e7192df66a0fe8

9 files downloaded and 0 updated from example.dev@gmail.com drive
Duration: 0:00:13.671442

Figure 6. Sample processing output (with cached authorization token).

a .dat file saved in the /config folder with the name of the service.
Future requests will find the token and will not prompt the user for
credentials (Figure 6).

Content Discovery. In the current implementation, content discov-
ery is implemented by the list (-l) command, which acquires the file
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[caption=List of all files in a \emph{Google Drive} account
(trimmed),label={lst:gdrive-ls}]

andres@ubuntu:~/kumodd$ python kumodd.py -s gdrive -l all
Working...
FILE-ID REMOTE PATH REVISION HASH(MD5)
...1qCepBpY6Nchklplqqqc My Drive/test 1 -
...oVUbhaG5veS03UkJiU1U My Drive/version_test 3 ...bcdee370e5
...
...oVUbhUHdhZlF4NlR5c3M My Drive/test folder/stuff/more stuff/

tree.py ...2df66a0fe8

Figure 7. List of all files in a Google Drive account (trimmed).

metadata from the drive. As with most web services, the response is in
the JSON format; the amount of attribute information varies based on
the provider and can be quite substantial (e.g., Google Drive). Since it is
impractical to show all the output, the kumodd list command provides
an abbreviated version with the most essential information formatted
as a plaintext table (Figure 7). The rest is logged as a CSV file in the
/localdata folder with the name of the account and service.

Figure 8. Contents of the generated CSV file.

The stored output can be processed interactively using a spreadsheet
program (Figure 8) or using Unix-style command line tools, thereby
enabling a subsequent selective and/or prioritized acquisition.
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Acquisition. As discussed above, the acquisition is performed by the
download command (-d) and can be performed as a single discovery-
and-acquisition step or it can be targeted by providing a list of files
using the -csv option.

A list of downloaded files is displayed with information such as down-
load date, application version, username, file ID, remote path, down-
load path, revisions and cryptographic hashes. This information is
also logged in the file /downloaded/<username>/<service-name>.log.
Downloaded files are located in the /downloaded/<username>/ direc-
tory. The complete original metadata files with detailed information
about the downloaded files is stored in /downloaded/<username>/meta
data/ in the JSON format.

Revisions: The tool automatically enumerates and downloads all the
revisions of the files selected for acquisition. The number of available
revisions can be previewed as part of the file listing (Figure 8). During
the download, the filenames of the individual revisions are generated by
prepending the revision timestamp to the base filename. The filenames
can be viewed using the regular file browser:

(2015-02-05T08:28:26.032Z) resume.docx 8.4kB
(2015-02-08T06:31:58.971Z) resume.docx 8.8kB

Arguably, other naming conventions are also possible, but the ulti-
mate solution likely requires a user interface similar to the familiar file
browser, but which also understands the concept of versioning and al-
lows an analyst to trace the history of individual documents and obtain
snapshots of a drive at particular points in time.

Cloud-Native Artifacts (Google Docs): A new challenge presented by the
cloud is the emergence of cloud-native artifacts – data objects that have
no serialized representation on local storage and, by extension, cannot
be acquired by a proxy. Google Docs is the primary service considered in
this work; however, the problem readily generalizes to many SaaS/web
applications. A critical difference between native applications and web
applications is that the code for the latter is dynamically downloaded
at runtime and the persistent state of artifacts is stored back in the
cloud. Thus, the serialized form of the data (usually in JSON) is an
internal application protocol that is not readily rendered by a standalone
application.

In the case of Google Docs, the local Google Drive cache contains
only a link to the online location, which creates a problem for foren-
sics. Fortunately, the API offers the option to produce a snapshot of the
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Figure 9. Web-based GUI: Service selection.

document/spreadsheet/presentation in several standard formats [10], in-
cluding text, PDF and MS Office. At present, kumodd automatically
downloads PDF snapshots of all Google Docs encountered during acqui-
sition. Although this is a better solution than merely cloning the link
from the cache, forensically-important information is lost because the
internal artifact representation contains the complete editing history of
the document. This problem is discussed later in the chapter.

4.3 Web-Based GUI
The kumodd tool provides an interactive web-based GUI that is de-

signed to be served by a lightweight local web server. The GUI is started
using the kumodd-gui.py module:

[title=Starting the web GUI]
python kumodd-gui.py
kumo@ubuntu:~/kumodd$ python kumodd-gui.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Restarting with stat

After starting the server, the kumodd web-based GUI becomes avail-
able at localhost:5000 and is accessible via a web browser. Note that,
at this stage, the server should only be run locally; however, with some
standard security measures, it could be made available remotely.

The web module employs the same drivers used with the command
line application for authentication, discovery and acquisition. Its pur-
pose is to simplify user interactions. For the simple case of wholesale
data acquisition, the process can be accomplished in three button clicks.

After pressing the Get Started! button, the user is presented with
the choice of the target service and the action to perform (Figure 9).
After this step, a detail window presents a list of files and the option
of choosing the files to be downloaded (Figure 10). After the files are
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Figure 10. Web-based GUI: Target selection.

Figure 11. Web-based GUI: Acquisition results.

selected, a results screen presents the paths to the files and other relevant
information (Figure 11). Note that every step of the process is also shown
on the terminal.

4.4 Validation
To validate the tool, accounts were created with all the services and

known seed files. Using the normal web interface for the respective
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Table 1. kumodd download times and throughput.

Service Average time Throughput
(mm:ss) (MB/s)

Google Drive 17:22 1.01
OneDrive 18:21 0.95
Dropbox 17:00 1.03
Box 18:22 0.95

Average 17:46 0.98

service, revisions were created and several Google Docs artifacts were
created for Google Drive. A complete acquisition was performed us-
ing kumodd and the cryptographic hashes of the targets were compared.
In all cases, successful acquisitions of all revisions were completed and
snapshots were obtained of the cloud-only artifacts.

To obtain a sense of the acquisition rates, 1GiB of data was split and
stored in 1,024 files of 1 MiB each. The data was sourced from the Linux
pseudorandom number generator to eliminate the potential influence of
behind-the-scenes compression or de-duplication. The preliminary tests,
which used the campus network, measured the throughput at different
times of the day over a period of one week. No consistent correlations
were observed.

To eliminate potential constraints stemming from the local-area net-
work and Internet service provider infrastructure, the experiments were
moved to Amazon EC2 instances (US-West, Northern California). For
each of the four supported services, complete acquisition jobs were exe-
cuted for seven days at 10:00 AM (PDT) in order to approximate daytime
acquisition. Table 1 shows the average download times and throughput.

The Amazon EC2 results were entirely consistent with the on-campus
results, which also averaged around 1MB/s. The most likely explanation
is that the bottleneck was caused by bandwidth throttling on the part of
the cloud drive provider. It would appear that, at the free level, 1 MB/s
is the implied level of service (at least for third-party applications).

5. Discussion
Several issues arose during the research and experimentation.

Integrity Assurance. An issue of concern is that not all services
provide cryptographic hashes of file content as part of the metadata. In
the experiments, this includes Dropbox (one of the largest providers),
which only provides a “rev” attribute that is guaranteed to be unique
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and is referred to as a “hash” in the API documentation [5]. However,
the generating algorithm is unknown and the observed values are much
too short (they fit in 64 bits) to be of cryptographic quality. However, it
is known that, as of 2011, Dropbox was using SHA256 on 4 MiB blocks
for backend de-duplication that, along with an incorrect implementation,
led to the Dropship attack [2]. It is also known that the same provider
uses cryptohashes to prevent the sharing of files for which it has received
DMCA notices [15]. Therefore, providing a cryptohash for data object
content would be a reasonable requirement for any cloud API used for
forensic purposes.

Pre-Acquisition Content Filtering. One aspect not addressed in
this work is the need to provide access to the search capability built into
many of the more advanced services. This would allow triage and ex-
ploration with zero pre-processing overhead; some services also provide
preview images that could be used for this purpose. Even with the cur-
rent implementation, it is possible to filter data in/out by cryptohashes
without the overhead of computing them.

Multi-Service Management and Forward Deployment. Cloud
storage is a de facto commodity business with numerous providers vying
for consumer attention. Thus, a number of cloud storage brokers have
emerged to help users manage multiple accounts and optimize their ser-
vices (often at the free level). For example, Otixo supports 35 different
services and facilitates data movement among them. Forensic software
needs similar capabilities to support cloud forensics.

In the near term, solutions that can be forward-deployed on a cloud
provider infrastructure will be required. This will become necessary as
cloud data grows much faster than the available bandwidth in a wide-
area network, making full remote acquisitions impractical. The kumodd
web interface is a sketch of such a solution; the forensic virtual machine
instance could be co-located in the same data center as the target while
the investigator controls it remotely. In this scenario, forensic analysis
could begin immediately while the data acquisition could be performed
in the background.

Long-Term Preservation of Cloud-Native Artifacts. It is men-
tioned above that Google Docs data objects are very different from most
serialized artifacts that are familiar to analysts [19]. The most substan-
tial difference is that the latter are snapshots of the states of artifacts
whereas the former is literally a log of user edit actions since the cre-
ation of the document. This presents a dilemma for forensics. Should a
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snapshot be acquired in a standard format such as PDF (like kumodd)
and, thereby, lose all historical information? Or should the changelog
be acquired and, thus, be dependent on the service provider (Google) to
render it at any point in the future? Since neither option on its own is
satisfactory, future research will attempt to develop a third option that
will maintain the log and replay it independently of the service provider.

6. Conclusions
This research has three principal contributions. The first is a new

acquisition model. It is clear that cloud drive acquisition cannot be per-
formed on a client in a forensically-sound manner. This is because the
client is not guaranteed to mirror all the data and has no facilities to rep-
resent file revisions and the content of cloud-native artifacts. The proper
approach is to go directly to the source – the master copy maintained by
the cloud service – and acquire the data via the API. In addition to be-
ing the only means for guaranteeing a forensically-complete copy of the
target data, the API approach supports the reproducibility of results,
rigorous tool testing (based on well-defined API semantics) and triage
of the data (via hashes and/or search APIs). The overall development
effort is significantly lower because the entire blackbox reverse engineer-
ing component of client-centric approaches is eliminated. As a reference,
each of the four drivers for the individual services contains between 232
and 620 lines of Python code.

The second contribution is a new acquisition tool. The kumodd tool
can perform cloud drive acquisition from four major providers: Google
Drive, Microsoft OneDrive, Dropbox and Box. Although its primary
purpose is to serve as a research platform, the hope is that it will quickly
evolve into a reliable, open-source tool that will cover an expanding range
of cloud services.

The third contribution is the elicitation of new research questions.
This research has identified certain problems that must be addressed by
the digital forensics community. In particular, it is necessary to develop
a means for extracting, storing and replaying the history of cloud-native
artifacts such as Google Docs. Additionally, a mechanism is needed to
ensure the integrity of the data acquired from all providers. Moreover,
it is necessary to build tools that can handle multi-service cases and
operate in forward deployment scenarios.

Finally, it is hoped that this research will stimulate a new approach
to cloud forensics and that it will serve as a cautionary note that simply
extending client-side forensics holds little promise. Over the short term,
this will mean expending extra effort to develop a new toolset. Over the
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medium-to-long term, the emphasis on logical acquisition – which this
work promotes – will help realize much greater levels of automation in
the acquisition and processing of forensic targets.
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