
HAL Id: hal-01758685
https://inria.hal.science/hal-01758685

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Probabilistic Network Forensic Model for Evidence
Analysis

Changwei Liu, Anoop Singhal, Duminda Wijesekera

To cite this version:
Changwei Liu, Anoop Singhal, Duminda Wijesekera. A Probabilistic Network Forensic Model for
Evidence Analysis. 12th IFIP International Conference on Digital Forensics (DF), Jan 2016, New
Delhi, India. pp.189-210, �10.1007/978-3-319-46279-0_10�. �hal-01758685�

https://inria.hal.science/hal-01758685
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 10

A PROBABILISTIC NETWORK
FORENSIC MODEL FOR
EVIDENCE ANALYSIS

Changwei Liu, Anoop Singhal and Duminda Wijesekera

Abstract Modern-day attackers use sophisticated multi-stage and/or multi-host
attack techniques and anti-forensic tools to cover their attack traces.
Due to the limitations of current intrusion detection systems and foren-
sic analysis tools, evidence often has false positive errors or is incom-
plete. Additionally, because of the large number of security events, dis-
covering an attack pattern is much like finding a needle in a haystack.
Consequently, reconstructing attack scenarios and holding attackers ac-
countable for their activities are major challenges.

This chapter describes a probabilistic model that applies Bayesian
networks to construct evidence graphs. The model helps address the
problems posed by false positive errors, analyze the reasons for miss-
ing evidence and compute the posterior probabilities and false positive
rates of attack scenarios constructed using the available evidence. A
companion software tool for network forensic analysis was used in con-
junction with the probabilistic model. The tool, which is written in
Prolog, leverages vulnerability databases and an anti-forensic database
similar to the NIST National Vulnerability Database (NVD). The ex-
perimental results demonstrate that the model is useful for constructing
the most-likely attack scenarios and for managing errors encountered in
network forensic analysis.

Keywords: Network forensics, logical evidence graphs, Bayesian networks

1. Introduction
Digital forensic investigators use evidence and contextual facts to for-

mulate attack hypotheses and assess the probability that the facts sup-
port or refute the hypotheses [5]. However, due to the limitations of
forensic tools and expert knowledge, formulating a hypothesis about

190 ADVANCES IN DIGITAL FORENSICS XII

a multi-step, multi-host attack launched on an enterprise network and
using quantitative measures to support the hypothesis are major chal-
lenges. This chapter describes a model that helps automate the process
of constructing and analyzing quantitatively-supportable attack scenar-
ios based on the available evidence. The applicability and utility of the
model are demonstrated using a network attack case study.

The proposed method uses a Bayesian network to estimate the like-
lihood and false positive rates of potential attack scenarios that fit the
discovered evidence. Although several researchers have used Bayesian
networks for digital evidence modeling [3, 5, 12, 13], their approaches
construct Bayesian networks in an ad hoc manner. This chapter shows
how the proposed method can help automate the process of organizing
evidence in a graphical structure (called a logical evidence graph) and
apply Bayesian analysis to the entire graph. The method provides at-
tack scenarios with acceptable false positive error rates and dynamically
updates the joint posterior probabilities and false positive error rates
of attack paths when new items of evidence for the attack paths are
presented.

2. Background and Related Work
Bayesian networks have been used to express the credibility and rela-

tive weights of digital and non-digital evidence [2, 3, 5, 12, 13]. Several
researchers have used Bayesian networks to model dependencies between
hypotheses and crime scene evidence, and have employed these models
to update the belief probabilities of newly-discovered evidence given the
previous evidence [2–4, 12–14].

Digital forensic researchers have used Bayesian networks to reason
about evidence and quantify the reliability and traceability of the corre-
sponding hypotheses [5]. However, theseBayesian networks were custom-
built without using a uniform model. In contrast, the proposed model
is generic and helps address the problems posed by false positive errors,
analyze the reasons for missing evidence and compute the posterior prob-
abilities and false positive rates of attack scenarios constructed using the
available evidence.

Meanwhile, few, if any, tools directly support the automated construc-
tion of Bayesian networks based on the available evidence and estimate
belief probabilities and potential error rates. A software tool for network
forensic analysis was developed for use with the proposed probabilistic
model. The tool, which is written in Prolog, leverages the MulVAL rea-
soning system [1, 10] and employs system vulnerability databases and
an anti-forensic database similar to the NIST National Vulnerability

Liu, Singhal & Wijesekera 191

Database (NVD). The experimental results demonstrate that the tool
facilitates the construction of most-likely attack scenarios and the man-
agement of errors encountered in network forensic analysis.

3. Logical Evidence Graphs
This section defines logical evidence graphs and shows how rules are

designed to correlate attack scenarios with the available evidence. Be-
cause logical reasoning is used to link observed attack events and the
collected evidence, the evidence graphs are referred to as logical evi-
dence graphs.

Definition 1 (Logical Evidence Graph (LEG)): A logical evi-
dence graph LEG = (Nf , Nr, Nc, E, L,G) is a six-tuple where Nf , Nr

and Nc are three disjoint sets of nodes in the graph (called fact, rule and
consequence fact nodes, respectively), E ⊆ ((Nf ∪Nc)×Nr)∪(Nr ×Nc)
is the evidence, L is a mapping from nodes to labels and G ⊆ Nc is a
set of observed attack events.

Every rule node has one or more fact nodes or consequence fact nodes
from prior attack steps as its parents and a consequence fact node as
its only child. Node labels consist of instantiations of rules or sets of
predicates specified as follows:

1. A node in Nf is an instantiation of predicates that codify system
states, including access privileges, network topology and known
vulnerabilities associated with host computers. The following pred-
icates are used:

hasAccount(principal, host, account), canAccessFile(host,
user, access, path) and other predicates model access priv-
ileges.

attackerLocated(host) and hacl(src, dst, prot, port) mod-
el network topology, including the attacker’s location and net-
work reachability information.

vulExists(host, vulID, program) and vulProperty(vulID,
range, consequence) model node vulnerabilities.

2. A node in Nr describes a single rule of the form p ← p1 ∧p2 · · ·∧pn.
The rule head p is an instantiation of a predicate from Nc, which is
the child node of Nr in the logical evidence graph. The rule body
comprises pi (i = 1..n), which are predicate instantiations of Nf

from the current attack step and Nc from one or more prior attack
steps that comprise the parent nodes of Nr.

192 ADVANCES IN DIGITAL FORENSICS XII

5

4

3

6

2

7 8

1

Figure 1. Example logical evidence graph.

3. A node in Nc represents the predicate that codifies the post-attack
state as the consequence of an attack step. The two predicates
execCode(host, user) and netAccess(machine, protocol, port)
are used to model the attacker’s capability after an attack step.
Valid instantiations of these predicates after an attack update valid
instantiations of the predicates listed in (1).

Figure 1 shows an example logical evidence graph; Table 1 describes
the nodes in Figure 1. In Figure 1, fact, rule and consequence fact nodes
are represented as boxes, ellipses and diamonds, respectively. Facts
(Nodes 5, 6, 7 and 8) include network topology (Nodes 5 and 6), com-
puter configuration (Node 7) and software vulnerabilities obtained by
analyzing evidence captured by forensic tools (Node 8). Rule nodes
(Nodes 2 and 4) represent rules that change the attack status using at-
tack steps. These rules, which are based on expert knowledge, are used
to link chains of evidence as consequences of attack steps. Linking a
chain of evidence using a rule creates an investigator’s hypothesis of an
attack step given the evidence. Consequence fact nodes (Nodes 1 and
3) codify the attack status obtained from event logs and other forensic
tools that record the postconditions of attack steps.

Lines 9 through 17 in Figure 2 describe Rules 1 and 2 in Table 1. The
rules use the Prolog notation “:-” to separate the head (consequence
fact) and the body (facts). Lines 1 through 8 in Figure 2 list the fact
and consequence fact predicates of the two rules.

Liu, Singhal & Wijesekera 193

Table 1. Descriptions of the nodes in Figure 1.

Node Notation Resource

1 execCode(workStation1, user) Evidence obtained from event log

2 THROUGH 3 (remote exploit Rule 1 (Hypothesis 1)
of a server program)

3 netAccess(workStation1, tcp, 4040) Evidence obtained from event log

4 THROUGH 8 (direct network Rule 2 (Hypothesis 2)
access)

5 hacl(internet, workStation1, tcp, Network setup
4040)

6 attackerLocated(internet) Evidence obtained from log

7 networkServiceInfo(workStation1, Computer setup
httpd, tcp, 4040, user)

8 vulExists(workStation1, ‘CVE- Exploited vulnerability alert
2009-1918’, httpd, remoteExploit, from intrusion detection system
privEscalation)

Rule 1 in Lines 9 through 12 represents an attack step that states: if
(i) the attacker is located in a “Zone” such as the “internet” (Line 10:
attackerLocated(Zone)); and (ii) a host computer “H” can be accessed
from the “Zone” using “Protocol” at “Port” (Line 11: hacl(Zone, H,
Protocol, Port)); then (iii) host “H” can be accessed from the “Zone”
using “Protocol” at “Port” (Line 9: netAccess(H, Protocol, Port)) via
(iv) “direct network access” (Line 12: rule description).

Rule 2 in Lines 13 through 17 states: if (i) a host has a software vul-
nerability that can be remotely exploited (Line 14: vulExists(H, , Soft-
ware, remoteExploit, privEscalation)); and (ii) the host can be reached
using “Protocol” at “Port” with privilege “Perm” (Line 15: networkSer-
viceInfo(H, Software, Protocol, Port, Perm)); and (iii) the attacker can
access host using “Protocol” at “Port” (Line 16: netAccess(H, Protocol,
Port)); then (iv) the attacker can remotely exploit host “H” and obtain
privilege “Perm” (Line 13: execCode(H, Perm)) via (v) “remote exploit
of a server program” (Line 17: rule description).

4. Computing Probabilities
Bayesian networks can be represented as directed acyclic graphs whose

nodes represent random variables (events or evidence in this work) and
arcs model direct dependencies between random variables [11]. Every

194 ADVANCES IN DIGITAL FORENSICS XII

Rule Head – Post-attack status as derived fact obtained via evidence analysis
1. Consequence: execCode(host, user).
2. Consequence: netAccess(machine, protocol, port).
Rule Body – Access privilege
3. Fact: hacl(src, dst, prot, port).
Rule Body – Software vulnerability obtained from a forensic tool
4. Fact: vulExists(host, vulID, program).
5. Fact: vulProperty(vulID, range, consequence).
Rule Body – Network topology
6. Fact: hacl(src, dst, prot, port).
7. Fact: attackerLocated(host).
Rule Body – Computer configuration
8. Fact: hasAccount(principal, host, account).

Rule 1:
9. (netAccess(H, Protocol, Port) :-
10. attackerLocated(Zone),
11. hacl(Zone, H, Protocol, Port)),
12. rule desc(‘direct network access’, 1.0).

Rule 2:
13. (execCode(H, Perm) :-
14. vulExists(H, , Software, remoteExploit, privEscalation),
15. networkServiceInfo(H, Software, Protocol, Port, Perm),
16. netAccess(H, Protocol, Port)),
17. rule desc(‘remote exploit of a server program’, 1.0).

Figure 2. Example rules expressing attack techniques.

node has a table that provides the conditional probability of the node’s
variable given the combination of the states of its parent variables.

Definition 2 (Bayesian Network (BN)): Let X1 , X2 , · · · , Xn be
n random variables connected in a directed acyclic graph. Then, the
joint probability distribution of X1 ,X2 , ...,Xn can be computed using
the Bayesian formula:

P (X1 ,X2 , . . . ,Xn) =
n∏

i=1

[P (Xi)|parent(P (Xi))] (1)

A Bayesian network helps model and visualize dependencies between a
hypothesis and evidence, and calculate the revised probability when new
evidence is presented [9]. Figure 3 presents a causal view of hypothesis H
and evidence E. Bayes’ theorem can be used to update an investigator’s
belief about hypothesis H when evidence E is observed:

Liu, Singhal & Wijesekera 195

H
(Hypothesis)

E
(Evidence)

Figure 3. Causal view of evidence.

P (H|E) =
P (H) · P (E|H)

P (E)

=
P (H) · P (E|H)

P (E|H) · P (H) + P (E|¬H) · P (¬H)

(2)

where P (H|E) is the posterior probability of an investigator’s belief in
hypothesis H given evidence E. P (E|H), which is based on expert
knowledge, is a likelihood function that assesses the probability of evi-
dence assuming the truth of H. P (H) is the prior probability of H when
the evidence has not been discovered and P (E) = P (E|H) · P (H) +
P (E|¬H) ·P (¬H) is the probability of the evidence regardless of expert
knowledge about H and is referred to as a normalizing constant [5, 9].

4.1 Computing P (H|E)

A logical evidence graph involves the serial application of attack steps
that are mapped to a Bayesian network as follows:

Nc as the child of the corresponding Nr shows that an attack step
has occurred.

Nr is the hypothesis of the attack step and is denoted by H.

Nf from the current attack step and Nc′ from the previous attack
step as the parents of Nr correspond to the attack evidence, show-
ing the exploited vulnerability and the privilege the attacker used
to launch the attack step.

Nc propagates the dependency between the current attack step
and the next attack step. Nc is also the precondition of the next
attack step.

Computing P (H|E) for aConsequence FactNode. Equation (2)
can be used to compute P (H|E) for a consequence fact node of a sin-
gle attack step when the previous attack step has not been considered.
Because the rule node Nr provides the hypothesis H and both the fact
node Nf and the consequence fact node from a previous attack step Nc′
provide evidence E, the application of Bayes’ theorem yields:

196 ADVANCES IN DIGITAL FORENSICS XII

P (H|E) = P (Nr|E) =
P (Nr) · P (E|Nr)

P (E)
(3)

The fact nodes from the current attack step and the consequence fact
node from a previous attack step are independent of each other. They
constitute the body of a rule, deriving the consequence fact node for the
current attack step as the head of the rule. Consequently, their logical
conjunction provides the conditions that are used to arrive at the rule
conclusion. Accordingly, if a rule node has k parents Np1 , Np2 , . . . , Npk

that are independent, then P (E) = P (Np1 , Np2 , . . . , Npk) = P (Np1 ∩
Np2 ∩· · ·∩Npk) = P (Np1) · P (Np2) · · ·P (Npk) (note that ∩denotes the
AND operator). Due to the independence, given rule Nr, P (E|Nr) =
P (Np1 , Np2 , . . . , Npk|Nr) = P (Np1 |Nr)·P (Np2 |Nr) · · ·P (Npk|Nr). Hence,
by applying Equation (3), where H is Nr and E is Np1 ∩Np2 ∩· · ·∩Npk,
P (H|E) for a consequence fact node is computed as:

P (H|E) = P (Nr|Np1 , Np2 , · · · , Npk)

=
P (Nr) · P (Np1 |Nr).P (Np2 |Nr) · · ·P (Npk|Nr)

P (Np1) · P (Np2) · · ·P (Npk)
(4)

However, because P (E|Nr) represents the subjective judgment of a
forensic investigator, it would be difficult for human experts to as-
sign P (Np1 |Nr), P (Np2 |Nr), · · · , P (Npk|Nr) separately. Therefore, the
forensic investigator has the discretion to use Equation (3) to compute
P (E|Nr) directly.

Computing P (H|E) for the Entire Graph. Next, it is necessary
to compute P (H|E) for the entire logical evidence graph comprising the
attack paths. Any chosen attack path in a logical evidence graph is a
serial application of attack steps. An attack step only depends on its
direct parent attack steps and is independent of all the ancestor attack
steps in the attack path. Upon applying Definition 2, the following
equation is obtained:

P (H|E) = P (H1 ,H2 · · ·Hn|E1 , E2 , E3 · · ·En)
= P (S1)P (S2 |S1) · · ·P (Sn|Sn−1)

(5)

where Si (i = 1..n) denotes the ith attack step in an attack path.
Let Ni,f , Ni,r and Ni,c be the fact, rule and consequence fact nodes,

respectively, at the ith attack step. Then, Equation (5) may be written
as:

Liu, Singhal & Wijesekera 197

P (H|E) = P (S1) · · ·P (Si|Si−1) · · ·P (Sn|Sn−1)
= P (N1 ,r|N1 ,f) · · ·P (Ni,r|Ni−1 ,c, Ni,p) · · ·P (Nn,r|Nn−1 ,c, Nn,p)

=
P (N1 ,r)P (N1 ,f |N1 ,r)

P (N1 ,f)
· · ·

P (Nn,r)P (Nn−1 ,c, Nn,f |Nn,r)
P (Nn−1 ,c, Nn,f)

(6)
where P (S1)P (S2 |S1) · · ·P (Si|Si−1) is the joint posterior probability of
the previous i attack steps (i.e., 1..i) given all the evidence from the
attack steps (e.g., evidence for attack step 1 is N1 ,f ; the evidence for
attack step i includes Ni−1 ,c and Ni,f where i = 2..n.

P (S1)P (S2 |S1) · · ·P (Si|Si−1) is propagated to the i + 1th attack step
by the consequence fact node Ni,c, which is also the precondition of the
i + 1th attack step. Algorithm 1 formalizes the computation of P (H|E)
for the entire logical evidence graph.

Because a logical evidence graph may have several attack paths, to
compute the posterior probability of each attack path, all the nodes
are marked as WHITE (Lines 2 through 4 in Algorithm 1) and all the
fact nodes are pushed from the first attack step of all attack paths to
an empty queue (Lines 1 and 5). If the queue is not empty (Line 7),
a fact node is taken out of the queue (Line 8) and a check is made
to see if its child that is a rule node is WHITE (Lines 9 and 10). If
the rule node is WHITE, a new attack path is created (Line 11), upon
which Equation (6) is used recursively to compute the joint posterior
probability of the entire attack path (Lines 16 through 30) and the node
is marked as BLACK (Line 13) after the computation of the function
PATH(N1 ,r) in Line 12 is complete. The above process is repeated until
the queue holding the fact nodes from the first attack steps of all the
attack paths is empty.

4.2 Computing the False Positive Rate
False positive and false negative errors exist in logical evidence graphs.

A false negative arises when the investigator believes that the event was
not caused by an attack, but was the result of an attack. A false positive
arises when the investigator believes that an event was caused by an
attack, but was not. Clearly, it is necessary to estimate both types of
errors.

Because a logical evidence graph is constructed using attack evidence
chosen by the forensic investigator, there is always the possibility of
false positive errors. Therefore, the cumulative false positive rate of the
constructed attack paths must be computed. False negative errors are
not computed in this work.

198 ADVANCES IN DIGITAL FORENSICS XII

Algorithm 1 : Computing P (H|E) for the entire graph.
Input: A LEG = (Nr, Nf , Nc, E, L, G) with multiple attack paths and P (Ni,r)
(i = 1..n), P (N1,f |N1,r), P (N1,f), P (Ni−1,c, Ni,f |Ni,r), P (Ni−1,c, Ni, f) (i = 2..n)
obtained from expert knowledge about each attack path. N1,f , Ni−1,c and Ni,f (i ≥ 2)
correspond to evidence E. Ni,r (i ≥ 1) corresponds to H .

Output: The joint posterior probability of the hypothesis of every attack path
P (H |E)=P (H1, H2 · · ·Hn|E1, E2, E3 · · ·En) given all the evidence represented by fact
nodes Ni,f and Ni,c (i = 1..n). (P (H |E) is written as P in the algorithm.

1 : Qg ← Ø ◃ set Qg to empty
2 : for each node n ∈ LEG do
3: color[n] ← WHITE ◃ mark every node in the graph as white
4: end for
5: ENQUEUE(Qg, N1,f) ◃ push all fact nodes from the first attack step to queue

Qg

6: j ← 0 ◃ use j to identify the attack path being computed
7: while Qg ̸= Ø do ◃ when queue Qg is not empty
8: n ← DEQUEUE(Qg) ◃ remove fact node n
9: N1,r ← child[n] ◃ find a rule node as the child node of n

10: if (color[N1,r] ≡ WHITE) then ◃ if the rule node is not traversed (white)
11 : j ← j+1 ◃ must be a new attack path
12 : P[j] ← PATH(N1,r) ◃ compute joint posterior probability of the path
13: color[N1,r] ← BLACK ◃ mark the rule node as black
14: end if
15: end while

16: PATH(N1,r) { ◃ compute the posterior probability of an attack path
17: N1,c ← child[N1,r] ◃ consequence fact node of the first attack step
18: E ← parents[N1,r] ◃ E is the evidence for the first attack step

19: P[N1,c] ← P (N1,r)P (E|N1,r)
P (E) ◃ probability of the first attack step

20: color[E] ← BLACK ◃ mark all traversed evidence as black
21 : P ← P[N1,c] ◃ use P to do the recursive computation
22 : for i ← 2 to n do ◃ from the second attack step to the last attack step
23: Ni,r ← child[Ni−1,c] ◃ rule node as H of the ith attack step
24: E ← parents[Ni,r] ◃ evidence for the ith attack step
25: Ni,c ← child[Ni,r] ◃ consequence fact node of the ith attack step

26: P[Ni,c] ← P (Ni,r|E) ← P (Ni,r)P (E|Ni,r)

P (E)

◃ posterior probability of the ith attack step
27: color[E] ← BLACK ◃ mark all traversed evidence as black
28: P ← P × P (Ni,c) ◃ joint posterior possibility of attack steps (1..i)
29: end for
30: Return P ◃ return the posterior attack possibility of the attack path

The individual false positive estimate for an attack step is expressed
as P (E|¬H), where ¬H is the alternative hypothesis, usually written
as “not H,” and the value of P (E|¬H) can be obtained from expert

Liu, Singhal & Wijesekera 199

knowledge. To demonstrate the computation of the cumulative false
positive rate of an entire attack path, let Ni,f , Ni,r and Ni,c correspond
to the fact, rule and consequence fact nodes, respectively, of the ith

attack step. Then, the cumulative false positive rate of the entire attack
path is computed as follows:

P (E|¬H) = P (E1 , E2 , · · · , En|¬(H1 ,H2 , · · · ,Hn))

=
n⋃

i=1

P (Ei|¬Ni,r)

= 1 − (· · · (1 − (1 − P (E2 |¬N2 ,r) · (1 − P (E1 |¬N1 ,r)))))
· (1 − P (En|¬Nn,r))

(7)

Note that all the evidence supporting an attack step is independent of
the evidence supporting the other attack steps.

As mentioned above, E1 in Equation (7) is N1 ,f and Ei includes Ni−1 ,c

and Ni,f (i = 2..n). The symbol ∪ denotes the noisy-OR operator [7].
For a serial connection, if any of the attack steps is a false positive, then
the entire attack path is considered to be a false positive. Algorithm 2
formalizes the computation of P (E|¬H) for the entire evidence graph.

Lines 1 through 15 in Algorithm 2 are the same as in Algorithm 1 (i.e.,
they find a new attack path). Lines 16 through 29 use Equation (7) to
recursively compute the cumulative false positive rate of an entire attack
path.

5. Case Study
This case study demonstrates how probabilistic attack scenarios can

be reconstructed using Bayesian analysis [13].

5.1 Experimental Network
Figure 4 shows the experimental network [6] used to generate a logical

evidence graph from post-attack evidence. In the network, the external
Firewall 1 controls Internet access to a network containing a Portal Web
Server and Product Web Server. The internal Firewall 2 controls access
to a SQL Database Server that can be accessed from the web servers
and workstations. The Administrator Workstation has administrative
privileges to the Portal Web Server that supports a forum for users to
chat with the administrator. In the experiment, the Portal and Product
Web Servers and the Database Server were configured to log all accesses
and queries as events and Snort was used as the intrusion detection

200 ADVANCES IN DIGITAL FORENSICS XII

Algorithm 2 : Computing P (E|¬H) for the entire graph.
Input: A LEG = (Nr, Nf , Nc, E, L, G) and P (N1,f |N1,r) as P (E1|H1),
P (Ni−1,c, Ni,f |Ni,r) as P (Ei|Hi) (i = 2..n) for every attack path.

Output: The cumulative false positive rate of each attack path P (E|¬H) =
P (E1, E2, · · · , En|¬(H1, H2 · · ·Hn. P (E|¬H) is written as Pf in the algorithm.

1 : Qg ← Ø ◃ set Qg to empty
2 : for each node n ∈ LEG do
3: color[n] ← WHITE ◃ mark every node in the graph as white
4: end for
5: ENQUEUE(Qg, N1,f) ◃ push all fact nodes from the first attack step to queue

Qg

6: j ← 0 ◃ use j to identify the attack path being computed
7: while Qg ̸= Ø do ◃ when queue Qg is not empty
8: n ← DEQUEUE(Qg) ◃ remove fact node n
9: N1,r ← child[n] ◃ find a rule node as the child node of n

10: if (color[N1,r] ≡ WHITE) then ◃ if the rule node is not traversed (white)
11 : j ← j+1 ◃ must be a new attack path
12 : Pr[j] ← PATH(N1,r) ◃ compute the cumulative false positive rate of the

path
13: color[N1,r] ← BLACK ◃ mark the rule node as black
14: end if
15: end while

16: PATH(N1,r) { ◃ compute the false positive rate of an attack path
17: N1,c ← child[N1,r] ◃ consequence fact node of the first attack step
18: E ← parents[N1,r] ◃ E is the evidence for the first attack step
19: P[N1,c] ← P (E|¬N1,r) ◃ false positive rate of the first attack step
20: color[E] ← BLACK ◃ mark all traversed evidence as black
21 : Pf ← P[N1,c] ◃ use Pf to do the recursive computation
22 : for i ← 2 to n do ◃ from the second attack step to the last attack step
23: Ni,r ← child[Ni−1,c] ◃ rule node as H of the ith attack step
24: Ni,c ← child[Ni,r] ◃ consequence fact node of the ith attack step
25: E ← parents[Ni,r] ◃ evidence for the ith attack step
26: Pf ← 1 − (1 − Pf) × (1 − P (E|¬Ni,r)) ◃ cumulative false positive rate
27: color[E] ← BLACK ◃ mark all traversed evidence as black
28: end for
29: Return Pf ◃ return the cumulative false positive rate of the attack path

system. The evidence in the case study constituted the logged events
and intrusion alerts.

By exploiting vulnerabilities in a Windows workstation and a web
server with access to the Database Server, the attacker was able to suc-
cessfully launch two attacks on the Database Server and a cross-site
scripting (XSS) attack on the Administrator Workstation. The attacks
involve: (i) using a compromised workstation to access the Database

Liu, Singhal & Wijesekera 201

Firewall 1
Firewall 2

Product
Web Server

Database
Server

Employees’
Workstations

…...

Administrator

Portal
Web Server

Attacker

Client 2

Client 1

Client n

… …

Trusted
Zone

Figure 4. Experimental network.

Table 2. Evidence comprising logged events and alerts.

Timestamp Source IP Destination IP Content Vulnerability

08\13-12:26:10 129.174.124.122 129.174.124.184 SHELLCODE x86 CVE-2009-1918
Attacker Workstation1 inc ebx NOOP

08\13-12:27:37 129.174.124.122 129.174.124.185 SHELLCODE x86 CVE-2009-1918
Attacker Workstation2 inc ebx NOOP

08\13-14:37:27 129.174.124.122 129.174.124.53 SQL Injection CWE89
Attacker Product Attempt

Web Server

08\13-16:19:56 129.174.124.122 129.174.124.137 Cross Site XSS
Attacker Administrator Scripting

08\13-14:37:29 129.174.124.53 129.174.124.35 name=‘Alice’ AND CWE89
Product Database password=’‘alice’
Web Server Server OR ‘1’=‘1’

...

Server (CVE-2009-1918); (ii) exploiting a vulnerability in the web appli-
cation (CWE89) in the Product Web Server to attack the Database
Server; and (iii) exploiting the XSS vulnerability in the chat forum
hosted by the Portal Web Server to steal the Administrator’s session
ID, enabling the attacker to send phishing emails to the clients and trick
them to update their confidential information.

202 ADVANCES IN DIGITAL FORENSICS XII

Table 3. Post-attack evidence.

Timestamp Attacked Attack Post Attack
Computer Event Status

08\-14:37:29 129.174.124.35 Information Malicious
Database Server Retrieved Maliciously Access

...

Observed Attack Events
1. attackGoal(execCode(workStation1,)).
2. attackGoal(execCode(dbServer, user)).
3. attackGoal(execCode(clients, user)).

Network Topology
4. attackerLocated(internet).
5. hacl(internet, webServer, tcp, 80).
6. hacl(internet, workStation1, tcp,).
7. hacl(webServer, dbServer, tcp, 3660).
8. hacl(internet, admin, ,).
9. hacl(admin, clients, ,).
10. hacl(workStation1, dbServer, ,).

Computer Configuration
11. hasAccount(employee, workStation1, user).
12. networkServiceInfo(webServer, httpd, tcp, 80, user).
13. networkServiceInfo(dbServer, httpd, tcp, 3660, user).
14. networkServiceInfo(workStation1, httpd, tcp, 4040, user).

Information from Table 2 (Software Vulnerability)
15. vulExists(webServer, ‘CWE89’, httpd).
16. vulProperty(‘CWE89’, remoteExploit, privEscalation).
17. vulExists(dbServer, ‘CWE89’, httpd).
18. vulProperty(‘CWE89’, remoteExploit, privEscalation).
19. vulExists(workStation1, ‘CVE-2009-1918’, httpd).
20. vulProperty(‘CVE-2009-1918’, remoteExploit, privEscalation).
21. timeOrder(webServer, dbServer, 14.3727, 14.3729).

Figure 5. Input file for generating the logical evidence graph.

The logging system and intrusion detection system captured evidence
of network attack activities. Table 2 presents the processed data. Table 3
presents the post-attack evidence obtained using forensic tools.

5.2 Constructing the Graph
To employ the Prolog-based rules for evidence graph construction,

the evidence and system state were codified as instantiations of the rule

Liu, Singhal & Wijesekera 203

predicates as shown in Figure 5. In Figure 5, Lines 1 through 3 model
evidence related to the post-attack status (Table 3), Lines 4 through 10
model the network topology (system setup), Lines 11 through 14 model
system configurations and Lines 15 through 21 model vulnerabilities
obtained from the captured evidence (Table 2).

The input file with rules representing generic attack techniques was
submitted to the reasoning system along with two databases, including
an anti-forensic database [6] and MITRE’s CVE [8], to remove irrelevant
evidence and obtain explanations for any missing evidence.

The results are: (i) according to the CVE database, Workstation 2,
which is a Linux machine using Firefox as the web browser, rendered
an attack using CVE-2009-1918 unsuccessful because the exploit only
succeeds on Windows Internet Explorer; (ii) a new attack path express-
ing that the attacker launched phishing attacks at the clients using the
Administrator’s stolen session ID was found; and (iii) an attack path
between the compromised Workstation 1 and the Database Server was
found.

The network forensic analysis tool created the logical evidence graph
shown in Figure 6. The nodes in Figure 6 are described in Tables 4
and 5. The third column of each table lists the logical operators used to
distinguish fact nodes, rule nodes and consequence fact nodes. A fact
node is marked as LEAF, a rule node is marked as OR and a consequence
fact node is marked as AND.

Figure 6 has three attack paths:

The attacker used an XSS attack to steal the Administrator’s ses-
sion ID and obtain administrator privileges to send phishing emails
to clients (Nodes: 11 → 9 → 8 → 7 → 6 → 4 → 3 → 2 → 1) (Left).

The attacker used a buffer overflow vulnerability (CVE-2009-1918)
to compromise a workstation and then obtain access to the Data-
base Server (Nodes: 34 → 33 → 32 → 31 → 30 → 28 → 18 →
17 → 16) (Middle).

The attacker used a web application that does not sanitize user
input (CWE89) to launch a SQL injection attack at the Database
Server (Nodes: 11 → 24 → 23 → 22 → 21 → 19 → 18 → 17 → 16)
(Right).

5.3 Computations
This section uses Algorithms 1 and 2 to compute P (H|E1 , E2 , · · · , En)

and P (E1 , E2 , · · · , En|¬H) for the attack paths in Figure 6 (H corre-
sponds to H1 ∩H2 · · ·∩Hn).

204 ADVANCES IN DIGITAL FORENSICS XII

5

4

3

10

9

8

11

2433

7

6

12 13

2

1

14 15

20

19

18

25

23

22

21

26 27

17

29

28

34

32

31

30

35 36

16

37 38

Figure 6. Constructed logical evidence graph.

Using Algorithm 1 to Compute P (H|E1, E2..En). Algorithm 1
requires P (N1 ,r), P (N1 ,f), P (N1 ,f |N1 ,r), P (Ni,r), P (Ni−1 ,c, Ni,f |Ni,r),
P (Ni−1 ,c, Ni,f) (i = 2..n). All these probabilities are derived from expert
knowledge. To minimize subjectivity, the average value of the probabil-
ity based on the judgments of multiple experts should be computed [5].
Because the case study is intended to demonstrate the computations,
for simplicity, all P (Hi) = P (¬Hi) = 50%, P (Ei) = k ∈ [0, 1] (k ob-
viously would differ for different evidence in a real scenario). Also, the
P (Ei|Hi) values were assigned based on the judgment of the authors of
this chapter; the probability values of P (Ei|Hi) are listed in Table 6.

Liu, Singhal & Wijesekera 205

Table 4. Descriptions of the nodes in Figure 6.

Node Notation Relation

1 execCode(clients, user) OR

2 THROUGH 3 (remote exploit of a server program) AND

3 netAccess(clients, tcp,) OR

4 THROUGH 7 (multi-hop access) AND

5 hacl(admin,clients, tcp,) LEAF

6 execCode(admin, apache) OR

7 THROUGH 3 (remote exploit of a server program) AND

8 netAccess(admin, tcp, 80) OR

9 THROUGH 8 (direct network access) AND

10 hacl(internet, admin, tcp, 80) LEAF

11 attackerLocated(internet) LEAF

12 networkServiceInfo(admin, httpd, tcp, 80, apache) LEAF

13 vulExists(admin,‘XSS’, httpd, remoteExploit, LEAF
privEscalation)

14 networkServiceInfo(clients, httpd, tcp, , user) LEAF

15 vulExists(clients, ‘Phishing’, httpd, remoteExploit, LEAF
privEscalation)

16 execCode(dbServer, user) OR

17 THROUGH 3 (remote exploit of a server program) AND

18 netAccess(dbServer, tcp, 3660) OR

19 THROUGH 7 (multi-hop access) AND

20 hacl(webServer, dbServer, tcp, 3660) LEAF

21 execCode(webServer, user) OR

22 THROUGH 3 (remote exploit of a server program) AND

23 netAccess(webServer, tcp, 80) OR

Thus, P (Hi|Ei) for each attack step without considering the other
attack steps is given by:

P (Hi)P (Ei|Hi)
P (Ei)

=
0.5 · P (Ei|Hi)

k

=
P (Ei|Hi)

2k
= c · P (Ei|Hi)

(8)

206 ADVANCES IN DIGITAL FORENSICS XII

Table 5. Descriptions of the nodes in Figure 6 (continued).

Node Notation Relation

24 THROUGH 8 (direct network access) AND

25 hacl(internet, webServer, tcp, 80) LEAF

26 networkServiceInfo(webServer, httpd, tcp, 80, user) LEAF

27 vulExists(webServer, ‘CWE89’, httpd, remoteExploit, LEAF
privEscalation)

28 THROUGH 7 (multi-hop access) AND

29 hacl(workStation1, dbServer, tcp, 3660) LEAF

30 execCode(workStation1, user) OR

31 THROUGH 3 (remote exploit of a server program) AND

32 netAccess(workStation1, tcp, 4040) OR

33 THROUGH 8 (direct network access) AND

34 hacl(internet, workStation1, tcp, 4040) LEAF

35 networkServiceInfo(workStation1, httpd, tcp, 4040, user) LEAF

36 vulExists(workStation1, ‘CVE-2009-1918’, httpd, LEAF
remoteExploit, privEscalation)

where c = 1
2k . Algorithm 1 is used to compute P (H|E1 , E2 , · · ·En) as

shown in the last column of Table 6.
Note that Node 17 has two joint posterior probabilities, which are from

the middle path and right path, respectively. Note also that the middle
attack path has a lower probability than the right attack path. This is
because the attacker destroyed the evidence obtained from the middle
path that involved using a compromised workstation to gain access to
the database. Additionally, the P (E|H) value is lower. Therefore, the
corresponding hypothesized attack path has a much lower probability
P (H|E1 , E2 , · · · , En). In reality, it is unlikely that the same attacker
would attempt a different attack path to attack the same target if the
previous attack had already succeeded. A possible scenario is that the
first attack path was not anticipated, so the attacker attempted to launch
the attack via the second attack path. The joint posterior probability
P (H|E1 , E2 , · · · , En) could help an investigator select the most pertinent
attack path.

Liu, Singhal & Wijesekera 207

Ta
bl
e

6.
C

om
p
u
ta

ti
on

of
P

(H
|E

1
,·
··

,E
n
)

fo
r

th
e

at
ta

ck
p
at

h
s.

A
tt

a
ck

S
te

p
A

tt
a
ck

S
te

p
1

A
tt

a
ck

S
te

p
2

H
1

P
(E

1
|H

1
)

P
(H

1
|E

1
)

P
(H

|E
1
)

H
2

P
(E

2
|H

2
)

P
(H

2
|E

2
)

P
(H

|E
1
,E

2
)

L
e
ft

N
o
d
e

9
0.

90
0.

90
c

0.
90

c
N

o
d
e

7
0.

80
0.

80
c

0.
72

0c
2

M
id

d
le

N
o
d
e

33
0.

99
0.

99
c

0.
99

c
N

o
d
e

31
0.

87
0.

87
c

0.
86

1c
2

R
ig

h
t

N
o
d
e

24
0.

99
0.

99
c

0.
99

c
N

o
d
e

22
0.

85
0.

85
c

0.
84

2c
2

A
tt

a
ck

S
te

p
A

tt
a
ck

S
te

p
3

A
tt

a
ck

S
te

p
4

H
3

P
(E

3
|H

3
)

P
(H

3
|E

3
)

P
(H

|E
1
,E

2
,E

3
)

H
4

P
(E

4
|H

4
)

P
(H

4
|E

4
)

P
(H

|E
1
,E

2
,E

3
,E

4
)

L
e
ft

N
o
d
e

4
0.

90
0.

90
c

0.
64

8c
3

N
o
d
e

2
0.

75
0.

75
c

0.
48

6c
4

M
id

d
le

N
o
d
e

28
0.

87
0.

87
c

0.
75

0c
3

N
o
d
e

17
0.

75
0.

75
c

0.
56

3c
4

R
ig

h
t

N
o
d
e

19
0.

97
0.

97
c

0.
81

7c
3

N
o
d
e

17
0.

95
0.

95
c

0.
77

6c
4

208 ADVANCES IN DIGITAL FORENSICS XII

Using Algorithm 2 to Compute P (E1, E2, · · · , En|¬H). Algo-
rithm 2 requiresP (N1 ,f |N1 ,r) corresponding to P (E1 |¬H1) and P (Ni−1 ,c,
Ni,f |Ni,r) corresponding to P (Ei|¬Hi) (i = 2..n) to recursively compute
P (E1 , E2 , · · · , En|¬H). As an example, P (Ei|¬Hi) was assigned to each
attack step in the three attack paths and P (E1 , E2 , · · · , En|¬H) was
computed (Table 7). The results show that the right attack path has
the smallest cumulative false positive estimate.

Values computed for P (H|E1 , E2 , · · · , En) and P (E1 , E2 , · · · , En|¬H)
show the beliefs in the three constructed attack paths given the collected
evidence. The right attack path (Nodes: 11 → 24 → 23 → 22 → 21 →
19 → 18 → 17 → 16) is the most convincing attack path because it has
the largest P (H|E) value and smallest P (E|¬H) value. The left attack
path is not convincing because its joint posterior probability is less than
0.5c4. The middle path is not so convincing because it has a higher
cumulative false positive rate, suggesting that the attack path should be
re-evaluated to determine if it corresponds to a real attack scenario.

6. Conclusions
The principal contribution of this research is a method that automates

the construction of a logical evidence graph using rules and mapping
the graph to a Bayesian network so that the joint posterior probabilities
and false positive rates corresponding to the constructed attack paths
can be computed automatically. The case study demonstrates how the
method can guide forensic investigators to identify the most likely attack
scenarios that fit the available evidence. Also, the case study shows
that the method and the companion tool can reduce the time and effort
involved in network forensic investigations. However, the method cannot
deal with zero-day attacks; future research will attempt to extend the
underlying model to address this deficiency.

This paper is not subject to copyright in the United States. Commer-
cial products are identified in order to adequately specify certain proce-
dures. In no case does such an identification imply a recommendation
or endorsement by the National Institute of Standards and Technology,
nor does it imply that the identified products are necessarily the best
available for the purpose.

References

[1] Argus Cyber Security Lab, MulVAL: A Logic-Based Enterprise
Network Security Analyzer, Department of Computer Science and
Engineering, University of South Florida, Tampa, Florida (www.
arguslab.org/mulval.html), 2016.

Liu, Singhal & Wijesekera 209

Ta
bl
e

7.
C

om
p
u
ta

ti
on

of
P

(E
1
,E

2
,·
··

,E
n
|¬

H
)

fo
r

th
e

at
ta

ck
p
at

h
s.

A
tt

a
ck

S
te

p
A

tt
a
ck

S
te

p
1

A
tt

a
ck

S
te

p
2

H
1

P
(E

1
|¬

H
1
)

P
(E

1
|¬

H
1
)

H
2

P
(E

2
|¬

H
2
)

P
(E

1
,E

2
|¬

H
)

L
e
ft

N
o
d
e

9
0.

00
2

0.
00

2
N

o
d
e

7
0.

00
1

0.
00

30

M
id

d
le

N
o
d
e

33
0.

00
2

0.
00

2
N

o
d
e

31
0.

00
3

0.
00

50

R
ig

h
t

N
o
d
e

24
0.

00
2

0.
00

2
N

o
d
e

22
0.

00
1

0.
00

30

A
tt

a
ck

S
te

p
A

tt
a
ck

S
te

p
3

A
tt

a
ck

S
te

p
4

H
3

P
(E

3
|¬

H
3
)

P
(E

1
,E

2
,E

3
|¬

H
)

H
P

(E
4
|¬

H
4
)

P
(E

1
,E

2
,E

3
,E

4
|¬

H
)

L
e
ft

N
o
d
e

4
0.

00
4

0.
00

7
N

o
d
e

2
0.

03
0

0.
03

68

M
id

d
le

N
o
d
e

28
0.

00
3

0.
00

8
N

o
d
e

17
0.

04
0

0.
04

77

R
ig

h
t

N
o
d
e

19
0.

00
2

0.
00

5
N

o
d
e

17
0.

00
7

0.
01

20

210 ADVANCES IN DIGITAL FORENSICS XII

[2] B. Carrier, A Hypothesis-Based Approach to Digital Forensic Inves-
tigations, Ph.D. Thesis, Department of Computer Science, CERIAS
Tech Report 2006-06, Center for Education and Research in Infor-
mation Assurance and Security, Purdue University, West Lafayette,
Indiana, 2006.

[3] A. Darwiche, Modeling and Reasoning with Bayesian Networks,
Cambridge University Press, Cambridge, United Kingdom, 2009.

[4] N. Fenton, M. Neil and D. Lagnado, A general structure for le-
gal arguments about evidence using Bayesian networks, Cognitive
Science, vol. 37(1), pp. 61–102, 2013.

[5] M. Kwan, K. Chow, F. Law and P. Lai, Reasoning about evidence
using Bayesian networks, in Advances in Digital Forensics IV, I. Ray
and S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 275–289,
2008.

[6] C. Liu, A. Singhal and D. Wijesekara, A logic-based network foren-
sic model for evidence analysis, in Advances in Digital Forensics XI,
G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg, Germany,
pp. 129–145, 2015.

[7] Y. Liu and H. Man, Network vulnerability assessment using
Bayesian networks, Proceedings of SPIE, vol. 5812, pp. 61–71, 2005.

[8] MITRE, Common Vulnerabilities and Exposures, Bedford, Mas-
sachusetts (cve.mitre.org), 2016.

[9] B. Olshausen, Bayesian Probability Theory, Redwood Center for
Theoretical Neuroscience, Helen Wills Neuroscience Institute, Uni-
versity of California at Berkeley, Berkeley, California, 2004.

[10] X. Ou, W. Boyer and M. McQueen, A scalable approach to attack
graph generation, Proceedings of the Thirteenth ACM Conference
on Computer and Communications Security, pp. 336–345, 2006.

[11] J. Pearl, Fusion, propagation and structuring in belief networks,
Artificial Intelligence, vol. 29(3), pp. 241–288, 1986.

[12] F. Taroni, A. Biedermann, P. Garbolino and C. Aitken, A general
approach to Bayesian networks for the interpretation of evidence,
Forensic Science International, vol. 139(1), pp. 5–16, 2004.

[13] F. Taroni, S. Bozza, A. Biedermann, G. Garbolino and C. Aitken,
Data Analysis in Forensic Science: A Bayesian Decision Perspec-
tive, John Wiley and Sons, Chichester, United Kingdom, 2010.

[14] C. Vlek, H. Prakken, S. Renooij and B. Verheij, Modeling crime
scenarios in a Bayesian network, Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and Law, pp. 150–
159, 2013.

