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Chapter 19

A TOOL FOR VOLATILE
MEMORY ACQUISITION
FROM ANDROID DEVICES

Haiyu Yang, Jianwei Zhuge, Huiming Liu and Wei Liu

Abstract Memory forensic tools provide a thorough way to detect malware and
investigate cyber crimes. However, existing memory forensic tools must
be compiled against the exact version of the kernel source code and the
exact kernel configuration. This poses a problem for Android devices
because there are more than 1,000 manufacturers and each manufac-
turer maintains its own kernel. Moreover, new security enhancements
introduced in Android Lollipop prevent most memory acquisition tools
from executing.

This chapter describes AMExtractor, a tool for acquiring volatile
physical memory from a wide range of Android devices with high in-
tegrity. AMExtractor uses /dev/kmem to execute code in kernel mode,
which is supported by most Android devices. Device-specific informa-
tion is extracted at runtime without any assumptions about the target
kernel source code and configuration. AMExtractor has been success-
fully tested on several devices shipped with different versions of the
Android operating system, including the latest Android Lollipop. Mem-
ory images dumped by AMExtractor can be exported to other forensic
frameworks for deep analysis. A rootkit was successfully detected using
the Volatility Framework on memory images retrieved by AMExtractor.

Keywords: Mobile device forensics, memory forensics, Android, rootkit detection

1. Introduction
The Android operating system is the most popular smartphone plat-

form with a market share of 82.8% in Q2 2015 [7]. The popularity of the
operating system makes it vital for digital forensic investigators to ac-
quire and analyze evidence from Android devices. Most digital forensic
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tools and frameworks focus on extracting user data and metadata from
the Android filesystem instead of volatile memory. However, new secu-
rity enhancements, such as full-disk encryption introduced in Android
Ice Cream (version 4.0), make it extremely difficult to recover evidence
via filesystem forensics [2].

Volatile memory is valuable because it contains a wealth of informa-
tion that is otherwise unrecoverable. The evidence in volatile memory
includes objects related to running and terminated processes, open files,
network activity, memory mappings and more [1]. This evidence could
be extracted directly if a full physical memory dump were to be ob-
tained. Often, a full copy of volatile memory is the first, but essential,
step in advanced Android forensics and threat analysis.

Volatile memory acquisition from Android devices is challenging. A
major challenge is the fragmentation of Android devices – there are more
than 24,000 distinct Android devices and 1,294 manufacturers [13]. This
fragmentation introduces flaws in Android memory acquisition tools:

Availability: Memory acquisition tools do not work on several
devices because they lack certain functionality. LiME, the most
popular tool in the Android community, relies on loadable kernel
module (LKM) support by target devices. However, many Android
devices do not provide this functionality. For example, Google
Nexus smartphones do not support loadable kernel modules – at-
tempting to load a kernel module using the insmod command pro-
duces a “function not implemented” error. Loadable kernel module
support is a compile-time option and enabling it requires the ker-
nel to be compiled and the boot partition flashed. Some manufac-
turers incorporate security enhancement mechanisms that prevent
unofficial kernel modules from running. For example, Samsung
Galaxy has KNOX that only allows kernel modules with Samsung
signatures to be loaded.

Compatibility: It is very difficult to port some memory acquisi-
tion tools to new devices. For example, LiME must be compiled
against the exact version of the target kernel source code and the
exact kernel configuration. However, these conditions are not al-
ways met because most mobile phone manufacturers do not release
their source code.

Accuracy: Some memory acquisition tools have large forensic
impacts on target devices, producing evidence that may not be
admissible in court. For example, the fmem memory acquisition
tool for Linux systems can be used to copy data from kernel mode
to user mode. However, it involves frequent copying that may
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override memory content and contaminate the memory. Other
tools that work in user mode only have access to the memory of
particular processes; thus, they are incapable of detecting rootkits.

This chapter describes AMExtractor (Android Memory Extractor),
a widely applicable tool for acquiring volatile memory from Android
devices. AMExtractor has three advantages compared with existing
tools. First, AMExtractor uses the /dev/kmem device to execute code
in kernel space; this bypasses the loadable kernel module restriction and
works well on the latest stock ROMs without any modifications. Second,
AMExtractor does not need the source code of the target device and it is
compatible with most Android operating system versions, including the
latest Lollipop. Third, AMExtractor runs in kernel mode. This makes
the tool forensically sound – it has minimal impact on target devices
because it reads and transmits memory content only in kernel mode and
minimizes data copying. Unlike tools that run in user mode, AMExtrac-
tor can find information hidden from user mode and it is not affected by
rootkits.

AMExtractor was tested on four mobile phone models: (i) Samsung
Galaxy Nexus; (ii) LG Nexus 4; (iii) LG Nexus 5; and (iv) Samsung
Galaxy S4. Different versions of stock and third-party ROMs as well as
the latest stock firmware were tested without any failures. AMExtrac-
tor was evaluated by comparing it against LiME and fmem. The results
demonstrate that the dumped memory is nearly the same as that ob-
tained with LiME. The AMExtractor output was also exported to the
Volatility Framework to detect the presence of rootkits. Evidence of
malware invisible to traditional security tools was discovered.

2. Related Work
Traditional memory acquisition methods can be classified as: (i) hard-

ware methods; and (ii) software methods [5].

2.1 Hardware Methods
JTAG test pins can be used to retrieve the internal memory of a de-

vice. This method was verified on the Nokia 5110 model by Willassen,
[20]. However, over and above the difficulty of directly programming
JTAG to acquire live memory dumps, not all Android devices have JTAG
test pins. Muller developed the FROST framework [12] to retrieve sen-
sitive information, including disk encryption keys from memory using a
cold attack. Specifically, FROST is able to read the remaining memory
content after a mobile phone maintained at a low temperature is pow-
ered off. The limitation of FROST is that it is necessary to unlock the
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phone and flash the recovery image; this causes the phone to be reset to
the factory settings with the loss of all user data. Moreover, FROST re-
lies on the data remanence property to read memory; thus, the memory
retrieved may not be an exact copy of the live memory.

2.2 Software Methods
Traditionally, memory content can be acquired from /dev/mem de-

vices. However, this approach does not work for mobile phones with
RAM in excess of 896 MB [17]. Kollar [8] has developed fmem, a loadable
kernel module that creates a /dev/fmem device supporting memory ac-
quisition. Unfortunately, fmem does not work on Android devices by de-
fault [17]. Additionally, reading memory from such devices in user space
involves too many interactions between user space and kernel space,
which can modify the original content.

Sun et al. [16] have implemented a reliable memory acquisition tool
called TrustDump. TrustDump is a TrustZone-based memory acquisi-
tion tool that can extract the RAM memory and CPU register values
of a mobile device even when the operating system has crashed or has
been compromised. However, TrustDump is only supported on Freescale
i.MX53 QSB, an embedded development board, making it an impractical
tool for evidence acquisition from Android devices.

LiME [17] is another popular forensic tool. It is a loadable kernel mod-
ule that parses the memory mapping structure in a kernel and dumps
the memory content to an SD card or transmits it over a TCP connec-
tion. By using a direct I/O or kernel socket technique, LiME minimizes
its interactions with user and kernel space, thereby providing a more
forensically-sound memory dump. LiME uses a custom format to re-
duce the size of memory images, a feature supported by other memory
analysis tools.

However, LiME has some shortcomings. Its portability across a range
of smartphone models poses problems with regard to memory foren-
sics [17]. When attempting to load a kernel module, if module verifi-
cation is enabled (true for every kernel tested in this work), the kernel
performs several checks to ensure that the module was compiled for the
specific version of the running kernel. LiME needs the kernel source
code of the target phone. This constraint cannot always be satisfied
because manufacturers tend to delay the publication of source code or
never publish their code. However, even if the source code is available,
the kernel configuration and toolchains must be exactly the same as for
the stock firmware running on the phone. Any change prevents the mod-
ule from being loaded due to a CRC checksum mismatch. Recompiling



Yang, Zhuge, Liu & Liu 369

Table 1. Volatile memory acquisition support by commercial tools.

Products Status

Cellebrite No support, but support is planned
XRY No support
Oxygen Forensic No support
Magnet IEF No support

the kernel and flashing it to a phone appears to be the best approach,
but changing the original system is not always acceptable, especially
in forensic research. Even worse, recently released phones such as the
Google Nexus and Samsung Galaxy series, by default, turn off the load-
able kernel module compiling option in their Linux kernels.

Stuttgen and Cohen [15] have proposed a method for loading a mod-
ule into a Linux kernel without kernel source code by developing a truly
version-independent kernel module and modifying it prior to loading.
Using the checksum and kernel information retrieved from another ex-
isting kernel module, they were able to dynamically modify the module
to perform a robust memory acquisition. However, their method is not
widely applicable due to the lack of existing kernel modules in Android
devices.

With regard to code injection techniques, devik and sd [4] have pro-
posed a method that dynamically patches a Linux kernel without using
a loadable kernel module. Lineberry [9] has presented a similar method.
The methods focus on hooking the syscall table instead of reading
memory content. AMExtractor follows this approach, but modifies it to
hook device drivers.

2.3 Commercial Memory Forensics Tools
At this time, the major commercial digital forensic tools do not sup-

port volatile memory acquisition from mobile phones. Table 1 shows the
status of memory acquisition support by popular commercial tools.

3. AMExtractor Design
Figure 1 presents the AMExtractor architecture. AMExtractor is an

ELF file that runs in user space, but requires root privileges to execute
code at the kernel level.

Root privileges are indispensable to using AMExtractor. An existing
root manager or kernel bug exploit may be used to root Android devices.
This prerequisite is relatively easy to satisfy because many users root
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Figure 1. AMExtractor architecture.

their devices [10]. Moreover, many root solutions have been published;
at least two universal solutions were presented recently [21, 22] In any
case, methods for obtaining root privileges are outside the scope of this
research.

The AMExtractor memory dump process involves the following steps:

Step 1: Retrieve Information: AMExtractor reuses some ker-
nel facilities for robustness and compatibility. Information about
the running system, including physical memory offset and kernel
symbols, is retrieved at runtime. The kernel function address and
physical memory layout are retrieved using /proc/kallsyms and
/proc/iomem. Disassembly of the vm normal page function is also
required.

Step 2: Modify theFunction Pointer: Having gathered enough
system information, AMExtractor needs to modify only one byte
of the target kernel. The function pointer points to custom code
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developed by the authors of this chapter and this function is in-
voked by a device operation such as fsync on /dev/ptmx. Note
that /dev/kmem was chosen to modify the kernel because it is sup-
ported by all Android and Linux versions. The impact on the
target system caused by the modification is small because only
one byte of the target kernel is modified.

Step 3: Trigger Code Running at the Kernel Privilege
Level: With the function pointer pointing to the custom code,
calling the particular method on a modified device leads to the
custom code executing at the kernel privilege level. Unused file op-
erators exposed by the kernel are chosen for minimal changes to the
kernel (e.g., operators of /dev/ptmx, /dev/zero and /dev/null).
Experiments revealed that the fsync operator of /dev/ptmx could
be used in most cases.

Step 4: Map and Read Volatile Kernel Memory: When the
custom code executes at the kernel privilege level, it enumerates
pages using the memory management facilities provided by the ker-
nel. Upon enumerating the managed resource in iomem resource,
all the system RAM can be found with the starting and ending
addresses. For each page in the address range of system RAM,
AMExtractor translates the page frame number into the virtual
address. The virtual address can be used by a socket read/write
function. The extraction process is practically the same as that of
LiME. The only difference is that AMExtractor does not rely on
the source code of the target device kernel while LiME must be
compiled against it.

Step 5: Transmit Memory Content via a Kernel Socket:
A kernel socket is used to transmit memory content instead of
copying data to user mode. This method minimizes interactions
between user space and kernel space, and, thus, has a minimal
impact on the target system. The link to a personal computer for
memory content transmission can be created by an ADB bridge or
Wi-Fi connection and the content sent out via TCP/IP.

Step 6: Write Memory Content to a File and Analyze the
Content: The memory content can be received by and written to
a file on a separate personal computer for further analysis. The
output format of AMExtractor is compatible with many memory
analysis toolkits, including Volatility [19].
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4. Implementation
This section presents details about the AMExtractor implementation.

Using /dev/kmem instead of a loadable kernel module strengthens the
tool, but introduces some challenges. This section describes these chal-
lenges and the methods used to solve them.

4.1 Gathering Information
The first step is to dynamically read the kernel symbols. This is not re-

quired for tools using loadable kernel modules because they have already
been compiled against the source code. However, AMExtractor needs to
know the function addresses before it can use /dev/kmem. Fortunately,
the Android kernel has a symbol table exported in /proc/kallsyms that
provides enough information.

The content of /proc/kallsyms is a simple plaintext file that is easy
to parse:

c4508000 T stext
c4508000 T _sinittext
c4508000 T _stext
c4508000 T __init_begin
c450805c t __create_page_tables
c4508060 t __enable_mmu_loc
...
...

However, the kernels of most phones restrict the kernel pointer addresses
from being printed. Fortunately, /proc/sys/kernel/kptr restrict
can be used to turn off this restriction.

4.2 Using /dev/kmem to Deploy the Trigger
While each loadable kernel module has a well-defined entry, tools

based on /dev/kmem do not. Therefore, a technique for triggering code
in kernel space is needed. AMExtractor deploys the trigger by modi-
fying one function pointer to the custom code. The triggering process
proceeds as follows:

Find a device created by a Linux kernel for which struct file
operations is writable.

Modify the function pointer of the structure to the custom code.

Trigger the custom code by calling the corresponding device func-
tion.
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AMExtractor uses the /dev/ptmx device. This device has an opera-
tion structure that is always writable because the method of the device
is assigned during booting. For certain versions of the Android kernel,
/dev/zero and /dev/null are suitable alternatives.

4.3 Running Code at the Kernel Privilege Level
Triggering the custom code at the kernel privilege level is straightfor-

ward. All that is needed is to open the modified device in the previous
step and perform the operation, i.e., call fsync() on /dev/ptmx.

4.4 Mappping and Reading Kernel Memory
This process is nearly the same as that of LiME. When enumerat-

ing pages, the iomem resource structure is traversed, the page frame
number is translated to the page pointer and the page is mapped to a
virtual address. The difference between AMExtractor and LiME lies in
the translation method. Tools based on loadable kernel modules can
perform the translation using pfn to page. However, pfn to page is a
macro that is compiled (inline) into other functions. Therefore, it is im-
possible to reuse pfn to page in the target kernel and it is necessary to
re-implement the logic of the macro. A hard coded implementation of the
macro is also infeasible because there are three different memory models
in a Android kernel, corresponding to the different implementations of
pfn to page. It is infeasible to enumerate the three implementations
and identify the correct one because a wrong choice causes kernel panic.
The problem is solved as follows:

Find a function that contains the pfn to page macro.

Reverse-engineer the binary code of the function.

Re-implement the logic of the macro.

The following code snippet is the disassembled output of the pfn
to page macro in IDA Pro:

C024F344 loc_out
C024F344 LDR R3, =0xC122AFC0

; load address of memory_map into r0
C024F348 LDR R0, [R3]
C024F34C ADD RO, R0, R4, LSL #5

; r4 contains page frame number
; sizeof(struct page) == 32

C024F350 LDMFD SP, {R4,R5, R11, SP, PC}; return
C024F354
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Table 2. Tests of forensic soundness.

Device ROM Version LKM LiME AMExtractor

Galaxy Nexus Stock ROM 4.3 No Failed Successful
Galaxy Nexus Paranoid 4.4.4 Yes Success Successful
Nexus 4 Stock ROM 4.2.2 No Failed Successful
Nexus 4 Stock ROM 5.1.1 No Failed Successful
Nexus 5 Stock ROM 4.4.4 No Failed Successful
Nexus 5 Stock ROM 5.1.1 No Failed Successful
Nexus 5 Self-compiled 5.0 Yes Successful Successful
Galaxy S4 Stock ROM 5.0 Yes Failed Successful

Obviously, the device uses a flat memory model and the size of the
structure page is 32.

4.5 Transmitting Memory Content
Using the page pointer provided by pfn to page, calling kmap maps

the page with a virtual address that is useful in the kernel socket. Func-
tions sock create kern and kernel sendmsg can then be used in the
kernel without copying data to user space.

5. Experimental Evaluation
Experiments were conducted using AMExtractor on various devices

and the extracted memory was analyzed. The experimental results
demonstrate that AMExtractor has wide applicability on the latest firm-
ware versions. Also, the extracted memory was successfully analyzed to
detect rootkit activities; this is not possible using traditional user space
tools.

5.1 Applicability Evaluation
AMExtractor was tested on four phone models: Galaxy Nexus, Nexus

4, Nexus 5 and Samsung Galaxy S4. Various versions of stock ROMs
and third-party ROMs were included in the experiments. Also, a custom
kernel with a loadable kernel module option was compiled to test LiME.

As shown in Table 2, AMExtractor successfully dumped the memory
contents of all the phones shipped with latest ROMs. The Samsung
Galaxy S4 with KNOX enabled was also tested. LiME only succeeded on
the self-compiled ROM of Nexus 5 and one third-party ROM of Galaxy
Nexus. Although the Galaxy S4 enabled a loadable kernel module in
stock ROM, the security enhancements provided by KNOX prevented
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Table 3. Tests of forensic soundness.

Acquisition Tool Number of Pages Identical Percentage

AMExtractor 484,096 99.06%
LiME 484,096 99.46%
fmem 484,096 80.17%

an unofficial kernel module from being loaded. In contrast, AMExtractor
worked well even when KNOX was operational.

5.2 Integrity Evaluation
Forensic soundness is a critical criterion for evaluating a memory

forensic tool. Comparisons of the memory dumped by different tools
serves as a good proof of soundness. In the evaluation, the dumped
memory contents were compared against the memory of the Android
emulator to demonstrate integrity. In order to make LiME and fmem
work properly, a self-compiled kernel was flashed to Nexus 5. Table 3
presents the results.

Although the memory contents may change during the long dumping
process, the memory contents dumped by AMExtractor and LiME were
nearly the same. This is not surprising because the same approaches are
used to enumerate pages and transmit the memory contents.

6. In-Depth Analysis of Extracted Memory
Volatile memory is valuable in forensic investigations. Efforts have

been made to extract information and evidence from volatile memory
dumps. A promising application is rootkit detection. Modern malware
often uses kernel-level techniques to hide their activities. Kernel rootkits
run with the highest operating system privileges. These rootkits can
modify the interactions between user mode and kernel mode to cloak
themselves. The following code snippet shows a typical Android rootkit
that hides its file and process:

shell@hammerhead:/ # ps | grep wmr
1|root@hammerhead:/ #

Rootkit detection is difficult because a rootkit may be able to subvert
the software intended to find it. The sample rootkit above can hide
itself when a user issues the ps command to list suspicious processes.
However, analysis of the full memory dump provided by AMExtractor
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can reveal evidence of malware activities. Specifically, in the rootkit
example above, the package name of the rootkit cannot be found in the
ps output. However, the rootkit is revealed when the memory extracted
by AMExtractor is analyzed:

user@PC:~$ vol.py --profile=LinuxGNARM -f ./dump_memory
linux_pslist | grep wmr
Volatility Foundation Volatility Framework 2.4
0xc61d1a40 com.mwr.dz 1657 10064 10064

0x85170000 2015-09-01 07:24:01
0xc510f840 m.mwr.dz:remote 1670 10064 10064

0x85dc4000 2015-09-01 07:24:01

Note that no processes with the string “wmr” in their names are listed
because the rootkit has hidden them. However, when Volatility is used to
analyze the AMExtractor memory dump, the processes become visible:

user@PC:~$ vol.py --profile=LinuxGNARM -f ./dump_memory
linux_check_syscall_arm
Volatility Foundation Volatility Framework 2.4
/*---------------omitted----------------*/
0xd7 0xc00cdfd0 sys_setfsuid
0xd8 0xc00ce0ac sys_setfsgid
0xd9 0xbf004000 HOOKED
0xda 0xc0188024 sys_pivot_root
0xdb 0xc0150e44 sys_mincore
0xdc 0xc014cb38 sys_madvise

/*---------------omitted----------------*/

Furthermore, sys call table can be analyzed using the memory
dump provided by AMExtractor. As seen in the output above, sys
getdents64 was compromised by malware.

Although AMExtractor can be applied to a wide variety of Android
devices, the tool has some limitations. The code executed in the kernel is
located in user space. The control flow of the kernel may be redirected to
custom code by modifying a function pointer. ARM CPUs provide the
Privileged Execute Never (PXN) permission to prevent such activities.
If a target kernel were to fully utilize PXN functionality, AMExtrac-
tor would fail. Moreover, AMExtractor relies on /proc/kallsyms and
/dev/kmem. Fortunately, most Android devices, including all the devices
tested, do not use PXN [6].

7. Conclusions
The AMExtractor tool is designed to acquire volatile physical mem-

ory from Android devices with the latest ROMs and firmware. The
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tool utilizes /dev/kmem to perform memory extractions with high in-
tegrity and better applicability than existing tools. Memory images
dumped by AMExtractor may be exported to other forensic frameworks
for deep analysis. Additionally, AMExtractor supports rootkit detec-
tion. In an experiment, a rootkit was successfully detected using the
Volatility Framework on volatile memory retrieved by AMExtractor.
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