
HAL Id: hal-01757573
https://inria.hal.science/hal-01757573

Submitted on 3 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Service Repository for Cloud Service Consumer Life
Cycle Management

Hong Thai Tran, George Feuerlicht

To cite this version:
Hong Thai Tran, George Feuerlicht. Service Repository for Cloud Service Consumer Life Cycle Man-
agement. 4th European Conference on Service-Oriented and Cloud Computing (ESOCC), Sep 2015,
Taormina, Italy. pp.171-180, �10.1007/978-3-319-24072-5_12�. �hal-01757573�

https://inria.hal.science/hal-01757573
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Service Repository for Cloud Service Consumer Life
Cycle Management

Hong Thai Tran1 and George Feuerlicht 1, 2, 3

1 Faculty of Engineering and Information Technology, University of Technology, Sydney,
hongthai.tran@uts.edu.au, george.feuerlicht@uts.edu.au

2 Unicorn College, V Kapslovně 2767/2,130 00 Prague 3, Czech Republic,
3 Department of Information Technology, University of Economics, Prague, W. Churchill Sq. 4,

Prague 3, Czech Republic

Abstract: With rapid uptake of various types of cloud services many organiza-
tions are facing issues arising from their dependence on externally provided
cloud services. In order to enable operation in this rapidly evolving environ-
ment, end user organizations need new methods and tools that support entire
life-cycle of cloud services from the perspective of service consumers. Service
repositories play a key role in supporting service consumer SDLC (Systems
Development Life-Cycle) maintaining information that is used during the vari-
ous life-cycle phases. In this paper we briefly describe service consumer SDLC
and propose a design of service repository that supports information require-
ments throughout the service life-cycle.

Keywords: service repository, cloud services, service life-cycle

1 Introduction

Cloud computing is a novel approach for implementing enterprise IT (Information
Technology) solutions that has the promise of increased agility, flexibility, elasticity
and cost savings. Rapid growth in the availability of various types of cloud services
provides opportunities for the implementation of innovative enterprise applications,
and organizations are increasingly relying on external cloud providers to deliver a
significant part of their enterprise infrastructure and applications. Unlike in on-
premise situations, in cloud computing environments service consumers and service
providers are typically separate entities with different roles and responsibilities during
the service life-cycle. Consequently, the traditional service life-cycle used in on-
premise development is not suitable in situation where cloud services are implement-
ed by external cloud service providers and deployed by service consumers in their
enterprise applications [1]. More specifically, the primary role of cloud service con-
sumers has changed from implementation of on-premise enterprise applications to
integration and management of cloud services [2], with cloud service providers taking
responsibility for IT infrastructure and a significant part of the application portfolio.

The Programmable Web directory [4] currently lists almost fourteen thousand APIs
(Application Programing Interfaces) for various types of services, making the identi-
fication of suitable services challenging for service consumers. In many cases, similar
services are available from various cloud providers with different interfaces, protocols
and Quality of Service (QoS) attributes [3]. The integration of such disparate cloud
services with on-premise enterprise applications requires a significant effort. This
emerging situation where enterprise applications utilize a large number of cloud ser-
vices requires a new approach to service life-cycle management. A key architecture
component needed to address these issues is the service repository that stores infor-
mation about available services and related QoS attributes, providing a database of
cloud services that are certified for use within the enterprise and can be shared among
different projects.

In our earlier work [5], we have described the SDLC (Systems Development Life-
Cycle) for cloud services as viewed from a service consumer perspective, and we
have specified SDLC phases and described architectural components required to sup-
port life-cycle activities. This paper focuses on defining the structure and properties of
the service repository. In the next section (section 2) we review research literature on
service life-cycle management and service repositories. The following section (sec-
tion 3) is a description of the proposed service repository structure for cloud service
consumer life-cycle management, and section 4 contains our conclusions and pro-
posals for future work.

2 Related work

The life-cycle of a cloud services involves different stakeholders that include service
providers and service consumers that participate in delivering cloud-based enterprise
applications and ensuring runtime management of cloud services. Generally, service
life-cycle management includes three types of activities: design time, runtime and
change time activities. Although cloud service life-cycle is still a subject of extensive
investigation, there is a general agreement in the literature about the individual life-
cycle phases and the need for a service repository to support life-cycle activities.

In early research, Yelmo, et al. [6] describe user-centric service life-cycle man-
agement for telecom services. The authors focus on Service Lifecycle Manager and
the Service Execution Environment modules of the OPUCE platform (Open Platform
for User-centric service Creation and Execution). In OPUCE, a service repository is
used to store service description including all related attributes e.g. service type, de-
scriptions, and the terms and conditions of use. Services are specified using three sets
of facets (i.e. description of a specific aspect of a service): Functional facets, Non-
functional facets and Management facets. Vitharana and Jain [7] introduce a
Knowledge Based Component Repository (KBCR) for enabling requirements analy-
sis. The repository includes basic information about services (name, version, func-
tionalities, and QoS attributes), facet information, business process templates, rela-
tionships among components, and provides support for a search capability. Yu, et al.
[8] propose a semantically enhanced service repository for user-centric service dis-

covery and management. The repository consists of two main components: a service
registry for storing and managing service metadata (i.e. service name, service version,
provider and service descriptions) and a service discovery component that allows
discovery of services. Lakshmi and Mohanty [9] describe the design of a scalable
service repository implemented using a relational database supporting algebraic oper-
ators for service composition using Composition Search Trees. The database service
includes five tables: Providers, Services, Parameters, Service Input and Service Out-
put. Service providers are categorized by reputation (using categories Best, Good,
Average and Below Average), and services are classified using QoS attributes. This
information is used to search for services in the registry and to compose business
process based on identified services.

Shetty and D'Mello [3] review service repository strategies and service discovery
techniques with the aim to support diversity of cloud services. The cloud service dis-
covery feature supports search and browsing of services based on functional and non-
functional properties. Authors classify discovery methods according to different ar-
chitectures of the cloud service repository into centralized architectures and distribut-
ed architectures. They also describe the various service discovery algorithms used in
the literature for cloud service discovery such as functional description based meth-
ods: keyword (syntactic) based discovery, semantic based discovery and hybrid
matching. Non-functional description method that includes static and dynamic QoS
based methods. A method for managing integrated life-cycle of cloud services was
proposed by Joshi, et al. [10]. The authors have identified performance metrics asso-
ciated with each life-cycle phase that include data quality, cost, and security metrics
based on SLA (Service Level Agreement) and consumer satisfaction, and they have
proposed a service repository with a discovery capability for managing cloud services
life-cycle [1]. The authors divide cloud services life-cycle into five phases: require-
ments specification, discovery, negotiation, composition, and consumption. During
the service discovery phase, service consumers search for services using service de-
scription and provider policies in a simple services database. Service information is
stored as a Request for Service (RFS) that contains functional specifications, technical
specifications, human agent policy, security policy, and data quality policy.

 Field, et al. [11] present a European Middleware Initiative (EMI) Registry that us-
es a decentralised architecture to support service discovery for both hierarchical and
peering topologies. The objective of the EMI Registry is to provide robust and scala-
ble service discovery that contains two components: Domain Service Registry (DSR)
and Global Service Registry (GSR). Service discovery is based on service information
stored in service records that contain mandatory attributes such as service name, type
of service, service endpoint, service interface, and service expiry date. Vukojevic-
Haupt, et al. [12] proposed a service selection method for on-demand provisioned
services. Services are provided by a third party provider and service consumers have
no knowledge about the implementation and the underlying infrastructure that sup-
ports the delivery of services. Authors develop an entity relationship diagram of the
service registry that contains service information and metadata, including functional
and non-functional properties, service configuration parameters, service provider
information, functional description of the service, and QoS attributes. In a recent pub-

lication Bauer, et al. [13] present the design of an advanced SOA repository enriched
with analysis capabilities. The repository contains various types of services and their
relationships. Authors propose a meta-model for repositories to analyse service de-
pendency and the impact of changes.

Most of the research publications reviewed in this section focus on service selec-
tion and discovery. Our service repository design aims to cover the entire life-cycle of
cloud services from the perspective of service consumers, and includes the phases:
requirements specification, service identification, service integration, service monitor-
ing and service optimization.

3 Repository support for service consumer SDLC

As noted in our previous work [5], traditional SOA systems development methodolo-
gies do not explicitly differentiate between service provider and service consumer
SDLC cycles. In the context of cloud computing, service providers and service con-
sumers are separate entities that perform different tasks throughout their SDLC cy-
cles. Service providers are responsible for the implementation and delivery of cloud
services and service consumers are primarily involved in the selection and integration

of suitable cloud services into their enterprise applications. As illustrated in Figure 1,
we identify five SDLC phases of the service consumer life-cycle: requirements speci-
fication, service identification, service integration, service monitoring and service
optimization. These phases can be classified into design-time activities that include
requirements specification, service identification and service integration, and run-time

Fig. 1. Cloud service consumer life-cycle

activities that involve service monitoring, and service optimization. The information
held in the service repository is used to manage services and to define service compo-
sitions that are executed by the workflow engine at runtime. In the following sections
we consider information requirements for the individual life-cycle phases and define
the structure and properties of the service repository.

3.1 Requirements Specification

The service requirements specification phase involves description of functional and
non-functional requirements that a given service needs to fulfil. Functional specifica-
tions of the service describe what functions the service should provide. While there
are differences in the specification according to the type of service (e.g. application
service, infrastructure service, etc.), typically the specification includes technical de-
tails of the service interface (e.g. WSDL interface) and may also include details of the
technological environment (e.g. specific hardware platforms, programming languages,
etc. in the case of infrastructure and platform services). The non-functional attributes
include service availability, response time, and security requirements, and may also
include requirements regarding data location, security certification and the maximum
cost of the service. Once the service is fully described and classified, the service con-
sumer creates a Request for Service (RFS) and records the information in the service
repository [10].

Fig. 2. UML diagram of the Service Repository

Table 1. List of repository attributes

Attribute Description

Service
 ServiceName The unique identifier of the service
 ServiceDescription Description of the service
 SLA Service level agreement
 SupportUrl URL of the support page of the service
 ServiceCost Cost usage plan of service
 ServiceSecurity Security characteristics of the service
 ServiceStatus Service status, e.g. online, offline or retired
 ServiceType The type of service (on-premise, cloud or composite)

Service version
 EnpointUrl Network location of the service
 Version Service version number
 WSDL WSDL specification of the service
 Availability Service availability (estimated)
 ResponseTime Service response time (estimated)
 AdaptorUrl Network location of the service adaptor

Operation
 OperationName Service method name
 ServiceParamater Service method parameters

EnterpriseApplication
 ApplicationName Name of application
 Specifications Application specification requirements
 UsingServices List of services are using in this application

ServiceLog
 ExecutionStartTime The start time of service execution
 ExecutionEndTime The end time of service execution
 LogMessage Log message (e.g. error message)
 AuditStatus Service outcome (i.e. success or failure)

ServiceCategory
 CategoryName Service Category Name

ServiceProvider
 ProviderName Service provider name
 Website Service home page or customer support page
 Phone Customer service hotline
 SupportEmail Customer support email

Figure 2 show the initial version of service repository UML (Unified Modelling

Language) diagram, and Table 1 is a list of repository attributes derived from the
UML diagram. Service is a central entity of service repository and includes attributes
that describe registered services including service identification, a range of functional,
non-functional attributes, and SLA description. In order to manage service evolution
and keep track of changes of service functionality, information about Service Versions

is stored in the repository. Operation is associated with service versions as it is possi-
ble for different versions of the service to have different operations when the service
evolves. Service Category is used to categorize services according to service type
resulting in a service type hierarchy illustrated in Figure 3. The concept of service
substitution is represented by the replaces relationship that identifies services with
same functionality (e.g. two payment services with identical functionality) that pro-
vide alternatives that can be used to improve service availability, or to replace ser-
vices to reduce the cost and improve performance. Service substitution information is
used at design time to support load balancing and failover features. Service Provider
represents service providers and contains service provider attributes listed in Table 1.
Service Log records runtime information that includes response time, results of ser-
vice invocation, and other non-functional attributes collected at run-time and used for
analysis of service performance. Each service can be used in a number of Enterprise
Applications, and each enterprise application can use a number of registered services.

3.2 Service identification

Service identification is constrained by the functional and non-functional require-
ments documented in the previous phase (requirements specification phase). Service
identification phase uses service category hierarchy (Figure 3), and functional and
non-functional attributes of the service identified during the service requirements
phase. Service repository has a web-based user interface which allows consumers to

search for services based on their category and QoS information. Service identifica-
tion phase begins by searching the service repository, attempting to match the re-
quirements specified in the previous phase with services that are already registered in
the repository and certified for use. If no existing service matches the requirements,
the service consumer will need to search for the candidate services available from
cloud service providers, or contact a preferred service provider directly to locate a
suitable cloud service. In addition to selecting a suitable the service, the identification
phase involves service testing and approval. Service approval is an internal certifica-

Fig. 3. Partial service category hierarchy

tion process that certifies cloud services for use in enterprise applications within the
organization. Given the large number of available cloud services, the selection of
suitable services can be time consuming, in particular if this task is performed multi-
ple times in the context of different projects that require similar services. Using the
consumer service repository to store information about approved cloud services en-
sures that services are shared among different projects, and that service selection and
approval process is not unnecessarily repeated. In some instances, the consumer may
be able to negotiate details of the SLA with the service provider, although this will
depend on the type and volume of services involved.

3.3 Service Integration

Following the service identification phase, cloud services need to be integrated into
consumer enterprise applications. Following the registration of the enterprise applica-
tion, relevant services are identified and composed to implement the desired business
functionality using services that have been already certified and are recorded in the
repository. The service substitution information is used to compose services. The
design of a composite service involves searching for atomic services that match the

requirements of enterprise applications and composing these services to define a suit-
able runtime execution sequence. For example, the online shopping process illustrated
in Figure 4 includes a composite payment service composed of three different (atom-
ic) payment services: PayPal, SecurePay and eWay. This composite payment service
is used to load-balance the payment services, and at the same time provides a failover
function that handles situations when a particular service becomes unavailable. This
improves both the availability and the reliability of the enterprise application.

Fig. 4. Composite payment service for online shopping process

3.4 Service Monitoring

The service monitoring phase involves monitoring activities that take place at runtime
and includes the management of service utilization. Typically, both the service pro-
vider and service consumer perform service monitoring independently, and both par-
ties are responsible for resolving service quality issues that may arise. The service
repository includes information that records runtime performance of services (i.e.
response time, availability information, and various type of error messages) generated
by the Notification Centre that records service status of cloud services in the runtime
service log. This information is used by application administrators to monitor service
utilization, plan maintenance activities, and to perform statistical analysis of response
time and throughput for individual cloud services. Maintaining accurate QoS statistics
in the service repository enables to compare the values of QoS attributes defined in
the SLA against the actual (measured) QoS values.

3.5 Service Optimization

Service optimization phase is concerned with continuous service improvement. This
can be done by replacing existing services with new versions when these become
available, or by identifying substitute services from a different provider that have the
same functionality. For example, the payment service PayPal could be replaced by the
SecurePay service, based on information stored in the repository during the monitor-
ing phase. Service repository supports the process of service optimization allowing
service replacement without impacting on existing enterprise applications. In addition
to optimizing individual services, entire business processes can be optimized by rede-
signing the constituent composite services.

4 Conclusion

The main difference between service provider SDLC (i.e. traditional service lifecycle
as described in the literature) and service consumer SDLC is the focus on service
integration and runtime management of services. Cloud service integration is a de-
sign-time activity that relies on accurate description of service interfaces and associat-
ed QoS attributes to allow service composition and definition of service execution
sequences to implement specific business functions. Run-time activities include failo-
ver management and ensuring satisfactory levels of service quality to maintain conti-
nuity of operation. To achieve these objectives, designers must be able to match de-
sired QoS attributes values against information stored in the repository and to define
processing rules that determine the sequence of service execution at run-time [14].

Well-designed service repository is critical for the support the various activities
throughout the consumer service life-cycle. In this paper, we have described the de-
sign of service repository that supports the information requirements of the life-cycle
phases: requirement specifications, service identification, service integration, service
monitoring and service optimization. Service repository structure includes both func-
tional and non-functional attributes allowing a full description of the service for the

purpose of creating RFS (Request for Service). Structuring service specification using
service category hierarchy allows accurate matching of services based on service type
and QoS attributes. During the service integration phase, service designers use this
information to implement composite services with desired run-time properties (i.e.
failover capability and load balancing).

In conclusion, our service repository design supports both design time and runtime
activities throughout the service consumer SDLC. We are currently in the process of
implementing the service repository using Microsoft SQL Server database and further
enhancing the design of the repository.

References

1. Joshi, K. P., Yesha, Y., Finin, T.: Automating Cloud Services Life Cycle through Semantic
Technologies, IEEE Transactions on Services Computing, vol. 7, pp. 109-122 (2014).

2. Farrell, K.: Cloud Lifecycle Management: Managing Cloud Services from Request to
Retirement. http://www.bmc.com/blogs/hybrid-cloud- delivery-managing-cloud-services-
from- request-to-retirement

3. Shetty, J., D'Mello, D. A.: Repository Design Strategies and Discovery Techniques for
Cloud Computing, In: 2013 International Conference on Green Computing,
Communication and Conservation of Energy (ICGCE), pp. 761-766 (2013)

4. ProgrammableWeb: The World's Largest API Repository, Growing Daily.
http://www.programmableweb.com/apis/directory

5. Feuerlicht, G., Tran, H. T.: Adapting Service Development Life-cycle for Cloud, In: The
17th International Conference on Enterprise Information Systems (ICEIS), Spain (2015)

6. Yelmo, J., Trapero, R., del Álamo, J., Sienel, J., Drewniok, M., Ordás, I., et al.: User-
Driven Service Lifecycle Management – Adopting Internet Paradigms in Telecom
Services, In: The 5th International Conference on Service-Oriented Computing (ICSOC),
Austria (2007).

7. Vitharana, P., Jain, H.: A Knowledge Based Component/Service Repository to Enhance
Analysts’ Domain Knowledge for Requirements Analysis, Information & Management,
vol. 49, pp. 24-35 (2012).

8. Yu, J., Sheng, Q. Z., Han, J., Wu, Y., Liu, C.: A Semantically Enhanced Service
Repository for User-centric Service Discovery and Management, Data & Knowledge
Engineering, vol. 72, pp. 202-218 (2012).

9. Lakshmi, H., Mohanty, H.: RDBMS for Service Repository and Composition, In: The 4th
International Conference on Advanced Computing (ICoAC), pp. 13-15 (2012)

10. Joshi, K., Finin, T., Yesha, Y.: Integrated Lifecycle of IT Services in A Cloud
Environment, In: The 3rd International Conference on the Virtual Computing Initiative
(ICVCI), USA (2009)

11. Field, L., Memon, S., Márton, I., Szigeti, G.: The EMI Registry: Discovering Services in a
Federated World, Journal of Grid Computing, vol. 12, pp. 29-40 (2014).

12. Vukojevic-Haupt, K., Haupt, F., Karastoyanova, D., Leymann, F.: Service Selection for
On-demand Provisioned Services, In: The 18th International Enterprise Distributed Object
Computing Conference (EDOC), Germany, pp. 120-127 (2014)

13. Bauer, T., Buchwald, S., Tiedeken, J., Reichert, M.: A SOA Repository with Advanced
Analysis Capabilities-Improving the Maintenance and Flexibility of Service-Oriented
Applications, (2015).

14. Feuerlicht, G., Tran, H. T.: Service Consumer Framework: Managing Service Evolution
from a Consumer Perspective, In: The 16th International Conference on Enterprise
Information Systems (ICEIS), Portugal (2014)

