
HAL Id: hal-01745815
https://inria.hal.science/hal-01745815

Submitted on 28 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Privacy-Preserving Range Queries from Keyword
Queries

Giovanni Di Crescenzo, Abhrajit Ghosh

To cite this version:
Giovanni Di Crescenzo, Abhrajit Ghosh. Privacy-Preserving Range Queries from Keyword Queries.
29th IFIP Annual Conference on Data and Applications Security and Privacy (DBSEC), Jul 2015,
Fairfax, VA, United States. pp.35-50, �10.1007/978-3-319-20810-7_3�. �hal-01745815�

https://inria.hal.science/hal-01745815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Privacy-Preserving Range Queries
from Keyword Queries

Giovanni Di Crescenzo, Abhrajit Ghosh

Applied Communication Sciences, NJ, USA.
{gdicrescenzo,aghosh}@appcomsci.com

Abstract. We consider the problem of a client performing privacy-
preserving range queries to a server’s database. We propose a crypto-
graphic model for the study of such protocols, by expanding previous
well-studied models of keyword search and private information retrieval
to the range query type and to incorporate a multiple-occurrence at-
tribute column in the database table.
Our first two results are 2-party privacy-preserving range query proto-
cols, where either (a) the value domain is linear in the number of database
records and the database size is only increased by a small constant fac-
tor; or (b) the value domain is exponential (thus, essentially of arbitrarily
large size) in the number of database records and the database size is in-
creased by a factor logarithmic in the value domain size. Like all previous
work in private information retrieval and keyword search, this protocol
still satisfies server time complexity linear in the number of database
payloads.
We discuss how to adapt these results to a 3-party model where encrypted
data is outsourced to a third party (i.e., a cloud server). The result is a
private database retrieval protocol satisfying a highly desirable tradeoff
of privacy and efficiency properties; most notably: (1) no unintended
information is leaked to clients or servers, and the information leaked to
the third party is characterized as ‘access pattern’ on encrypted data; (2)
for each query, all parties run in time only logarithmic in the number of
database records and linear in the answer size; (3) the protocol’s query
runtime is practical for real-life applications.

1 Introduction

The recent computing trend of outsourcing big data in the cloud for simpli-
fied and efficient application deployment is being embraced in government, as
well as other areas, including finance, information technology, etc. In govern-
ment, large databases are needed in many contexts (e.g., no-fly lists, metadata
of communication records, etc.). In finance, banks and other financial institu-
tions need to store huge data volumes and compute over them on a daily basis.
In information technology, web and social networks collect huge data from com-
puter users, which is then made available for different uses and computations.
To facilitate and guarantee success for all of these applications, databases are
very useful data management tools, and cloud storage and computing provide



tremendous efficiency and utility for users, as exemplified by the increasingly
successful database-as-a-service application paradigm (see, e.g., [13]). On the
other hand, cloud storage and computing paradigms are also accompanied by
privacy risks (see, e.g., [21]). To mitigate these risks, database-management sys-
tems can use privacy-preserving database retrieval protocols that allow users to
submit queries and receive results in a way that clients learn nothing about the
contents of a database except the results of their queries, and servers do not learn
which queries are submitted. The research literature has attempted to address
these issues, by studying private database retrieval protocols in limited database
and query models and with limited efficiency properties. In this paper we par-
tially address some of these limitations, by using a practical database model,
and proposing protocols in both a client-server model and a 3-party model,
where servers can outsource data to a third party (in encrypted form). In these
models, practical and privacy-preserving database retrieval protocols for basic
query types such as keyword queries, have been recently shown to be possible. In
this paper, we attempt to show that practical and privacy-preserving database
retrieval protocols are possible for a more complex query type: range queries.

Previous work. The security and cryptography literature contains a signif-
icant amount of research in the private information retrieval (PIR) [6, 18, 20]
and keyword search (KS) [5, 3, 10] areas. Both areas consider rather theoreti-
cal data models, as we now discuss. In PIR, a database is modeled as a string
of n bits, and the query value is an index i ∈ {1, . . . , n}. In KS, early data
models were also somewhat restrictive; for instance, [10] only admitted a sin-
gle matching record per query. The inefficiency of the server runtime in PIR
and KS protocols has been well documented (see, e.g., [24]). Some results at-
tempted to use a third party and make the PIR query subprotocol more efficient
but require a practically inefficient preprocessing phase [8]. Recently, however,
some results on provably privacy-preserving and practical keyword queries in a
practical database model and in an outsourced-data scenario were concurrently
shown by [7, 17], where significant efficiency is achieved by provably limiting the
privacy loss to encrypted data “access-pattern” information, only leaked to the
cloud server.

The literature also contains a significant amount of work on range queries
or range computations on encrypted data. Some papers (starting with [22, 4])
focus on encrypting messages, on which one can later perform range query com-
putations. These approaches offer interesting provable security properties but
make heavy use of asymmetric cryptography techniques and seem hard to trans-
late into practical protocols for databases. Promising approaches to achieve at
least some limited amount of privacy (with tradeoffs against efficiency) on range
queries in an outsourced database setting have also been shown (see, e.g., [14]
and follow-up work), typically based on variants of “bucketization” approaches.
The primitive of order-preserving encryption gives rise to elegant and efficient
range query protocols in the “database-as-a-service” model (see, e.g., [1] and
follow-up work), but constructions of order-preserving encryption are still not
very efficient and especially come with static leakage on the encrypted data to



the server holding it [2]. Overall, the question of designing provably privacy-
preserving range queries in a practical data model, even in the outsourced-data
scenario, seems to still deserve more attention from the security community.

Our contribution. We study range queries in a more practical (outsourced or
not) database model, capturing record payloads, possibly equal attribute values
across different database records, and multiple answers to a given query. In this
model, we define suitable correctness, privacy and efficiency requirements.

We then design two range query protocols in the 2-party model, which sat-
isfy desired privacy properties (i.e., the server learns no information about the
query range other than the number of matching records, and the client learns
no information about the database other than matching database records) in
our data model. Our first protocol works for linear-size value domains by only
increasing database size by a small constant, and our second protocol works for
exponential-size (thus, essentially arbitrary-size) value domains while increasing
database size by a factor logarithmic in the value domain size. These protocols
are constructed directly from any KS protocol and, like previous PIR and KS
protocols, have server time complexity linear in the database size, a drawback
dealt with in our next result.

Our third protocol transforms any of our 2-party range query protocols into
a 3-party protocol, where the third party can be a cloud server, based on any 3-
party KS protocol (like the one in [7], only based on any pseudo-random function,
implemented as a block cipher). In this protocol, both server and third party run
queries in logarithmic time and the following privacy properties provably hold:
the server learns nothing about the query range, the client learns nothing about
the database in addition to the matching database records, and the third party
learns nothing about the query range or the database content, other than the
repeating of queries from the client and repeated access to the encrypted data
structures received by the server at initialization. This solves the problem of
achieving provable privacy (against a semi-honest adversary) and efficient server
runtime at the cost of a ‘third-party’-server and some leakage to the third party
characterized as ‘access-pattern’ to encrypted data. We stress that this protocol
has efficient running time not only in an asymptotic sense, but in a sense that
makes it ready for real-life applications (where such form of leakage to the third
party is tolerable). In our implementation of a computationally similar protocol,
we reached our main performance goal of achieving response time to be less than
1 order of magnitude slower than commercial non-private protocols like MySQL.
Our protocol solves a number of technical challenges using simple and practical
techniques, including a reduction step via an intermediate rank database and
a ‘lazy’ database value shifting approach. The privacy loss traded for such a
practicality property was already studied in [15, 16], who also proposed simple
techniques to mitigate leakage to the cloud server in the form of ‘access-pattern’
to encrypted data, at least in the case of keyword queries. (Here, note that in
the presence of such leakage, neither the client nor the server learn anything
new, and the cloud server does not statically learn anything about the plain
database content.) We believe that one appropriate mitigation technique needed



for such solutions could be based on Oblivious RAM (an active area started
in [12]), and it is plausible that dedicated Oblivious RAM techniques in the 3-
party model may nullify or mitigate any such leakage based on ‘access-pattern’
over encrypted data. This is indeed a promising direction as, while years ago
Oblivious RAM was considered inefficient, recent advances (see, e.g., [23]) have
made it significantly less inefficient. In all our protocols, we only consider privacy
against a semi-honest adversary corrupting at most one party (i.e., an adversary
that follows the protocol and then attempts to violate the privacy of one of the
parties).

2 Models and Requirements

Data and Query Models. We model a database as an n-row, 2-column matrix
D = (A1, A2), where each column is associated with an attribute, denoted as
Aj , for j = 1, 2, and each entry is denoted as Aj(i). The first column is a value
attribute, where entries are values in a domain Dom with a total order ≤, and
the last column A2, is a payload attribute, where entries can be arbitrary binary
strings. The database schema, assumed to be publicly known to all parties,
includes parameter n, the security parameter, and the description of the attribute
value domain. A database row is also called record, and is assumed to have the
same length `r (if data is not already in this form, techniques from [9] are used
to efficiently achieve this property), where `r is constant with respect to n.

A query q is modeled to contain one or more query values from the relative
attribute domains. We mainly consider Range queries, defined as:

SELECT ∗ FROMmainWHERE attribute name ∈ [v0, v1],

where v0, v1 are the query values. A valid response (to a range query) consists of
all payloads A2(i), for i ∈ [1, n], such that A1(i) ∈ [v0, v1], and we say that these
payloads (or records) match the query. We also discuss KS queries, defined as:

SELECT ∗ FROMmainWHERE attribute name = v,

where v is the query value. A valid response (to a keyword query) consists of all
payloads A2(i), for i ∈ [1, n], such that A1(i) = v.

Participant Models. We consider the following efficient (i.e., running in prob-
abilistic polynomial-time in a common security parameter 1σ) participants. The
client is the party, denoted as C, that is interested in retrieving data from the
database. The server is the party, denoted as S, holding the database (in the
clear), and is interested in allowing clients to retrieve data. The third party, de-
noted as TP , helps the client to carry out the database retrieval functionality
and the server to satisfy efficiency requirements during the associated protocol.
By 2-party model we denote the participant model that includes C, S and no
third party. By 3-party model we denote the participant model that includes C,
S, and TP . (See Figure 1,2 for a comparison of the two participant models.)



Query range [v0,v1]

C S

Query / Answer subprotocol
Input from C: [v0,v1]. Input from S: DB

Database DB = (A1,A2)

C’s output: DB payloads A2(i) for all 
i=1,…, m([v0,v1]) s.t. A1(i) is in [v0,v1]. 

Fig. 1. Structure of our 2-party RQ pro-
tocol

S

C

S

TP

Query / Answer subprotocol
Input from C: [v0,v1]

Input from S: encrypted DB

Query range [v0,v1] Database DB = (A1,A2)

C’s output: DB payloads A2(i) for all   
i=1,…, m([v0,v1]) s.t. A1(i) is in [v0,v1]

Encrypted DB  

Fig. 2. Structure of our 3-party RQ pro-
tocol

Range query protocols. In the above data, query, and participant models,
we consider a (static-data) range query (briefly, RQ) protocol that extends the
KS protocol, as defined in [10] (in turn, an evolution of the PIR protocol, as
defined in [18]), in that it considers range queries instead of keyword queries,
and it allows the attribute column to have multiple occurrences of the same
value. (We can also extend the model so to incorporate databases that contain
multiple attributes). Specifically, we define an RQ protocol as a pair (Init,Query)
of subprotocols, as follows. The initialization subprotocol Init is used to set up
data structures and cryptographic keys before C’s queries are executed. The
query subprotocol Query allows C to make a single query to retrieve (possibly
multiple) matching database records. We also define an RQ protocol execution
as a sequence of executions of subprotocols (Init,Query1, . . . ,Queryq), for some
q polynomial in the security parameter, and all subprotocols are run on inputs
provided by the involved parties (i.e., a database from S and query values from
C). We would like to build RQ protocols that satisfy the following (informal)
list of requirements:

1. Correctness: the RQ protocol allows a client to obtain all payloads from the
current database associated with records that match its issued query; more
specifically, for any RQ protocol execution, and any inputs provided by the
participants, in any execution of a Query subprotocol, the probability that
C obtains all records in the current database that match C’s query value
input to this subprotocol, is 1.

2. Privacy: informally speaking, the RQ protocol preserves privacy of database
content and query values, ideally only revealing what is leaked by system
parameters known to all parties and by the intended functionality output
(i.e., all payloads in matching records to C); more specifically, we require the
subprotocols in an RQ protocol execution to not leak information beyond
the following
• Init: all system parameters, including the database schema and a security

parameter, will be known to all participants; in the 3-party model, an



additional string eds (for encrypted data structures) will be known to
TP , will be encrypted under one or more keys unknown to TP and its
length is known from quantities in the database schema;

• Query, based on query range qr = [v0, v1] and the database D: all pay-
loads {p(i) : i = i(1), . . . , i(m(qr))} such that A1(i) ∈ [v0, v1], for
i = i(1), . . . , i(m(qr)), will be obtained by C, as a consequence of the
correctness requirement; in the 2-party model, the value m(qr) will be
known to S; in the 3-party model, the value m(qr), all bits in eds read
by TP according to the instructions in the Query protocol, and which
previous executions of Query used the same query value v, will be known
to TP .

3. Efficiency: the protocol should have low time, communication and round
complexity, as a function of system parameters, including the number n of
database records.

Given the characterization of intended leakage in the above privacy definition, a
formal privacy definition can be derived using known definition techniques from
simulation-based security and composable security frameworks often used in the
cryptography literature.

Similarly as noted for keyword queries in [7], we observe that the commu-
nication exchanged in each execution of any subprotocol Query has to leak an
upper bound on the value m(qr), i.e., the number of matching records, to S
in the 2-party model, and to the coalition of TP and S in the 3-party model.
Accordingly, we target the design of protocols that may leak m(qr) to S in the
2-party model. In the 3-party model, different RQ protocols could leak m(qr)
only to S, or only to TP , or somehow split this leakage between S and TP .
Having to choose between one of these options, we made the practical consider-
ation that privacy against S (i.e., the data owner) is typically of greater interest
than privacy against TP (i.e., the cloud server helping C retrieve data from S)
in many applications, and therefore we focused in this paper on seeking proto-
cols that leak m(qr) to TP and nothing at all to S. Moreover, in the 3-party
model, we made a definitional choice of leaking patterns of repeated access to
encrypted data to TP ; this is not due to a theoretical limitation, but seems a
well-characterized privacy leakage, which, depending on the application at hand,
either is a small price to pay towards achieving very efficient time-complexity
requirements on S and TP , or can be reduced by using separate techniques.

With respect to efficiency, although we design protocols with low time, round
and communication complexity, we focus our discussions on the communication
complexity of the query subprotocols, and on the running time of S in the 2-party
model and of S and TP in the 3-party model.

Background: Keyword Search protocols. A random function R is a function
that is chosen with distribution uniform across all possible functions with some
pre-defined input and output domains. A keyed function F (k, ·) is a pseudo-
random function (PRF, first defined in [11]) if, after key k is randomly chosen,
no efficient algorithm allowed to query an oracle function O can distinguish
whether O is F (k, ·) or O is a random function R (over the same input and



output domain), with probability greater than 1/2 plus a negligible quantity.
A KS protocol is a protocol between two parties A, having as input a keyword
v ∈ {1, . . . , n}, and B, having as input a 2-column database represented as
D = (A1, A2). The protocol consists in a private retrieval of the value(s) A2(i)
such that A1(i) = v, returned to A (thus, without revealing any information
about i to B or about A2(1), . . . , A2(i − 1), A2(i + 1), . . . , A2(n) to A). Several
KS protocols have been presented in the cryptographic literature, starting with
[18], using number-theoretic hardness assumptions (see also [5, 10, 7]).

3 Range Queries in the Two-Party Model

We describe two RQ protocols for range queries in this model: the first proto-
col, presented in Section 3.1, works for ranges with elements in any linear-size
domain; the second protocol, presented in Section 3.2, works for ranges with
elements in any exponential-size (in practice, arbitrarily large) domain.

3.1 A Range Query Protocol for Linear-Size Domains

Our first 2-party RQ protocol considers range values in linear-size domains (that
is, where the domain size is equal to the number of database records). This pro-
tocol follows the general structure outlined in Figure 1 and satisfies the following

Theorem 1. Consider a database with n records and domain Dom = [0, n −
1]. Assuming the existence of a 2-party privacy-preserving KS protocol π0 =
(Init0,Query0), there exists (constructively) a 2-party privacy-preserving RQ pro-
tocol π1 = (Init1,Query1) for such a database, satisfying:

1. correctness
2. privacy against C (i.e., it only leaks the matching records to C);
3. privacy against S (i.e., it only leaks the number of matching records to S);
4. communication complexity of Query1 on a queried range qr is O(m(qr))
times the communication complexity of Query0;

5. the S-time complexity in Query1 on a queried range qr is O(m(qr)) times
the S-time complexity in Query0 plus O(n).

We prove Theorem 1 by describing RQ protocol π1 and its properties.

The RQ protocol π1: basic definitions. Let Dom be a value domain with
a total order ≤ defined on it. We say that Dom is a linear-size domain if
it holds that |Dom| ≤ n. Given a list U of (not necessarily distinct) values
u1, . . . , un ∈ Dom, we say that a value v ∈ Dom has lower U -rank r, also de-
noted as Lrank(U, v) = r, if there are r values strictly smaller than v. We say
that a value v ∈ Dom has upper U -rank r, also denoted as Urank(U, v) = r, if
there are n− r values in U strictly larger than v. Let sU = (uh(0), . . . , uh(n−1))
denote the list obtained from U by sorting its n elements. These definitions
directly imply the following:

Fact 1 Given values v0, v1 ∈ Dom such that v0 ≤ v1, it holds that



1. U ∩ [v0, v1] = ∅ if and only if Lrank(U, v0) ≥ Urank(U, v1).
2. U ∩ [v0, v1] 6= ∅ if and only if uh(a), . . . , uh(b) ∈ [v0, v1], for a = Lrank(U, v0)

and b = Urank(U, v1)− 1.

The RQ protocol π1: an informal description. A first approach in our
protocol goes as follows. At initialization S splits database D into two databases:
a rank database rD and a payload database pD. At query time, C asks S for
the lower rank of v0 and the upper rank of v1, where [v0, v1] denotes the range
queried by C. Because in this protocol we consider only linear-size value domains,
S can store at initialization the lower rank and the upper rank of each value in
the domain in rD; thus, it suffices C to perform a keyword query to rD to
retrieve the two upper and lower rank values. Given these retrieved values, C
can compute how many attribute values (if any) are in [v0, v1] (i.e., the upper
rank minus the lower rank), and then perform as many keyword queries in pD to
retrieve the records matching the queried range. As written so far, the protocol
satisfies our desired correctness and efficiency properties, but not the privacy
property, as C learns the two rank values associated with the queried range’s
endpoints. We fix this problem by requiring S to randomize the rank values
by a random shift of the attribute values, a variation of an idea first used in
[8] to improve the efficiency of keyword queries in a 3-party model. Thus, the
ranks received by C will be randomly distributed, conditioned by the fact that
the difference between them remains the same, and C is entitled to know this
difference because of the correctness requirement.

The RQ protocol π1: a formal description. Protocol π1 uses a KS protocol
π0 = (Init0,Query0) for a 2-column database, which can be obtained from pro-
tocol π1 in [7] or protocol 2 in [10]. Both these protocols use the KS protocol in
[5], which in turn is based on any semi-private PIR protocol (e.g., [18]).

Init1. On input database D = (A1, A2), S sets U as the list (A1(1), . . . , A1(n)),
and builds an associated rank database rD = (rA1, rA2) and an associated
payload database pD = (pA1, pA2), computed as follows.
For each i = 1, . . . , n,
1. rA1(i) = i,
2. rA2(i) = (Lrank(U, i)), Urank(U, i)), and

for each i = 0, . . . , n,
1. pA1(i) = i, and
2. pA2(i) = A2(j) where j ∈ {1, . . . , n} satisfies Lrank(U,A1(j)) = i.

Query1. Let �n denote the operation ‘right shift modulo n’. On input query
range qr = [v0, v1], where v0, v1 ∈ Dom, from C, and all quantities computed
during Init1, the following steps are run:
1. If v0 > v1 then C sends failure symbol ⊥ to S and halts;
2. S randomly chooses value s ∈ {0, . . . , n− 1}
3. for i = 1, . . . , n,

S sets Lr′(U, i) = Lrank(U, i)�n s, Ur
′(U, i) = Urank(U, i)�n s;

S sets rA′2(i) = (Lr′(U, i), Ur′(U, i))
4. S runs Init0 on input 2-column database rD = (rA1, rA

′
2)



5. for j = 0, 1: C and S run Query0, where C uses vj as query value and
S provides (rA1, rA

′
2) as a 2-column database; at the end of the protocol,

C computes the payload rA′2(i(j)) = (Lr′(U, i(j)), Ur′(U, i(j))) such that
rA1(i(j)) = vj ;

6. if Lr′(U, i(0)) = Ur′(U, i(1)) then
C sends failure symbol ⊥ to S and halts.

7. for i = 0, . . . , n,
S sets pA′1(i) = pA1(i)�n s;

8. S runs Init0 on input 2-column database pD = (pA′1, pA2)
9. for j = Lr′(U, i(0)), . . . , Ur′(U, i(1))− 1, possibly cycling from n− 1 to 0: C

and S run Query0, where C uses j as query value and S provides (pA′1, pA2)
as a 2-column database; at the end of the protocol, C computes the payload
pA2(i(j)) such that pA′1(i(j)) = j.

Properties of π1. We now show that π1 satisfies the correctness, privacy and
efficiency properties defined in the 2-party model.

Correctness. First of all, note that by the test in step 1, we can assume that
v0 ≤ v1, which implies that Lrank(U, i(0)) ≤ Urank(U, i(1)).

By the correctness property of the KS protocol π0, at the end of step 5 of
Query1, C can compute the shifted lower rank Lr′(U, i(0)) of v0 and the shifted
upper rank Ur′(U, i(1)) of v1. As both values are obtained as a shift, by the same
random number s, of Lrank(U, i(0)) and Urank(U, i(1)), respectively, it holds
that Lr′(U, i(0)) = Ur′(U, i(1)) if and only if Lrank(U, i(0)) = Urank(U, i(1)).
Using item 1 of Fact 1, this implies that if U ∩ [v0, v1] = ∅, it will hold that
Lrank(U, i(0)) = Urank(U, i(1)) and thus Lr′(U, i(0)) = Ur′(U, i(1)), and then
C will halt in step 6 of Query1, without receiving any payload from S. On the
other hand, if U ∩ [v0, v1] 6= ∅, at the end of step 9 of Query1, by the correctness
property of the KS protocol π0, C computes the payload pA2(i(j)) such that
pA′1(i(j)) = j, for all j = Lr′(U, i(0)), . . . , Ur′(U, i(1))− 1, possibly cycling from
n − 1 to 0. Using item 2 of Fact 1, this implies that S receives all payloads
corresponding to values A1(i) in the range [v0, v1].

Privacy. We show that π1 satisfies our privacy requirement when the adversary
corrupts any one among S or C.

When the adversary corrupts S, privacy (i.e., corrupting S does not provide
the adversary any new information about C’s range query [v0, v1] other than
system parameters and the number of matching payloads) can be proved by
using the analogue privacy property of the KS protocol π0. First of all, we observe
that Query1 in protocol π1 consists of 1 execution of Query0 followed by either
no further execution of Query0 (resulting in no payload received by C) or by
m(qr) = Urank(U, v1)−Lrank(U, v0) additional executions of Query0 (resulting
in m(qr) > 0 payloads received by C). Thus, given the number m(qr) ≥ 0 of
payloads received by C, an efficient simulator for the view obtained by S is
obtained by suitably calling the efficient simulator for the view by S in the KS
protocol π0.

When the adversary corrupts C, privacy (i.e., corrupting C does not provide
the adversary with any information about S’s database D other than system



parameters and what intended by the correctness requirement) can be proved
by using the analogue privacy property of protocol π0. Here, the proof is similar
to the previous case: given the number m(qr) ≥ 0 of payloads received by C, a
simulator for C’s view is obtained by suitably calling the simulator for C’s view
in the KS protocol π0.

Efficiency. As Query1 essentially consists of running m(qr) + 1 times Query0,
the communication complexity (resp., S-time complexity) of Query1 is O(m(qr))
times the communication complexity (resp., S-time complexity) of Query0. Thus,
the communication complexity is desirably linear in the number of matching
records (and can be sub-linear in the number n of total database records). Anal-
ogously, the S-time complexity of Query1 is O(m(qr)) times the S-time complex-
ity of Query0 plus O(n). Here, note that the S-time complexity of Query1 is linear
in n already for small values of m(qr) as so is the S-time complexity of Query0.
This inefficiency is a major and known drawback of all 2-party model solutions
for protocols like PIR, KS, and therefore, of protocols π0 and π1. Indeed, this
motivated our study of RQ protocols in the 3-party model in Section 4.

3.2 A Range Query Protocol for Exponential-Size Domains

Our second 2-party RQ protocol considers range values in exponential-size (which
means, practically speaking, arbitrarily large) domains. This protocol follows the
general structure outlined in Figure 1 and satisfies the following

Theorem 2. Consider a database with n records and domain Dom = [0, 2d −
1], for some d polynomial in n. Assuming the existence of a 2-party privacy-
preserving KS protocol π0 = (Init0,Query0), there exists (constructively) a 2-
party privacy-preserving RQ protocol π2 = (Init2,Query2) for such a database,
satisfying:

1. correctness
2. privacy against C (i.e., it only leaks the matching records to C);
3. privacy against S (i.e., it only leaks the number of matching records to S);
4. communication complexity of Query1 on a queried range qr is O(m(qr))
times the communication complexity of Query0;

5. the S-time complexity in Query1 on a queried range qr is O(m(qr)) times
the S-time complexity in Query0 plus O(dn).

We prove Theorem 2 by describing RQ protocol π2 and its properties.

The RQ protocol π2: basic definitions. Let Dom be a value domain with
a total order ≤ defined on it. We say that Dom is an exponential-size domain
if it holds that |Dom| ≤ 2d ≤ 2p(n), for some polynomial p. For simplicity, we
restrict to the case Dom is the d-dimensional hypercube, i.e. Dom = [0, 2d − 1],
but note that our results can be extended to any exponential-size domain.

We define the set cI(Dom) of canonical intervals for Dom by the following
recursion: first, add Dom into cI(Dom); then, split Dom into Dom0, containing
the first half of its elements, and Dom1 containing the second half; then, for



i = 0, 1, generate cI(Dom0), the set of canonical intervals for Domi; finally, add
cI(Dom0), cI(Dom1) to cI(Dom).

An interval [a, b] ⊆ Dom is a border interval in Dom if there exists an interval
I ∈ cI(Dom) such that either a is the first element in I or b is the last element
in I. The following fact directly follows by the above definitions of border and
canonical intervals.

Fact 2 For every interval [a, b] ⊆ Dom, either [a, b] is a border interval in Dom,
or there exists c such that [a, c] and [c+ 1, b] are border intervals in Dom.

For any interval [a, b] ⊆ Dom, intervals [a, c1], [c1 + 1, c2], . . . , [ct, b] are said to
cover [a, b]. We note that a border interval is covered by at most d− 1 canonical
intervals. This, together with Fact 2, implies the following

Fact 3 For every interval [a, b] ⊆ Dom, there exists a set of ≤ 2(d−1) canonical
intervals covering [a, b].

We note that results similar to Fact 3 have already been studied in other papers
(see, e.g., [19]), but we could not find range query protocols based on them with
provable privacy properties.

The RQ protocol π2. We would like to construct π2 = (Init2,Query2) as an ex-
tension of π1 = (Init1,Query1), based on the above notions of canonical intervals,
and interval covering.

At initialization S again splits databaseD into two databases: a rank database
rD and a payload database pD. This time, however, since we consider exponential-
size value domains (as opposed to linear-size value domains used for π1), S cannot
store at initialization the lower rank and the upper rank of each domain value
in rD. Then, instead of storing all domain elements in rD, we store all attribute
values u1, . . . , un in D and, for each interval [ui−1 +1, ui−1], we consider the set
of canonical intervals covering it, as guaranteed by Fact 3, and store each one
of these intervals in rD. Note that in each of these latter intervals, each domain
value has the same lower and upper ranks, so we only need to store a single copy
of these two values in rD as well. Thus, in rD = (rD1, rD2), the column rD1

contains the following

1. the attribute values u1, . . . , un in D;
2. each one of the canonical intervals covering every interval [ui−1 + 1, ui − 1],

where u1, . . . , un are the attribute values in D.

After this modification, the remaining computations in Init2, including of the
lower/upper ranks, continue as in π1. Because of Fact 3, this modified initializa-
tion at most increases the size of rD by a multiplicative factor of 2(d− 1).

At query time, denoting as [v0, v1] the range queried by C, the computation
of the shifted lower/upper ranks continue as in Query1. However, C not only asks
S for the lower rank of v0 and the upper rank of v1 by 2 KS queries as in π1, but
also makes KS queries on input all canonical intervals that contain v0 and all
canonical intervals that contain v1. Here, note that if v0 (resp., v1) is different



from all attribute values, then exactly one of the canonical intervals containing
v0 (resp., v1) was included in rD during initialization. Thus, only one of the KS
queries associated with v0 and only one of the KS queries associated with v1 will
be successfully completed, returning to C ranks for either an attribute value ui
or a canonical interval containing the query range value. From now on, protocol
Query2 continues exactly as Query1. That is, C can use the obtained ranks to
generate the m(qr) keyword queries to database pD, and obtain m(qr) matching
records.

Properties of π2. The proofs that π2 satisfies the correctness, privacy and
efficiency properties defined in the 2-party model are obtained by extending the
analogue proofs for π1, using the properties of the KS protocol π0. In particular,
the correctness property of π2 is showed by additionally using Fact 2 and Fact 3.
The privacy and the communication complexity properties are not significantly
affected by the modifications in π2 with respect to π1. The S-time complexity
changes by observing that rD is larger in π2 by a multiplicative factor of d.

4 Range Queries in the Three-Party Model

We show a 3-party RQ protocol by extending the 2-party protocol in Section 3.1.
Our protocol follows the general structure outlined in Figure 2 and satisfies the
following

Theorem 3. Consider a database with n records and domain Dom = [0, n−1].
Assuming the existence of a pseudo-random function, there exists (construc-
tively) a 3-party privacy-preserving RQ protocol π3 = (Init3,Query3) for such a
database, satisfying:

1. correctness
2. privacy against C (i.e., it only leaks the matching records to C);
3. privacy against S (i.e., it does not leak anything to S);
4. privacy against TP (i.e., it only leaks number of matching records, the
repetition of query values and the repeated access to initialization encrypted
data structures);

5. communication complexity of Query3 on a queried range qr is O(m(qr));
6. the TP -time complexity in Query3 on a queried range qr is O(m(qr) log n).

Remark: on exponential-size domains. We stated Theorem 3 for linear-size
value domains, and established it by transforming the 2-party protocol π1 into
the 3-party model. By a very similar transformation, we can adapt the 2-party
protocol π2 into the 3-party model, and obtain a similar result for exponential-
size value domains.

Our RQ protocol in the 3-party model: an informal description. Briefly
speaking, our protocol π3 is obtained by performing the following two main
modifications in the 3-party model to protocol π1 (which was designed in the
2-party model): (1) the KS protocol in the 2-party model is replaced by a KS



protocol in the 3-party model [7], that was constructed starting from any pseudo-
random function; and (2) the shifts performed to the entire databases rD2 and
pD1 in protocol π1 are now replaced by a ‘lazy shifting’ technique, according
to which shifts are performed only to database entries which are used in the
protocol. We note that the first modification replaces the use of asymmetric
cryptography protocols with only symmetric cryptography techniques, and the
second modification eliminates linear-time computations from S during the query
subprotocol.

In fact, we can use the following simplified version of the KS protocol in
the 3-party model from [7], by assuming that each keyword query will have at
most 1 matching record (which was shown to be the case in π1). First of all,
S encrypts both the attribute column and the payload column in its database,
where the attribute column is encrypted using deterministic encryption, via a
pseudo-random permutation (which can be built from any pseudo-random func-
tion). As a result, the encrypted attribute column is searchable by TP using a
conventional search data structure (i.e., a binary search tree). Later, S sends
the encrypted database to TP and C sends its query values encrypted using the
same pseudo-random permutation used by S (with key unknown to TP ). Fi-
nally, TP can search such value in the search data structure over the encrypted
attribute values and return the matching record to C.

Given the above 3-party KS protocol, our 3-party RQ protocol π3 works as
follows. The following high-level structure of π1 remains in π3: specifically, S
constructs a rank database rD and a payload database pD, and C will perform
keyword queries first based on rD and later based on pD. In π3, however, S sends
encrypted versions of rD and pD to TP , and from then on, C only performs
keyword queries to TP . Specifically, while the payload columns of rD and pD
are encrypted using conventional probabilistic encryption, the attribute columns
of rD and pD are encrypted using deterministic encryption, based on a pseudo-
random permutation, which makes attribute column values searchable by TP .
To encrypt an attribute value v ∈ Dom, S randomly chooses v0 and an initial
shift s such that v0 + is = vmodn, and returns ciphertext (fk(v0), is), where f
is the pseudo-random permutation, and k is a key known to C and S but not
to TP . An interesting property of such ciphertexts is that TP can compute a
‘lazy shift’ of v over its encryption and by any random next shift ns, by returning
(fk(v0), cs), where the current shift cs is = is+nsmodn. Such ciphertexts will be
used by S to encrypt lower and upper ranks in rD before sending them to TP .
Then, after C’s keyword query to (the encrypted version of) database rD held
by TP , such encrypted ranks will not be directly returned to C (or otherwise
this may leak some information to C across multiple queries). Instead, TP and C
will run a 2-party secure function evaluation (using Yao’s protocol [25]), where
C provides key k as input, TP provides the encrypted ranks and the current
shift cs as input and the output returned to TP will be the encrypted queries
for (the encrypted version of) database pD. Then, by using the current shift as
input to the secure function evaluation protocol, TP obtains encrypted keyword
queries, each of them being used to search across the first ciphertext component



of all encrypted attribute values in pD, exactly as done in the above 3-party KS
protocol.

Practical performance of our 3-party protocol. In our implementation, the
S and TP processes and an instance of MySQL server version 5.5.28 were running
on a Dell PowerEdge R710 server with two Intel Xeon X5650 2.66Ghz processors,
48GB of memory, 64-bit Ubuntu 12.04.1 operating system, and connected to a
Dell PowerVault MD1200 disk array with 12 2TB 7.2K RPM SAS RQives in
RAID6 configuration. The C process was running on a Dell PowerEdge R810
server with two Intel Xeon E7-4870 2.40GHz processors, 64 GB of memory, 64-
bit Red Hat Enterprise Linux Server release 6.3 operating system, and connected
to the Dell PowerEdge R710 server via switched Gigabit Ethernet.

The 3-party protocol that we implemented was somewhat different than the
ones discussed in this paper, because it was developed under more complex and
specific project requirements. However, by protocol analysis, we have noted that
these differences are not expected to significantly affect practical performance
of the protocols. Accordingly, we briefly report on the performance of our im-
plemented protocols, as a useful indication on the performance of the protocols
described here.

In our implementation, we have noted practical efficiency and scalability of
our 3-party protocols, and were able to achieve query latency performance of no
more than 1 order of magnitude slower than a comparable non-private protocol
for the same task (specifically, a mySQL protocol for range queries over same-
size value domains and database size). This result was achieved, with minor
differences, over both linear-size and exponential-size value domains. A similar
performance result was presented in [7] in the same implementation environment
for keyword queries. In achieving such a result for range queries, our approach
of constructing range query protocols from keyword query protocols was critical.
This is especially the case when considering that the dominating performance
factor in all our range query protocols is given by the performance of one keyword
query for each of the records matching the range query. Performance numbers
(where time is measured in milliseconds and communication in bytes) for range
queries matching 1% of the database records, are captured in Figures 3 and 4.

The most challenging aspect in our performance analysis was the scalability of
the initialization procedure, where we observed the following results: the initial-
ization of the 3-party protocol for linear-size value domains, based on a transfor-
mation of the 2-party protocol π1, does achieve satisfactory scalability properties;
however, the initalization phase of the 3-party protocol for exponential-size value
domains, based on a transformation of the 2-party protocol π2, does not achieve
satisfactory scalability properties, especially as the logarithm of the domain size
grows. Although the initialization procedure is typically a one-time procedure,
we still consider the following an interesting open problem: designing a 3-party
privacy-preserving range query protocol that achieves scalable performance on
both query latency and initialization.

Acknowledgements. Many thanks to Euthimios Panagos and Aditya Naidu
for helping on performance evaluation. Most of this work was supported by the



Fig. 3. Time and communication perfor-
mance for different database sizes.

Fig. 4. Time performance as a function
of database size.

Intelligence Advanced Research Projects Activity (IARPA) via Department of
Interior National Business Center (DoI/NBC) contract number D13PC00003.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation hereon. Dis-
claimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government.

References

1. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order-preserving encryption for
numeric data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004, pages 563–574, 2004.

2. A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited:
Improved security analysis and alternative solutions. In Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, pages 578–595, 2011.

3. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In EUROCRYPT, pages 506–522, 2004.

4. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data.
In Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, pages 535–554,
2007.

5. B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. IACR
Cryptology ePrint Archive, 1998.

6. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.
J. ACM, 45(6):965–981, 1998.

7. G. Di Crescenzo, D. Cook, A. McIntosh, and E. Panagos. Practical private in-
formation retrieval from a time-varying, multi-attribute, and multiple-occurrence
database. In Data and Applications Security and Privacy XXVIII - 28th Annual
IFIP WG 11.3 Working Conference, DBSec 2014, Vienna, Austria, July 14-16,
2014. Proceedings, pages 339–355, 2014.



8. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for private
information retrieval. J. Cryptology, 14(1):37–74, 2001.

9. G. Di Crescenzo and D. Shallcross. On minimizing the size of encrypted databases,
In DBSec, 2014.

10. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and obliv-
ious pseudorandom functions. In TCC, pages 303–324, 2005.

11. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

12. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

13. H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted
data in the database-service-provider model. In SIGMOD Conference, pages 216–
227, 2002.

14. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries.
In (e)Proceedings of the Thirtieth International Conference on Very Large Data
Bases, Toronto, Canada, August 31 - September 3 2004, pages 720–731, 2004.

15. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In NDSS, 2012.

16. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference attack against encrypted
range queries on outsourced databases. In Fourth ACM Conference on Data and
Application Security and Privacy, CODASPY’14, San Antonio, TX, USA - March
03 - 05, 2014, pages 235–246, 2014.

17. S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Outsourced
symmetric private information retrieval. In ACM Conference on Computer and
Communications Security, pages 875–888, 2013.

18. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, pages 364–373, 1997.

19. J. Li and E. Omiecinski. Efficiency and security trade-off in supporting range
queries on encrypted databases. In Data and Applications Security XIX, 19th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security,
Storrs, CT, USA, August 7-10, 2005, Proceedings, pages 69–83, 2005.

20. R. Ostrovsky and W. Skeith. A survey of single-database private information
retrieval: Techniques and applications. In Public Key Cryptography, pages 393–
411, 2007.

21. P. Samarati and S. De Capitani di Vimercati. Data protection in outsourcing
scenarios: issues and directions. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2010, Beijing,
China, April 13-16, 2010, pages 1–14, 2010.

22. E. Shi, J. Bethencourt, H. T. Chan, D. X. Song, and A. Perrig. Multi-dimensional
range query over encrypted data. In 2007 IEEE Symposium on Security and Pri-
vacy (S&P 2007), 20-23 May 2007, Oakland, California, USA, pages 350–364,
2007.

23. E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. De-
vadas. Path ORAM: an extremely simple oblivious RAM protocol. In 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, pages 299–310, 2013.

24. S. Wang, X. Ding, R. H. Deng, and F. Bao. Private information retrieval using
trusted hardware. In ESORICS, pages 49–64, 2006.

25. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167, 1986.


