
HAL Id: hal-01728812
https://inria.hal.science/hal-01728812

Submitted on 12 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Invariant Preserving Middlebox Traversal
Ahmed Abujoda, Panagiotis Papadimitriou

To cite this version:
Ahmed Abujoda, Panagiotis Papadimitriou. Invariant Preserving Middlebox Traversal. 13th Interna-
tional Conference on Wired/Wireless Internet Communication (WWIC), May 2015, Malaga, Spain.
pp.139-150, �10.1007/978-3-319-22572-2_10�. �hal-01728812�

https://inria.hal.science/hal-01728812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Invariant Preserving Middlebox Traversal

Ahmed Abujoda and Panagiotis Papadimitriou

Institute of Communications Technology, Leibniz Universität Hannover, Germany
{first.last}@ikt.uni-hannover.de

Abstract. Middleboxes, such as firewalls, NATs, proxies, and applica-
tion accelerators are known for their undesirable implications on traffic
(mainly due to packet headers or paylod modifications) and for hindering
connection establishment when certain protocols are in use (e.g., UDP,
SCTP).

Since many of these implications occur in middleboxes within ISPs or cel-
lular networks, we present a software-defined network (SDN) architecture
that can foster the collaboration between end-hosts and ISPs. In partic-
ular, an end-host can express a desirable behavior from the network,
specified as an invariant (e.g., no IP header or payload modification),
and the ISP, in turn, can establish a connection through middleboxes
that preserve this invariant. We discuss the proposed architecture and
the requirements for invariant preserving middlebox traversal. We fur-
ther propose an algorithm for the selection of the best path through
a sequence of invariant-preserving middleboxes. We use simulations to
assess the efficiency of our approach.

1 Introduction

The increasing demand for security and access control along with the need for
better application support has led to the deployment of network appliances,
known as middleboxes, by enterprises, Internet Service Providers (ISP), and
cellular network operators. The proliferation of middleboxes, such as firewalls,
proxies, network address translators (NAT), intrusion detection systems (IDS),
and redundancy elimination boxes, has been reported in recent studies [11, 9].

Unfortunately, the additional functionality that middleboxes embed comes
at a cost: middleboxes introduce various undesirable implications on traffic. For
example, NATs rewrite IP addresses and ports, proxies break end-to-end se-
mantics, firewalls may block UDP traffic or cache out-of-order-packets introduc-
ing varying delays, while application optimizers can modify the packet payload
[10, 9]. Furthermore, the deployment of firewalls and NATs along most Internet
paths may hinder connection establishment with protocols such as Stream Con-
trol Transmission Protocol (SCTP) or Multi-Path TCP [8]. To mitigate these
problems, most applications resort to tunneling, e.g., non-HTTP traffic may be
tunnelled over HTTP to traverse firewalls, SCTP usually has to be tunnelled
over TCP (or over UDP in case it is not blocked). Furthermore, traffic may be

encrypted at the client device (e.g., using HTTPS) to inhibit payload modifica-
tions by application optimizers [10]. However, this increases power consumption
in mobile devices.

Most of these implications stem from the middleboxes deployed by access
ISPs and cellular networks. To obviate the need for tunneling or traffic encryption
for middlebox traversal, we consider fostering the collaboration between end-
hosts and ISPs. More precisely, an end-host can express requirements for the
establishment of a certain type of connection, e.g., do not modify packet fields or
paylod, permit UDP traffic or access to public DNS servers. Such requirements
can be specified in the form of invariants (e.g., using the API in [10]). Upon
the submission of such a request, the ISP may be willing to redirect the traffic
through a set of middleboxes (e.g., NAT and firewall) that comply with his
security policy and, at the same time, preserve the invariant expressed by the
end-host. This can be offered to ISP clients as a value-added service, which may
be appealing to a wide range of users (e.g., home network users, mobile users,
enterprises) that currently experience limitations in the applications or services
they can run.

Establishing connections through a sequence of invariant-preserving middle-
boxes raises several requirements: (i) the collection of middlebox configurations,
(ii) parsing and checking middlebox configurations against requested invariants,
(iii) the selection of invariant-preserving middleboxes and shortest paths, and
(iv) the insertion of forwarding entries in the ISP’s routers to route the traffic
through the assigned path. To this end, we present a software-defined network
(SDN) architecture for invariant preserving middlebox traversal. Following the
trend for (logically) centralized control, we rely on a centralized controller de-
ployed by the ISP, which retrieves middlebox configurations, selects middleboxes
and paths that preserve the specified invariant, and configures packet forwarding
along the selected path. Middlebox checking against invariants can be performed
using recent advances on static analysis, such as Header Space Analysis (HSA)
[6] or SymNet [7]. For the installation of flow entries to routers, we employ
OpenFlow [5]. Our work is mainly focused on middlebox and path selection.
To this end, we present and evaluate an algorithm for the selection of a path
through a set of invariant-preserving middleboxes. Our simulation results show
that our approach increases substantially the number of established connections,
especially under low and moderate levels of network utilization.

The remainder of the paper is organized as follows. In Section 2, we review
and discuss the different implications of middleboxes on traffic and connection
establishment. Section 3 provides an overview of our SDN architecture. In Section
4 we discuss our algorithm for invariant preserving path selection. In Section 5,
we present our simulation environment and results. Finally, in Section 6, we
highlight our conclusions.

2 Middleboxes implications

In this section, we discuss the implications of widely used middleboxes on traffic
and connection establishment:

– NATs: due to the limited size of IPv4 address space, NATs have become
one of most popular middleboxes on ISP networks, especially on cellular net-
works [9]. They enable the sharing of a public IP address among multiple
hosts with private IP addresses by mapping the private IP address and the
source port number of a host connection (TCP or UDP) to the public IP ad-
dress and a selected port number. As a result, hosts sitting behind NATs are
not visible to the outside world, i.e., establishing connections with NATed
hosts (e.g., a VoIP, P2P applications) requires complicated NAT traversal
techniques [14–16] and might need the participation of a third party (e.g. a
relay [17]). However, even with NAT traversal techniques, connection estab-
lishment could fail due to the ISPs policies and configurations. As shown in
[9], to perform load balancing cellular network operators may assign multiple
NATs to a single device. Subsequently, this hinders NAT traversal techniques
that depend on learning the NAT’s public IP address by establishing multiple
connections with the NAT (since different connections are handled by differ-
ent NATs). Furthermore, operators might configure NATs to assign random
port numbers to the mapped connections which hampers applications (e.g.,
P2P) performing NAT traversal by trying to infer the mapped NAT port
number [9].

– Firewalls: they are essential to today’s network functionality by providing
protection against malicious traffic as well as untrusted and policy-violating
accesses. However, despite their importance, firewalls have become an ob-
stacle hindering not only the deployment of new protocols and extensions
(SCTP, ECN), but also restricting the connectivity of the traditional proto-
cols. More particular, recent studies have shown that applications and pro-
tocols are being forced to tunnel over HTTP/HTTPs to bypass firewalls [10]
[9]. Even when connections are successfully established, firewalls introduce
further implications such as buffering out-of-order packets which impairs the
functionality and performance of TCP connections, and terminating long-
lived flows due to short timeouts on firewalls, leading to increased power
consumption and service disruption [9].

– Proxies: they perform several functions to optimize the performance of
particular applications or protocols such as caching contents, data compres-
sion and TCP connections splitting. Proxies are usually implemented with
a specific application in mind which impairs the functionality of new appli-
cations passing through them. For example, mobile devices have to tunnel
over HTTPS to avoid HTTP optimizers breaking their protocol semantics
by modifying their packets payload or by sending a cached reply instead of
forwarding the packet to the end server[10].

FW

FW

> allow port 80
> block any

> allow port 1443

trusted user

malicious user

1

2

Fig. 1. Example of invariant preserving middleboxes traversal.

3 Architecture overview

In this section, we discuss the requirements of invariant preserving middlebox
traversal and present the components of our SDN architecture.

Consider the example in Fig. 1, where a trusted user (e.g., an enterprise
with well-established relation/contract with the ISP) is trying to access a server
through port 1443. Since the firewall on its default path (path 1) blocks any
traffic on ports other than port 80, the user fails to establish a connection with
the server. A straightforward solution is to request the ISP to reconfigure the
firewall on the default path. However this will allow the malicious user’s traffic
to traverse the network. An alternative solution, which we consider in this paper,
is to allow the user to express her requirement as an invariant to the ISP (in this
case allow port 1443), and in turn the ISP identifies a path which preserve the
invariant and does not violate the the ISP policy (path 2).

To this end, we envision an SDN architecture where a centralized control
plane provides invariant preserving routing and redirection through the ISP net-
work. Accordingly, we assume the deployment of OpenFlow switches which serve
as the data plane of the network. Furthermore, as in today’s ISP network, a set of
middleboxes are deployed in the network at different locations to provide services
such as protection against malicious traffic (e.g. firewalls), enable the sharing of
IPv4 addresses (NAT) and caching of frequently used content (proxies). To pro-
vide invariant preserving connection establishment, our SDN architecture needs
to fulfil a set of requirements:

– efficient resource management: we consider two objectives for resource
management in ISP networks: (i) delay minimization, where an ISP aims at
routing traffic through the path with the shortest delay and (ii) load balanc-
ing, where an ISP aims at balancing the traffic load across the network.

– correctness: traffic should traverse paths that preserve the invariant while
not violating the ISP policy, e.g., a video flow with a particular port number

might be redirected through a firewall which grants access to it but still needs
to keep an upper bound on the BW consumed by this flow. This requires
correct and efficient parsing and checking of the state and configuration of
the middleboxes deployed in the network.

– traffic redirection: the controller should be able to install forwarding en-
tries in the ISP’s switches to reroute traffic through the selected path. This
should also take into account middleboxes which modify the packets routing
header fields such as the IPs addresses (e.g., NATs, load balancer).

To fulfil these requirements, we design a control plane which consists of four
components (Fig. 2):

– MBs configuration and state collection: this component collects and
stores the state and configurations (e.g., firewall rules) of each middlebox
deployed in the network. It accesses middleboxes through interfaces exposed
to the controllers by the vendors. These interfaces could be vendor-specific
(e.g., CISCO CLI) or standard interface such as netconf [3] or SIMCO [4].

– static checking: this component implements tools such as SymNet [7] or
HSA [6] to parse and analyse the state and configurations of middleboxes
against the requested invariants. It basically identifies the implications the
middleboxes have on the flow and hence, specifies the middleboxes which do
not violate the flow invariant.

– network monitoring: this component keeps track of the network topology
as well as the network links and middleboxes utilization. It reads the coun-
ters of the network switches deployed on the network using OpenFlow [5].
For monitoring middleboxes utilization, it uses again the interface exposed
by the vendors.

– path selection: based on the output provided by the static checking and
the network monitoring component, this component selects a path which
fulfils the invariant of the connection while considering the utilization of the
network and the middleboxes. It implements our path selection algorithm
presented in Section 4.

– switch configuration: it installs the required flow entries in OpenFlow
switches to redirect the flow through the path selected by path selection
component. For middleboxes (e.g NAT) which modify some of the flow’s
5 tuples (source and destination IP addresses, source and destination port
numbers, protocol), the flow can be identified by adding tags to each packet
such as in [12] and [13].

GW
GW

MB

MB MB

MB

MB

southbound interface (OpenFlow, netconf)

MBs
config & state

collection

co
nt

ro
lle

r

monitoringswitches
configuration

northbound interface

flows invariants

static
checking

path
selection

Fig. 2. Architecture components.

4 Path Selection

We develop an algorithm which selects a network path traversing middleboxes
that preserve a connection invariant. In addition to the configuration and the
state of each middlebox, our algorithm takes into account the available band-
width on each network link as well as the available processing capacity of each
middlebox. The algorithm is executed by an SDN controller which has the knowl-
edge of the network topology and utilization, the middleboxes utilization and
state, and the connection invariant. We present two variants of our algorithm:
the first aims at minimizing end-to-end delay, whereas the second strives to
achieve load balancing across the network.

We represent the ISP network as a weighted undirected graph G = (N,L),
where N is the set of nodes and L is the set of links between nodes of the set N .
Nodes are classified into set of routers R and a set of middleboxes M such that
N = R ∪ M . Each mi has a processing capacity which is denoted by CP (mi)
and a state S(mi). Each link lij ∈ L between two nodes ni and nj is associated
with the available bandwidth C(lij). Let Pij represents the set of paths in the
network G, between the pair of nodes ni and nj . The available bandwidth C(p)
of a path p ∈ Pij is given by the minimum residual bandwidth of the links along
the path:

C(p) = min
lij∈p

C(lij) (1)

We further represent a connection demand with a vector d = {nsrc, ndst, r, cmp, v},
where nsrc, ndst ∈ N denote the connection source and destination nodes, r rep-
resents the traffic rate, cmp is the required computing capacity to process the
traffic, and v is the connection invariant.

Algorithm 1 Path selection

Inputs: G = (N,L), d

for each l ∈ L do

if C(l) < r then
delete l from G

end if
end for

Pij ← FIND ALL PATHS(nsrc, ndst) // all paths between source and destination
SORT(Pi, j) // sort paths based on their length or available BW

for each p ∈ Pi,j do

found← true
for each m ∈ P

if cmp > CP (m) or v ∩ S(m) = ∅ then
Found← false
break

end if
end for
if found then

return p
end if

end for
return ∅ // no path was found

The algorithm selects a path between the source and destination of a con-
nection. It starts by removing all the links with insufficient available bandwidth
to fulfil the rate of the connection. This step reduces the size of the graph that
FIND ALL PATHS function has to process to calculate all paths between the
source and the destination. This function implements the algorithm in [2] which
has a complexity of O(N + L). Reducing the size of N and L results in lower
runtime. After identifying all the paths, we sort them in increasing order based
on the number of hops or on a decreasing order based on the available band-
width C(p). Sorting based on number of hops results in delay minimization,
whereas sorting based on the available bandwidth achieves load balancing. We
term the two algorithm variants as invariant preserving SP algorithm and invari-
ant preserving LB algorithm, respectively. Finally, the algorithm goes through

Fig. 3. Simulation OpenFlow switches topology.

the sorted paths to find the first one which fulfils the invariant as well as the
connection processing demand.

5 Evaluation

In this section, we evaluate the efficiency of our path selection algorithms for
invariant preserving middlebox traversal. In particular, we use simulation to
measure the connection acceptance rate and the network and middleboxes uti-
lization. Furthermore, we compare our algorithms in terms of load balancing
level and path hops counts per connection.

5.1 Evaluation environment

We have developed a Python flow-level simulator to establish invariant preserv-
ing connections through a ISP network. To model ISP network, we use inter-
net2 topology [1] which consists of 34 nodes (Fig. 3). Each node in this figure
represents an OpenFlow switch, whereas each edge is a network link with 1
Gbit/second bandwidth. At different locations of the topology, we deploy 12
Middleboxes. Each middlebox has 10 GHz CPU capacity and performs access
control using a randomly generated list of destination port numbers (each Mid-
dlebox works as a stateless firewall). We generate non-expiring connections with
destination port numbers, rates, and processing demands sampled out of a uni-
form distribution. For each generated connection, we randomly select a source
and a destination switch. Using the algorithm in section 4, a connection is es-
tablished if a network path which preserve its invariant , and fulfils its rate and
processing demand is found, otherwise it is rejected. For each successfully es-
tablished connection, the bandwidth of the links and the processing capacity of
middleboxes on the path are updated accordingly.

0 50 100 150 200 250 300 350 400
number of requests

0.3

0.4

0.5

0.6

0.7

0.8

ac
ce

pt
an

ce
 ra

te

invariant preserving SP
invariant preserving LB
shortest path

Fig. 4. Connection establishment rate vs. number of arriving requests.

We compare the efficiency of our approach against the traditional shortest
path selection. In particular, for each new connection we calculate the shortest
path between the connection source and destination, if the shortest path fulfils
the connection demand and invariant, the connection is established, otherwise
it is rejected.

We conducted our simulation on a machine with Intel Core i5 quad-core
CPU at 3.20 GHz and 16 GB of RAM. We repeat each experiment 100 times
and report the average.

5.2 Evaluation results

We start by measuring the connection acceptance rate. This represents the per-
centage of connections’ sizes for which invariant-preserving paths were selected.
As Fig. 4 shows, our algorithms (invariant-preserving SP and invariant-preserving
LB) establish almost 40% more connections than the traditional shortest path
selection. This is because our algorithms select alternative paths when either
the invariant or the connection demand are not fulfilled, whereas the traditional
shortest path rejects the connection when the shortest path does not meet the
connection requirements. This can be also seen through the evolution of net-
work and middleboxes utilization (Fig. 6 and Fig. 5). It also illustrates that the
invariant-preserving LB algorithm achieves better utilization and reaches satu-
ration faster than the invariant-preserving SP. This is because that invariant-
preserving LB accepts more requests at the beginning when the network re-
sources are underutilized.

0 50 100 150 200 250 300 350 400
number of requests

0.0

0.1

0.2

0.3

0.4

0.5

m
id

dl
eb

ox
es

 u
til

iz
at

io
n

invariant preserving SP
invariant preserving LB
shortest path

Fig. 5. Total utilization of middleboxes deployed on the network.

We also measure the network load balancing level which we define as the
maximum link utilization over the average link utilization across ISP network.
Lower values of the load balancing level represent better load balancing, whereas
a value of 1 designates optimal load balancing. As we can see in Fig. 7, the
invariant-preserving LB algorithm outperforms both our invariant-preserving SP
algorithm and the traditional shortest path.

We further look at the path length per selected path in terms of the number
of hops. As we expect, the invariant-preserving SP outperforms the invariant-
preserving LB algorithm (Fig. 8), however, as the network resources become
more utilized the difference between both algorithms diminishes. This is because
the number of alternative paths with sufficient capacity decreases which limits
the solution search space for both algorithms.

6 Conclusions

In this paper, we presented a SDN architecture for establishing invariant preserv-
ing connections traversing middleboxes and fostering the collaboration between
end-hosts and ISPs. In particular, an end-host can express a desirable behavior
from the network, specified as an invariant (e.g., no IP header or payload mod-
ification), and the ISP, in turn, can establish a connection through middleboxes
that preserve this invariant. To this end, we developed an algorithm to select
redirection paths through a sequence of invariant-preserving middleboxes while
considering network and middlebox utilization. Our algorithm can be adapted

0 50 100 150 200 250 300 350 400
number of requests

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ne
tw

or
k

ut
ili

za
tio

n

invariant preserving SP
invariant preserving LB
shortest path

Fig. 6. Total utilization of all network links.

to fulfil different objectives: load balancing or delay minimization. Using simu-
lations, we showed that our algorithm increases substantially the number (more
than 40%) of established connections with invariant preservation and achieves a
network-wide load balance as well as higher network and middleboxes utilization.

We believe that our work indicates the feasibility of invariant preserving
middleboxes traversal and takes a step towards providing more flexibility at the
core of the network for new service and protocol deployment. As part of future
work, we plan to implement and experimentally evaluate the efficiency of our
SDN architecture using our Emulab-based network testbed.

7 Acknowledgments

This work was partially supported by the EU FP7 T-NOVA Project (619520).

References

1. Internet2, http://www.internet2.edu/.
2. R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, Addison Wesley Pro-

fessional, 3rd ed., 2001.
3. R. Enns, NETCONF Configuration Protocol, RFC 4741, IETF, Dec. 2006.
4. M. Stiemerling, J. Quittek, and C. Cadar, NEC’s Simple Middlebox Configuration

(SIMCO), RFC 4540, http://tools.ietf.org/html/rfc4540
5. N. McKeown et al., OpenFlow: Enabling Innovation in Campus Networks, ACM

SIGCOMM CCR, 38(2), 2008.

0 50 100 150 200 250 300 350 400
number of requests

1

2

3

4

5

6

7

lo
ad

 b
al

an
ci

ng
 le

ve
l

invariant preserving SP
invariant preserving LB
shortest path

Fig. 7. The network load balancing level.

0 50 100 150 200 250 300 350 400
number of requests

4

5

6

7

8

9

10

11

12

13

#
 o

f h
op

s
pe

r s
el

ec
te

d
pa

th

invariant preserving SP
invariant preserving LB

Fig. 8. The length of each selected path for each connection.

6. P. Kazemian , G. Varghese, and N. McKeown, Header space analysis: static check-
ing for networks, USENIX NSDI, San Jose, CA, April 2012.

7. R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, Symnet: Static checking
for stateful networks, ACM HotMiddlebox, 2013.

8. D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, Design, implementation
and evaluation of congestion control for multipath tcp, USENIX NSDI, 2011.

9. Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, An untold story of middleboxes
in cellular networks, ACM SIGCOMM, Toronto, Canada, August 2011.

10. C. Raiciu, V. Olteanu, R. Stoenescu, Good Cop, Bad Cop: Forcing Middleboxes
to Cooperate, IAB 2015.

11. J. Sherry et al., Making Middleboxes Someone Elses Problem: Network Processing
as a Cloud Service, ACM SIGCOMM, Helsinki, Finland, August 2012.

12. S. Fayazbakhsh , V. Sekar , M. Yu , and J. Mogul, FlowTags: enforcing network-
wide policies in the presence of dynamic middlebox actions, ACM SIGCOMM
HotSDN, Hong Kong, China, August 2013.

13. A. Gember et al., Stratos: Virtual Middleboxes as First-Class Entities.
14. S. Guha, Y. Takeda, and P. Francis, NUTSS: A SIP-based Approach to UDP and

TCP Network Connectivity, ACM SIGCOMM FDNA, 2004.
15. J. L. Eppinger, TCP Connections for P2P Apps: A Software Approach to Solving

the NAT Problem, http://reports-archive.adm.cs.cmu.edu/anon/isri2005/CMU-
ISRI-05-104.pdf.

16. A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig, NATBLASTER: Establishing
TCP Connections Between Hosts Behind NATs, ACM SIGCOMM ASIA, 2005.

17. W. Kho, S.A. Baset, and H. Schulzrinne, Skype relay calls: Measurements and
experiments, IEEE Global Internet Symposium, 2008.

