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Abstract. Energy transition policies, including Energiewende in Germany, plan 
to replace conventional power plants with renewable energy resources thanks to 
advances on solar and wind technologies. However, shifting from conventional 
production to highly volatile renewable energy production will bring a number 
of challenges as well. One of those challenges is price forecasting accuracy in 
renewable energy driven markets. Intermediary power actors, e.g., retailers, suf-
fer from that problem at most, due to their load-balancing role (financially). This 
work presents a number of electricity price forecasting approaches, and aims to 
refine the forecasting error, using additional drivers such as weather observation 
data. The proposed bidding approaches have been tested in our broker agent 
which competes in Power Trading Agent Competition (Power TAC). In detail, 
our model firstly makes price predictions out of historical market clearing prices, 
using a hybrid model. This model alters a seasonal regression model by replacing 
the aged terms with a belief function. Then, those predicted prices are reassessed 
by means of correlating the weather observations and market clearing prices. The 
price-driven methods were tested in the Power TAC simulation framework 
whereas the others use real-world data. Results show that weather data can suc-
cessfully reduce the forecasting error up to a certain degree. After all, the paper 
aims to create generic data-driven forecasting models which can be deployed in 
autonomous trading agents.   

Keywords: autonomous agents, electricity market, forecasting, trading. 

1 Introduction 

Governments have started to declare their energy transition policies in order to create a 
greener energy landscape for the future electricity grid [14]. However, the California 
crisis (2000 - 2001) showed that such intermediate power actors are the most vulnera-
ble, as they have the burden of a strict financial and power management between cus-
tomers and generators [13]. Nowadays, electricity price forecasting has become more 
and more vital, as the increasing renewable capacity is leading the price fluctuations. 

Many research efforts have been made so far in the field of energy informatics and 
economics. One of the most comprehensive research papers is published by [9]. The 
paper reviews reinforcement learning approaches from the decision-support perspec-
tive in smart electricity markets. In this work, retail and wholesale trading problems are 



handled separately in a broker-centric environment. In terms of competitive decision-
support, [3] proposes predictive machine learning models for supply-chain manage-
ment using a TAC-SCM scenario. In this work, market regimes and future price distri-
butions are clearly defined, using generic statistical models. Another paper proposes a 
Markov Decision Process (MDP) to handle wholesale market activities [4]. Besides this 
work, many existing papers have confirmed that MDP is one of the proven ways of 
handling time-sequential problems [7,9]. Our most recent publication [10], describes 
the basic activities of our winning broker agent (AgentUDE) in Power TAC 2014 Fi-
nals. Note that the methods in the experiments are driven by AgentUDE. 

This paper proposes a number of electricity price forecasting methods to have a 
closer look at the forecasting error problem in renewable driven wholesale markets. At 
the first stage, we offer a hybrid electricity price forecasting approach, using a number 
of reinforcement learning methods and MDP, which is a modified version of MDP de-
sign, introduced by [4]. We use an exponential smoothing operator along with a belief 
function which is proposed by [12]. The exponential smoothing itself is known as one 
of the most popular and responsive forecasting methods, but also the short-sighted one. 
We integrate the belief function to tune the focus of the trader agent in real-time. There-
fore, the trader agent can easily detect short-term fluctuations as well as long-term re-
gime changes. The belief function is the model of the environment and continuously 
updated, as the market clearing prices (MCPs) are broadcasted to market participants. 
As a final step, the trader agent solves the MDP at each simulation hour to create its 
price distributions. We test and compare our model in Power Trading Agent Competi-
tion (Power TAC) which is a competitive smart grid simulation platform that uses real 
weather reports, and competitive broker agents which are developed by different re-
search institutes (see Section 3). We define a quadratic loss function to benchmark the 
error rate of the models.  

At the second stage, we use real market data and weather observations to find real-
world weather and MCP correlations in German electricity markets. Afterwards, we 
use that correlation to enhance MCP-driven price. To achieve that, we collected hourly 
weather observations of eight German cities. Market prices are hourly sampled at EPEX 
Spot so that MCP changes are stored in a database, based on the time distance between 
the order hour and the delivery hour (see Section 3.2.1). Then, we formalize the process 
to improve MCP-driven prices. The results show that weather observations are signifi-
cantly improving the prediction accuracy. 

The structure of the paper is organized as follows. The Power TAC scenario is given 
in Section 2. Afterwards, Section 3 details the framework model and explains all of the 
proposed approaches. Finally, the paper is concluded in Section 4 with an overview to 
our future work. 

2 Power TAC Scenario 

Smart grid simulation platforms have become more and more popular as liberalized 
electricity markets and decentralized power generation challenge the volatile balance 
of electricity demand and supply. Simulations aim to address these challenges to create 



a vision of sustainable smart grid ecosystems. Power Trading Agent Competition 
(Power TAC) is one of the most powerful and robust open-source smart grid simulation 
platforms that brings electricity brokers and smart market concepts together [2,11]. Fig. 
1 depicts the high-level structure of Power TAC. 

 

Fig. 1. High-level structure of Power TAC scenario. 

The platform integrates various smart grid actors such as customer models, a retail 
market, a wholesale market, a distribution utility, and autonomous electricity brokers 
within a single distribution area, currently a city. The main actors within Power TAC 
are now described in more detail: 

─ Electricity brokers are business entities that trade as intermediaries to attain good 
results for their own accounts. They try to attract customers by publishing electricity 
tariffs in the retail market, i.e. tariff market. The so-called distribution utility closely 
monitors all brokers in order to evaluate their demand and supply behavior. Imbal-
anced energy is subject to penalties, which may result in a profit loss that is approx-
imately twice as high as the mean wholesale market price. Therefore, brokers have 
to trade in the wholesale market in order to cover their net demand.  

─ Customers are small and medium sized consumers and producers such as house-
holds, electric vehicles and small firms. They interact with the environment through 
electricity tariffs. They can buy or sell electricity, subscribing to appropriate tariffs 
which are defined in power type, time and money domains. 

─ Generator companies represent the large power generators or consumers. These ac-
tors trade in the wholesale market and manage their commitments for the next sev-
eral hours up to several weeks. 

─ Distribution utility  operates the grid and manages the imbalances in real-time. It is 
assumed that distribution utility owns the physical infrastructure. It charges brokers 
for their net distributed energy per kWh, known as distribution fee. It also manages 
imbalances and charges brokers for their imbalanced energy, called balancing fee. 

While Power TAC is available all year-round for all kinds of simulations, its inter-
national competition is conducted only once a year. Research institutes are encouraged 
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to develop and pre-test their own smart energy brokers. A Power TAC tournament con-
sists of a collection of games, grouped in different game sizes, e.g. with three, five and 
seven players. Game size indicates the number of competing broker agents. In addition 
to competing teams, a built-in default broker is always included in the games, i.e. it 
means two brokers and the default broker compete in a three player game. After all 
games have ended, profits are summed up and normalized on the basis of each individ-
ual game size. The broker with the highest aggregated profit is the winner. 

 

Fig. 2. Time slot sequence diagram from brokers’ horizon. 

A Power TAC game takes up to a random time slot count, starting from one, cf. Fig. 
2 for the activities in a time slot. In the paper, we refer to the current time slot ݐ and 
time distance � to future auction hour (see Table 1 to read more about the notation). 

1. Brokers receive signals at every time slot ݐ , e.g. current cash balance, MCPs 
௧݌ܿ) , ,௧+ଵ݌ܿ … ,  .௧+ଶଷ) and published tariffs by all brokers݌ܿ

2. Brokers ought to submit orders to the wholesale market in order to procure energy 
amount ܧ௧,�(MWh) at current time slot ݐ, so that its supply and demand match at 
future time slot ݐ + �. For this reason, brokers need to predict future demand as ac-
curate as possible to avoid imbalance penalties. 

3. At the end of a time slot, a broker’s cash account is updated based on the profit ∑ �ܶ� ௧�ܧ − ∑ �௧,�ଶସܧ�,௧݌ܿ  where ܶ � is the tariff price of the net distributed energy ܧ�௧ 
at time slot ݐ, under tariff i. The cost of supplying wholesale energy amount ܧ௧,� at 

time slot ݐ is denoted as ∑ �௧,�ଶସܧ�,௧݌ܿ . Imbalance penalty (∑ �௧�ܧ − ∑ �௧,�ଶସܧ ൯��௠௕ is 
debited from the broker’s cash account, multiplying the net imbalance with the bal-
ancing fee of ��௠௕ (per unit).  

4. In addition to the tariff value, tariff activities like customer sign ups or withdrawals 
are subject to payment due to bonus and early withdrawal payment parameters of the 
according tariffs. 

5. Brokers pay distribution fee for each energy unit if market power is distributed or 
local power is traded in the wholesale market. 

6. At the end of the time slot, brokers receive information about net distribution and 
imbalance volumes as well as tariff transactions. 

Customers Brokers Retail Market Wholesale Market Distribution Utility

Published tariffs, usage, transactions

Market positions, orderbook, cleared prices

Submit bids/asks

Change tariff (optional)

Consumption volume

Imbalances, cash positions

Publish/revoke tariffs



7. Customers initially subscribed to the default tariff. Once brokers join in, they evalu-
ate the existing tariffs based on their energy profile. Due to fact that “set and forget” 
is a common customer behavior, an inertia factor �௔ = ሺͳ − ʹ−௡ሻ� drives the moti-
vation of customers. Here, n denotes the time slot after the latest subscription. For 
more details, [6] includes a comprehensive explanation of the customer model. 

Apart from the models mentioned above, the simulation core plays a top-level coor-
dinator role between customers, brokers and the Distribution Utility and provides real-
world data, such as weather forecasts. 

3 Electricity Price Forecasting 

In this section, we basically propose two forecasting approaches to make price predic-
tions for future auctions. Firstly, we use historical prices to create future prices. At this 
stage, we use a number of reinforcement method to assess MCPs. Secondly, weather 
and MCP correlation will be tackled in the second part, as an option to improve the 
prediction accuracy of the first step. 

Table 1. Summary of notation. 

Symbol Definition ݐ Current time slot t, i.e., order hour. � Time slot proximity. Time slot distance of ݐ to the power delivery hour.   ܿ݌௧,� MCP of the wholesale market ordered at ݐ with �.  ܿ̃݌௧,� ܯ��-driven forecasted price at ݐ with �. ܿ̃݌t,�Φ �௧,�.  �௪�௡ௗ|௧௘௠௣|௖௟௢௨ௗ̃݌ܿ  Φ௧,�  Weather contribution value to be added on .ݐ with �. �௧  Weather observation report at ݐ and weather-driven price at ��ܯ   Correlation coefficient of MCP and regarded weather report for �. 

 
Table 1 defines the key parameters that are used in the paper.  In addition to the 

notations above, we need to explain a number of terms as well. The time slot proximity 
refers to time between order hour and delivery hour. For example, bidding at 18:00 for 
the power delivery at 20:00 means that the proximity is 2. 

3.1 MCP Driven Electricity Price Forecasting 

In this section, we outline the design of our MCP-based forecasting model and bench-
mark its performance, using different learning rates. Additionally, we compare our 
wholesale bidding performance with other broker agents in Power TAC environment, 
using strategic prices which are built on forecasted prices.  



Price forecasting is one of the most established area in the time-series analysis. How-
ever, due to reasons given in the abstract and introduction of the paper, energy markets 
are getting closer to a non-stationary position. Daily price spikes, rapidly changing 
trends require a hybrid forecasting solution.  

 

 

Fig. 3. MCPs of 10:00 AM in Power TAC’s continuous wholesale market.  

 

Fig. 4. Autocorrelations and partial autocorrelation coefficients, using the signal in Fig. 3. From 
left to right, we firstly take the autocorrelation and partial autocorrelation of the signal. The sec-
ond column indicates the correlations after the first-order non-seasonal difference. The third col-
umn shows the correlations of the signal after the first-order seasonal difference. 

Fig 4. Illustrates a price signal from a Power TAC game. As seen, the signal is sta-
tionary and seasonal. Therefore, we can pick a simple seasonal autoregressive inte-
grated moving average (SARIMA) model, analyzing the autocorrelation and partial au-
tocorrelation coefficients in Fig. 3. As noticed, there is a strong seasonality at lag 24 as 
well as a non-seasonal spike at lag 1. For simplicity, we ignore the moving averages 
and take ܵ�ܴ�ܯ�ሺͳ,Ͳ,ͲሻݔሺͲ,ͳ,Ͳሻଶସ model to describe the forecasting problem. There-
fore, the formula can be rewritten as: 
 

 �̂௧+ଵ = ሺ�௧ − �௧−ଶସሻ + �௧−ଶଷ (1) 
 



Where �̂௧+ଵ is the prediction of the next time slot at current time slot ݐ whereas � 
values denote historical prices. The problem in the formula is the age of some regres-
sion terms such as �௧−ଶଷ and �௧−ଶସ. Motivating from the strong correlation in partial 
autocorrelation of seasonal difference, we replace those aged regression terms with a 
robust model, using dynamic programming technique so that our forecasting model can 
avoid price spikes caused by outlier historical prices.  

Our forecasting model uses a dynamic programming technique to implement the 
similar-hour concept [12] in order to make predictions in continuous electricity mar-
kets. The similar-hour concept is based on searching the past data for hours with char-
acteristics similar to the predicted hour. Generally speaking, the trader agent has almost 
same MCPs everyday while bidding at 02:00 for the next 24 hours. In other words, the 
agent takes similar historical market prices into account, while submitting bids to 03:00, 
04:00, …, 02:00 (next day). We use a belief function as the model of the environment. 
The belief function is updated continuously as the MCPs are broadcasted to brokers. 

We formalize the sequential bidding problem as an MDP, formally described by [7]. 
Each hour of day (24) is represented by another Markov Process. It means that at each 
time slot, there are 24 concurrent bidding processes. Each process has 25 states. One of 
those states is terminal state {ܿ݀݁ݐ݈݁݌݉݋}. The rest of the states denote the time slot 
proximity between order hour and delivery hour. Let �ଵସ be the process of delivery hour 
14:00. Then �ଶ is in the state 6 and 1 at the order hours 08:00 and 13:00, respectively. 
Our MDP is defined as follows: 
 
 States: ܵ ∈  {ͳ, … , ʹͶ,  {݀݁ݐ݈݁݌݉݋ܿ
 Terminal state: {ܿ݀݁ݐ݈݁݌݉݋} 
 Reward: ܴሺݏ′, ܽሻ = { ͳ ∶ ′ݏ  = Ͳ {݀݁ݐ݈݁݌݉݋ܿ} ∶                ݁ݏ�ݓݎℎ݁ݐ݋ 
 Actions: ܽ௦ ∈ ℤ 
 Transitions: State ݏ transitions to Ǯܿ݀݁ݐ݈݁݌݉݋ǯ, if a bid fully clears. Otherwise, it 

transitions to ݏ − ͳ. 
 

Here, action values are limit prices, provided by a value function �∗ሺݏሻ. The value 
function basically maximizes the sum of expected sum of rewards, and theoretically 
replaces the term ሺ�௧−ଶଷ − �௧−ଶସሻ, given in Formula 1.  The model of the environment 
is represented by a belief function ݂ሺݏ, ܽሻ, which is a modified version of a work by 
[12] and influenced by Q-learning concept [8]. However, Tesauro keeps the probability 
of a given price by harvesting historical data. In our case, we only keep the weights of 
changes of two sequential MCP’s as the problem defined in Formula 1. Therefore, the 
belief function ݂ ሺݏ, ܽሻ points to weights of ܽ∈ �௔, given a state ݏ, where higher values 
mean higher probability of reward occurrence where �௔ is the set of actions, {ܽ ∈ ℤ | −ͷͲͲ ≤ ܽ ≤ ͷͲͲ}. Since our reward function is a kind of counting process, we are in-
terested in the reward occurrence in the belief function. The action with highest proba-
bility ought to result in transition to {ܿ݀݁ݐ݈݁݌݉݋}. 

As time proceeds to ݐ + ͳ, the belief functions ݂ሺݏ, ܽሻ is updated for ∀ܽ ∈ �௔, as 
MCPs broadcasted to brokers. In brief, MCP’s are supervising and reforming the belief 
function based on the market results. Therefore, the agent does not need to act to learn 



and update its model. Following formula updates the belief function, using a learning 
rate ߙ and a reward function. Note that only MCP’s are positively rewarded whereas 
other actions are rewarded with a zero value (Formula 3). This way, in turn, provides a 
normalization process on the action-state vector:  

 
 ௧݂+ଵሺݏ௧ , ܽ௧ሻ =  ௧݂ሺݏ௧ , ܽ௧ሻ ∗ ߙ  + ܴሺݏ௧+ଵ, ܽ௧ሻ ∗ ሺͳ −  ሻ (2)ߙ

 

௧+ଵݏ  = ��ܯ :′݀݁ݐ݈݁݌݉݋ܿ′} = ܽ௧ݏ௧ − ͳ ∶  (3)          ݁ݏ�ݓݎℎ݁ݐ݋ 

 
Where (1) and (2) are subject to Ͳ ≤ ߙ ≤ ͳ.  
To solve MDP, we use value iteration method to find the expected sum of rewards. 

The value function �∗ሺݏሻ takes a probability density function (pdf), ܨ௦ሺܽሻ where µ and � parameters of the normal distribution are obtained from the values of ݂ሺݏ, ܽሻ, given 
a state ݏ for ∀ܽ ∈  ℤ. Following value function, �∗ሺݏሻ solves our MDP and creates a 
bid value, using an exponential smoothing operator. Here, the exponential smoothing 
operator refers to the non-seasonal auto regression term in Formula 1. 
 

 �∗ሺݏሻ = ݏ :௦′݌ܿ} = ʹͶ                                              ܿ݌′௦+ଵ + max௔݃ݎܽ ሻݏ௦ሺܨ ∶  (4) ݁ݏ�ݓݎℎ݁ݐ݋ 

 
Where exponential smoothing operator is defined as ܿ݌′௦ = ሻߚ௦ ሺ݌ܿ + ௦ሺͳ′݌ܿ −  ሻߚ

and subject to Ͳ ≤ ߚ ≤ ͳ.  Since there is no seasonal difference available at state ݏ, we 
only use an exponential smoothing value. 

 
 

Algorithm 1 Non-strategic electricity price forecasting 
1. Needed Energy [1, 2, …, 24] = computeNeededEnergy() 
2. Update ݂ ܿ and (ܽ,ݏ)  ()௦← auctionResults′݌
3. For state s in [1,2, …, 24] do 
4.     if s = 24 then 
5.         Limit prices [24] = ܿ  ௦′݌
6.     if s < 24 then 
7.         Limit prices [1, 2, …, 23] = ܿ݌′௦+ଵ + argmax௔  ௦ሺܽሻܨ
8. Submit bids [1, 2, …, 24] ← Limit prices 

 
The algorithm above summarizes the process. The trader agent collects data from 

the auction results and update its knowledge. Then, it creates 24 predictions solving the 
model on hand. As the time proceeds, belief function updates itself. Overall, the system 
updates itself with reinforcements and combine the benefits of short-term and long-
term methods. The reason of using two heterogeneous methods together is to adapt and 
optimize the trader agent against changing market conditions with little data. 



3.1.1 Experimental Setup and Results 

In the experiments, we use our broker agent AgentUDE15 [10] to benchmark our model 
(cf., Table 2 for the broker settings). For more details, see the publication which de-
scribes the algorithms used in AgentUDE.  

We arranged a tournament to create different game variations, and picked well re-
spected and competitive brokers of the recent years: cwiBroker15, CrocodileAgent15, 
Maxon15 and TacTex14 [1,4,5,15,17]. The suffixes, at the end of broker names indicate 
the year of release. Due to the number of available brokers, all the games are defined 
as 3-player to diverse the trading environment. Since we use AgentUDE15 as a test-
bed application, it is included in all games. Therefore, 3-player game actually means 
that AgentUDE15 competes with two other brokers as well as a default-broker. All 
brokers have the same chance of competing with AgentUDE15. The requirements 
above make 6 game combinations possible. We multiplied the number of games by two 
and set 12 games in total. We used 1.3.0-Snapshot version of the Power TAC environ-
ment and the relevant output was processed in Matlab 2015b. 

AgentUDE15 starts a game without offline data, i.e. belief matrix. The belief matrix 
is filled along the game. We set a symbolic energy procurement amount as 0.1 MWh 
to make it price taker. The broker has no activity in retail and balancing market.  

An absolute error loss function L measures the accuracy of the predictions: 
 

,̃݌ሺܿܮ  ሻ݌ܿ = ̃݌ܿ) − ݌ܿ݌ܿ )ଶ (5) 

 
Here, the lost function converges to zero, as the output and estimated price get close 

to each other. Since it is a quadratic function, error values are always positive and the 
higher error values mean the less prediction accuracy.  

 

Fig. 5. Average trading volume by time slot proximity.   



 

Fig. 6. Error rates of forecasting model, given learning rates, α=0.2, α=0.4, α=0.6 and α=0.8. The 
higher α values mean more conservative behavior (far-sighted).   

Fig. 6 summarizes the simulation results from a graphical perspective. Comparing 
different learning rates, the model seems to be successful at far-sighted mode. This 
output meets the expectation, found in the figure of partial auto correlation of seasonal 
difference (see Fig. 4). Therefore, the historical price signal seems partially stationary. 
However, the proposed method can also be used in non-stationary markets due to ex-
ponential smoothing terms in it.  

Table 2. Average and weighted errors.  

 α = 0.2 α = 0.4 α = 0.6 α = 0.8 
Average Loss 0.0274 0.0210 0.0089 0.0039 
Weighted Loss 0.0169 0.0130 0.0061 0.0029 

 
Table 2 summarizes the overall performance by learning rate. Here, average loss 

refers to arithmetic mean of all time slot proximities, whereas weighted loss uses 
weighted arithmetic mean, considering trading volumes (see Fig. 5). Let ܮ and actual 

market price be 0.0029 and 25 EUR, respectively. Then 26.34 EUR and 23.66 EUR 
would be the upper and lower boundaries of the forecasting model. 

3.1.2 Strategic Bidding and Results 

Forecasted prices usually known as truthful information. However, these predictions 
are not directly submitted to markets by brokers. In order to make the model compara-
ble, forecasted prices must be transformed into strategic prices. 

Forecasted prices constitute 24 price distributions where �ℎ௢௨௥ and �ℎ௢௨௥ are mean 
and standard deviation of an hour. We finalize the transformation in two steps: 
 

─ Strategic prices [ͳ, ʹ, … , ʹͶ] = ,݁ܿ�ݎ�݃݊�݈ܾܿ݊ܽܽ] … , ሺ�௧+ଶସ − �௧+ଶସሻ] 
─ Strategic prices [ͳ, ʹ, … , ʹͶ] ∗=  [ͳ + ,௧+ଵ,�=ଵ݌ … ,ͳ +  [௧+ଶସ,�=ଶସ݌
 
Where probability of ݌௧,� is defined as: 



  

�,௧݌  = ∑ ௧݁݉ݑ݈݋ݒ ݃݊�݀ܽݎݐ∑௧௖௟௘௔௥�௡��௥௢௫�௠�௧௬= ௣௥௢௫�௠�௧௬݁݉ݑ݈݋ݒ ݃݊�݀ܽݎݐ  (6) 

 
In the first step of the transformation, we assign prices to enabled auctions, starting 

from the first standard deviation before the mean up to the balancing price. The balanc-
ing price is a dynamic variable which is recalculated at every time slot, based on the 
balancing market reports.  Higher proximities are likely to get lower prices. In the sec-
ond step, we take trading volume into the account. To do that, we scan historical trading 
volumes, tracking the same bidding proximities. Higher volume probability means 
higher strategic price for the given proximity. 

We repeated the tournament with the same settings as the previous experiment. This 
time, AgentUDE15 is fully functional on the Power TAC markets, and submits strategic 
prices instead of forecasted prices. The procurement amount is determined through a 
demand prediction process, which is out of the scope in the paper.  

Table 3. Average and weighted errors.  

Broker 
Avg. Bidding Cost 

(EUR) 
Weighted Bidding Cost 

(EUR) 
Avg. Imbalance per TS 

(kWh) 

AgentUDE15 61.04 52.95 460 
CrocodileAgent15 70.32 67.65 -170 
cwiBroker15 55.55 52.93 -1738 
Maxon15 45.93 43.80 -3460 
TacTex15 54.06 54.29 -473 

 
Table 3 summarizes the bidding performances. The weighted bidding cost is the re-

alistic indicator which takes clearing volume into account. AgentUDE15 performs on 
a decent level, having a positive average imbalance per time slot. Besides, there are two 
extreme bidding schemes in the table: CrocodileAgent15 and Maxon15 follows a gen-
erous and stingy bidding policies, respectively. However, those policies eventually re-
sult in either high or low imbalance activity. Therefore, brokers have plan their pro-
curements considering the balance of cost and imbalance penalties. 

3.2 Weather-aided Forecasting 

Wholesale energy prices have become correlated with weather conditions as the in-
stalled capacity of renewable energy production increases. Germany is a typical exam-
ple of this phenomenon, time to time selling power to its neighbors at negative prices 
when it is an extreme windy or sunny day. In this part, we find a correlation between 
prices and weather conditions.  

Due to a number of reasons, weather conditions have different correlation coeffi-
cients for different time slot proximities. To consider that, we calculate the correlations 
for each proximity, using the formula below: 

 



 �௪�௡ௗ|௧௘௠௣|௖௟௢௨ௗ� =  )ݎݎ݋ܿ
 ൮�ଵ+��ଶ+�…�௡+�) ,൮

 ((�௡݌ܿ…�ଶ݌ܿ�ଵ݌ܿ
   (7) 

 

Where ܿݎݎ݋ሺܽ, ܾሻ = �௢௩ሺ௔,௕ሻ�ೌ�್ , which is known as Pearson product-moment correla-

tion coefficient. Here, weather observations are mapped to the relevant time slot prox-
imity, as weather forecast data is not available for the experimental date. For the corre-
lation of the cloud cover, the formula skips evening hours as the sun only shines at 
certain hours. Therefore, correlation coefficient of the cloud cover takes only hours 
between 6:00 and 18:00. This way provides a clear result due to discarding unrelated 
hours from the correlation vector. Following figure illustrates the correlation coefficient 
of wind, temperature and cloud cover at a glance. 
 

 

Fig. 7. Correlation coefficient of wind, temperature and cloud cover by time slot proximity. 

 

Fig. 8. Historical correlation coefficients of weather reports and average hourly market price. 

Fig. 7 shows a snapshot of correlation results whereas Fig. 8 illustrates the average 
coefficients over the time. Here, positive correlation means that price increase as the 
regarded weather report value increases. Likewise, negative correlation refers to an in-
verse proportion. The correlation of the temperature seems seasonal, getting positive 
value in summer and negative in winter. The cloud cover usually has a positive corre-
lation whereas the wind has a negative value. 



The next question is: How to integrate those coefficients to the price-driven predic-
tions. We calculate a contribution parameter, Φ௧,� at order time slot t to bid for a future 
time slot with proximity �, in order to calculate the value, to be added on forecasted 
price. 

 

 Φ௧,�௪�௡ௗ|௧௘௠௣|௖௟௢௨ௗ = ቀ′�ݐ+� − ′�ሺݐ−ʹͶሻ+�ቁ �௪�௡ௗ|௧௘௠௣|௖௟௢௨ௗ ܿ̃݌௧+� (8) 

 
Where ′� denotes normalized weather observation, which is subject to Ͳ ≤ ′� ≤ ͳ. 

Likewise, ܿ is a predicted value, for the given future time slot. Contribution amount, Φ௧,�  can be positive or negative. Note that, Φ௧,�௖௟௢௨ௗ ̃݌  is set to zero, in case ݐ + � is an 
evening hour. After all, predicted price ܿ̃݌௧+�Φ  is derived by adding contribution amount Φ௧,�  to the cp-driven prediction:  
 

 
௧+�Φ̃݌ܿ = �,௧̃݌ܿ +Φ௧,�  

  
(9) 

 

3.2.1 Experimental Setup and Results 

Weather correlation approach was tested using real-world data. Market data was hourly 
sampled from the EPEX Intraday Continuous Market (DE/AT). The range of time slot 
proximity is ͳ ≤ � ≤ ʹͶ, which means that we start sampling data, 24 hours prior to 
the delivery hour. We keep sampling the prices until the gap between current time and 
delivery time closes. We have 24 concurrent sampling process for the next 24 hours. 
Thus, our database constitutes a price history for individual auction hours, detailing 
how the price changes as delivery time approaches. Hourly weather observations were 
fetched through METAR1  systems, which are installed at airports. Observation 
locations are chosen as Düsseldorf, Hamburg, Berlin, Munich, Stuttgart, Frankfurt, 
Hannover and Dresden so that observations are weighted equally to find average values 
for Germany. The experimental data starts from the first day of April until the end of 
May 2016. The experiment only covers the wind and cloud cover information as the 
temperature correlation is not statistically satisfactory for the given date interval. 
Matlab R2015b is used to compute relevant output. For simplicity, the price-driven 
forecasting model was choosen as the following formula: 
 

 �̂௧+ଵ = �௧−ଶଷ (10) 

 

,̃݌ሺܿܮ  ሻ݌ܿ = ̃݌ܿ) − ݌ܿ݌ܿ ) (11) 

 

                                                           
1 Meteorological Terminal Air Report is a weather information format that is used by aeronautic 

purposes. 



We apply the similar hour approach by taking the MCP of the previous day.  Formula 
11 depicts the error function to measure the errors. Then, we calculate the error reduc-
tion, using the formula below. 
 

݊݋�ݐܿݑܴ݀݁ݎ݋ݎݎ݁  = ௪௘௔௧ℎ௘௥ܮ −  ௣௥�௖௘ (12)ܮ
 

Here, we take the difference of the errors as an indicatior of  the error reduction. 
Here, ܮ௣௥�௖௘  is solved by Formula10. However, ܮ௪௘௔௧ℎ௘௥  requires an additional term Φ௧+ଵ  to be added to  �̂௧+ଵ. Thus, ܮ௪௘௔௧ℎ௘௥ −  ௣௥�௖௘ yields the error reduction for theܮ
given time slot and proximity. 

 

Fig. 9. Reduced forecasting error by proximity. Forecasted price enhanced by wind and cloud 
cover data.  

Fig. 9 illustrates the reduced forecasting error, using the wind and cloud cover data. 
As seen, forecasting error was reduced up to 0.15. The most significant contribution 
appears on the first future time slot, as it is the most volatile auction slot in our data set. 

4 Conclusion and Future Work 

In this paper, we proposed data-driven approaches to create a forecasting model. Vari-
ous reinforcement learning tasks were deployed to create an adaptable and transferable 
trading mechanism which can be used in similar markets. Secondly, weather reports 
and forecasts were taken into account to reduce prediction errors. Results show that 
there is a strong correlation between weather and electricity prices (in Germany), which 
often drives wholesale market prices to extreme points. Using the method in the paper, 
price-driven error has been slightly reduced. 

Since this is an on-going research, following tasks stand as a future work: 

─ Uncertainty analysis is needed to have a better understanding of the parameters (e.g., 
load, supply, reserves, congestion, etc.), influencing the market prices. These param-
eters may interfere the effects of each other on the market price. 

─ Strategic bidding has been shortly introduced in the paper. However, the energy 
amount to be procured needs to be focused deeply. A number of machine learning 



methods will be used to identify economic environments and future trends, using 
distributed energy storage customers for the trading flexibility.  

In this work, we introduce our price forecasting approaches, used in our broker agent. 
The controlled experiments show that the proposed forecasting model successfully sup-
ports our strategic bidding, outperforming many of other broker agents in terms of low 
cost and low imbalance. Besides, the contribution of weather reports is also introduced 
in the paper, which reduces the error rate. The latter is planned to be used in Power 
TAC 2016 Finals.  
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