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Abstract. Energy transition policies, including Energiewende in Germany, plan
to replace conventional power plants with renewable energy resouacés to
advances on solar and wind technologies. However, shifting fronentional
production to highly volatile renewable energy production will gp@nnumber

of challenges as well. One of those challenges is price forecastingacy in
renewable energy driven markets. Intermediary power actors, e.g., retaflers, su
fer from that problem at most, due to their load-balancing role (financigtys

work presents a number of electricity price forecasting approacheajrasido
refine the forecasting error, using additional drivers such as wesikervation
data. The proposed bidding approaches have been tested limokar agent
which competes in Power Trading Agent Competition (Power TAC). tailde
our model firsty makes price predictions out of historical market clearing prices
using a hybrid model. This model alters a seasonal regression loyadelacing

the aged terms with a belief function. Then, those predicted prieesassessed

by means of correlating the weather observations and market cleaces fhe
price-driven methods were tested in the Power TAC simulation framework
whereas the others use real-world data. Results show that weather daia-can
cessfully reduce the forecasting error up to a certain degree. Aftdreafiaper
aims to create generic data-driven forecasting models which camplogetein
autonomous trading agents.

Keywords: autonomous agentslectricity marketforecastingtrading.

1 I ntroduction

Governments have started to declare their energy transition policies in ordetd@acrea
greener energy landscape for the future electricity grid [14]. HowéwerCalifornia
crisis (2000 - 2001) showed that such intermediate power actors anesheulnera-
ble, as they have the burden of a strict financial and power managestweeb cus-
tomers and generators [13]. Nowadays, electricity price forecastingehamé more
and more vital, as the increasing renewable capacity is leading the pricatfluts.
Many research efforts have been made so far in the field of emdoggnatics and
economics. One of the most comprehensive research papers is publiig®dThe
paper reviews reinforcement learning approaches from the decisiporspgrspec-
tive in smart electricity markets. In this work, retail and wholesale tradotgems are



handled separately in a broker-centric environment. In terms of com@elécision-
support, [3] proposes predictive machine learning models for suppily-ofenage-
ment usinga TAC-SCM scenario. In this work, market regimes and future prica-distr
butions are clearly defined, using generic statistical models. Another prayposes a
Markov Decision Process (MDP) to handle wholesale market activities [4]. Bes&les th
work, many existing papers have confirmed that MDP is one of the=prways of
handling time-sequential problems [7,9]. Our most recent publicatign d&8cribes

the basic activities of our winning broker agent (AgentUbEpower TAC 2014i-

nals. Note that the methods in the experiments are driven by AgentUDE.

This paper proposes a number of electricity price forecasting methdus/éoa
closer look at the forecasting error problem in renewable driven vatelssmrketsAt
the first stage, we offer a hybrid electricity price forecasting approach, aisingber
of reinforcement learning methods and MDP, which is a modified veo$ibptDP de-
sign, introduced by [4]. We use an exponential smoothing opexiatog with a belief
function which is proposed by [12]. The exponential smoothing itsédiown as one
of the most popular and responsive forecasting methods, but als@ttsighted one.
We integrate the belief function to tune the focus of the trader agent inmeaffhere-
fore, the trader agent can easily detect short-term fluctuations as weibaeim re-
gime changes. The belief function is the model of the environmentanithuously
updated, as the market clearing prices (MCPs) are broadcasted to market participants.
As a final step, the trader agent solves the MDP at each simulation hourtéitrea
price distributions. We test and compare our model in Power Trading Sgemeti-
tion (Power TAC) which is a competitive smart grid simulation platfdrat tises real
weather reports, and competitive broker agents which are developed drgriffe-
search institutes (see Section 3). We define a quadratic loss function to bdntten
error rate of the models.

At the second stage, we use real market data and weather observatiomhsealf
world weather and MCP correlations in German electricity markets. Afterwaeds,
use that correlation to enhance MCP-driven price. To achieve that, we colleatigd hou
weather observatiord eight German cities. Market prices are hourly sampled at EPEX
Spot so that MCP changes are stored in a database, based on the time disteece bet
the order hour and the delivery hour (see Section 3’ Phen, we formalize the process
to improve MCP-driven prices. The results show that weather observat®sggnifi-
cantly improving the prediction accuracy.

The structure of the paper is organized as follows. The Power TAC scisrgivien
in Section 2. AfterwardsSection 3 details the framework model and explains all of the
proposed approaches. Finally, the paper is concluded in Section 4 witbraiew to
our future work.

2 Power TAC Scenario

Smart grid simulation platforms have become more and more populéreesdited
electricity markets and decentralized power generation challenge the volatile balance
of electricity demand and supply. Simulations aim to address these chattengeste



a vision of sustainable smart grid ecosystems. Power Trading Agenpedition
(Power TAC) is one of the most powerful and robust openes@mmart grid simulation
platforms that brings electricity brokers and smart market concepts tofzitigrFig.

1 depicts the high-level structure of Power TAC.
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Fig. 1. High-level structure of Power TAC scenario.

The platform integrates various smart grid actors such as customelsiredetail
market a wholesale market, a distribution utility, and autonomous electricityelsok
within a single distribution area, currently a city. The main actors wiRbimer TAC
are now described in more detail:

— Electricity brokersare business entities that trade as intermediaries to attain good
results for their own accounts. They try to attract customers by piniglistectricity
tariffs in the retail market, i.e. tariff market. The so-called distributionytliasely
monitors all brokers in order to evaluate their demand and supplyibeHawal-
anced energy is subject to penalties, which may result in a profit ktss #pprox-
imately twice as high as the mean wholesale market price. Therefore sbinaker
to trade in the wholesale market in order to cover their net demand.

— Customersare small and medium sized consumers and producers such as house-
holds, electric vehicles and small firms. They interact with the envirortmeugh
electricity tariffs. They can buy or sell electricity, subscribing to ameite tariffs
which are defined in power type, time and money domains.

— Generator companieepresent the large power generators or consumers. These ac-
tors trade in the wholesale market and manage their commitments for the rext sev
eral hours up to several weeks.

— Distribution uility operates the grid and manages the imbalances in real-tirge. It i
assumed that distribution utility owns the physical infrastructure. It chargksrb
for their net distributed energy per kwWh, known as distribution fedsd manages
imbalances and charges brokers for their imbalanced energy, called bafaacing

While Power TAC is available all year-round for all kinds of simulatidtssnter-
national competition is conducted only once a year. Research institutes anragadou



to develop and pre-test their own smart energy brokers. A Pod@tdurnament con-
sists of a collection of games, grouped in different game sizes, e.ghweith five and
seven players. Game size indicates the number of competing broker bBgadtstion

to competing teams, a built-in default broker is always included in tmega.e. it
means two brokers and the default broker compete in a three plager géter all

games have ended, profits are summed up and normalized on the basts individ-

ual game size. The broker with the highest aggregated profit is the winner
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Fig. 2. Time slotsequence diagram from brokers’ horizon.

A Power TAC game takes up to a random time slot count, startingoinerrcf. Fig.
2 for the activities in a time slot. In the paper, we refer to the currentstoteand
time distance’ to future auction hour (see Table 1 to read more about the notation).

1. Brokers receive signals at every time dlote.g. current cash balance, MCPs
(cpe) CPr41s - CPea23) @nd published tariffs by all brokers.

2. Brokers ought to submit orders to the wholesale market in order ¢arprenergy
amountE“®(MWh) at current time slat, so that its supply and demand match at
future time slot + §. For this reason, brokers need to predict future demand as ac-
curate as possibte avoid imbalance penalties.

3. At the end of a time slph broker’s cash account is updated based on the profit
Y. T, Ef — Y3* cp, sE“° whereT; is the tariff price of the net distributed enefgy
at time slott, under tariffi. The cost of supplying wholesale energy amdifft at
time slott is denoted a¥2* cp, sE“°. Imbalance penalt(}; Ef — X2* E*®) P,y is
debited from the broker’s cash account, multiplying the net imbalance with the bal-
ancing fee oP,,;, (per unit)

4. In addition to the tariff value, tariff activities like customer sign ups dndvétwals
are subject to payment due to bonus and early withdrawal paymantgdars of the
according tariffs.

5. Brokers pay distribution fee for each energy unit if market powdistsibuted o
local power is traded in the wholesale market.

6. At the end of the time slot, brokers receive information about net distriband
imbalance volumes as well as tariff transactions.



7. Customers initially subscribed to the default tariff. Once brokers jothéy evalu-
ate the existing tariffs based on their energy profile. Due to fact that “set and forget”
is a common customer behavior, an inertia fagtor (1 — 27™)I drives the moti-
vation of customers. Here,denotes the time slot after the latest subscription. For
more details, [6] includes a comprehensive explanation of the customel. mod

Apart from the models mentioned above, the simulation core plays a &pEter-
dinator role between customers, brokers and the Distribution Utility anépsoreal-
world data, such as weather forecasts.

3 Electricity Price Forecasting

In this section, we basically propose two forecasting approaches topmek@redic-
tions for future auctions. Firstly, we use historical prices to createsf prices. At this
stage, we use a number of reinforcement method to assess MCPs. Sewgeatiigr
and MCP correlation will be tackled in the second part, as an option toviengire
prediction accuracy of the first step.

Table 1. Summary of notation.

Symbol Definition
t Current time slot, i.e., order hour.
1) Time slot proximity. Time slot distance bfo the power delivery hour.
CPes MCP of the wholesale market ordered atith &.
CD¢s MCP-drivenforecasted price dtwith §.
’c‘ﬁg} MCP and weather-driven price iwith §.
®, Weather observation repatt.
D, 5 Weather contribution value to be added @py 5.

pﬁind,temp,doud Correlation coefficient of MCP and regarded weather repoii for

Table 1 defines the key parameters that are used in the paperditlonatb the
notations above, we need to explain a number of terms as well. Thédimpegimity
refers to time between order hour and delivery hour. For exampléndpialid18:00 for
the power delivery at 20:00 means that the proximity is 2.

3.1 MCP Driven Electricity Price Forecasting

In this section, we outline the design of our MCP-based forecastidglrand bench-
mark its performance, using different learning ratgdditionally, we compare our
wholesale bidding performance with other broker agents in Power Tukitbament,
using strategic prices which are built on forecasted prices



Price forecasting is one of the most established area in the time-seriesaHalys
ever, due to reasons given in the abstract and introduction of tee paprgy markets
are getting closer to a non-stationary position. Daily price spikes,lyagidnging
trends require a hybrid forecasting solution.

MCP of 10:00 AM in a Continuous Market
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Fig. 3. MCPsof 10:00 AM in Power TAC’s continuous wholesale market.
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Fig. 4. Autocorrelations and partial autocorrelation coefficients, using thel sigRag. 3. From
left to right, we firstly take the autocorrelation and partial autocorrelatitimeadignal. The sec-
ond column indicates the correlations after the first-order non-seasdagdmie. The third col-
umn shows the correlations of the signal after the first-order seasonalrdiéfere

Fig 4. lllustrates a price signal from a Power TAC game. As seen, tied Egsta-
tionary and seasonal. Therefore, we can pick a simple seasonal ausivegirgs-
grated moving average (SARIMA) model, analyzing the autocorrelatiopaatidl au-
tocorrelation coefficients in Fig. 3. As noticed, there is a strong seayatdiy 24 as
well as a non-seasonal spike at lag 1. For simplicity, we ignore the mo@ragas
and takeSARIMA(1,0,0)x(0,1,0),, model to describe the forecasting problem. There-
fore, the formula can be rewritten as:

Verr = (Ve = Yeea) + Yeps 1)



WhereY,,, is the prediction of the next time slot at current time slohereay
values denote historical prices. The problem in the formula is the age of egras-r
sion terms such a_,; andY;_,,. Motivating from the strong correlation in partial
autocorrelation of seasonal difference, we replace those aged regressionitarens w
robust model, using dynamic programming technique so thabmaesting model can
avoid price spikes caused by outlier historical prices.

Our forecasting model uses a dynamic programming technique teniapt the
similar-hour conceptl?] in order to make predictions in continuous electricity mar-
kets. The similar-hour concept is based on searching the past dataufemwith char-
acteristics similar to the predicted hour. Generally speattiegrader agent has almost
same MCPs everyday while bidding at 02:00 for the next 24 houoshér words, the
agent takes similar historical market prices into account, while submiitiag03:00,
04:00, ..., 02:00 (next day). We use a belief function as the model of the environment.
The belief function is updated continuously as the MCPs are broadcabte#tdos.

We formalize the sequential bidding problem as an Mbienally described by [7]
Each hour of day (24) is represented by another Markov Rrdteseans that at each
time slot, there are 24 concurrent bidding processes. Each proc@&sdtates. One of
those states is terminal stgt@mpleted}. The rest of the states denote the time slot
proximity between order hour and delivery hour. gt be the process of delivery hour
14:00. TherP, is in the state 6 and 1 at the order hours 08:00 and 13:00, treslyec
Our MDP is defined as follows:

- States: S € {1, ...,24,completed}
— Terminal state: {completed}

- Reward: R(s',a) ={1’ s’ = {completed}

0 : otherwise
— Actions. a; € Z
— Transitions: States transitions tdcompleted’, if a bid fully clears. Otherwise, it
transitions tos — 1.

Here, action values are limit prices, provided by a value funé&ti¢n). The value
function basically maximizes the sum of expected sum of rewardsthanoretically
replaces the terr{¥;_,; — Y;_,4), given in Formula 1. The model of the environment
is represented by a belief functigis, a), which is a modified versionf@ work by
[12] and influenced by Q-learning concept [8]. However, Tesauro kbegsobability
of a given price by harvesting historical data. In our case, we onfytkeaveights of
changes of two sequential MCP’s as the problem defined in Formula 1. Therefore, the
belief functionf (s, a) points to weights of € ¢,, given a state, where higher values
mean higher probability of reward occurrence wiggres the set of actionga € Z | —
500 < a < 500}. Since our reward function is a kind of counting proce&sare in-
terested in the reward occurrence in the belief function. The action with higbeat p
bility ought to result in transition tficompleted}.

As time proceeds tb+ 1, the belief functiong (s, a) is updated fova € &,, as
MCPs broadcasted to brokers. In brMfCP’s are supervising and reforming the belief
function based on the market results. Therefore, the agent does not nedd teaan



and update its model. Following formula updates the belief functiong asi@arning
ratea and a reward functioMNote that only MCP’s are positively rewarded whereas
other actions are rewarded with a zero value (Formula 3). Thisimvayn, provides a
normalization process on the action-state vector

fer1(Sear) = fe(sp,ar) * @+ R(seyq,a0) x (1 —a) 2

o = {’completed’: MCP = q, 3)
t+1 7 s, — 1 : otherwise

Where (1) and (2) are subjectle< a < 1.

To solve MDP, we use value iteration method to find the expected fstawards.
The value functiorV * (s) takes a probability density function (pdf){a) whereu and
o parameters of the normal distribution are obtained from the valy&s,af), given
a states for Va € Z. Following value functionl/*(s) solves our MDP and creatas
bid value, using an exponential smoothing operator. Here, the extj@brsemoothing
operator refers to the non-seasonal auto regression term in Formula 1.

. cp'sis =24
Vi(s) = cp's41 + arg max F,(s) : otherwise (4)
a

Where exponential smoothing operator is definedpas= cp, (8) + cp’ (1 — )

and subject t® < § < 1. Since there is no seasonal difference available atsstaee
only use an exponential smoothing value.

Algorithm 1 Non-strategic electricity price forecasting

1. Needed Energy [1, 2, ..., 24] = computeNeededEnergy()
2 Updatef(s,a) andcp’ <« auctionResults()

3 For state sin[1,2, ..., 24] do

4 if s = 24 then

5 Limit prices [24] =cp’,

6. if s < 24 then

7 Limit prices [1, 2, ..., 23] = cp’,,, +arg max F;(a)
8.

Submit bids [1, 2, ..., 24] < Limit prices

The algorithm above summarizes the process. The trader agent collects mata fro
the auction results and update its knowledge. Then, it creates 24 predictiorg thelvin
model on hand. As the time proceeds, belief function updates itselfalQthe system
updates itself with reinforcements and combine the benefits of shortated long-
term methods. The reason of using two heterogeneous methods tigtilatapt and
optimize the trader agent against changing market conditions with little data.



311 Experimental Setup and Results

In the experiments, we use our broker agent AgentU)E)] to benchmark our model
(cf., Table 2 for the broker settings). For more details, see the publiedgtich de-
scribes the algorithms used in AgentUDE.

We arranged a tournament to create different game variations, and picked-well
spected and competitive brokers of the recent years: cwiBroker15, Gedgmht15,
Maxonl5 and TacTex14[45,1517]. The suffixes, at the end of broker names indicate
the year of releas®ue to the number of available brokers, all the games are defined
as 3-player to diverse the trading environment. Since we use AgentUDE1ltesis a
bed applicationit is included in all games. Therefore, 3-player game actually means
that AgentUDHES5 competes with two other brokers as well as a default-bréder
brokers have the same chance of competing with Agenil3DEhe requirements
above make 6 game combinations possible. We multiplied the number f ggtweo
and set 12 games in total. We used 1.3.0-Snapshot version of the P& environ-
ment and the relevant output was processed in Matlab 2015b.

AgentUDEL15 starts a game without offline data, i.e. belief matrix. The beliefkmatr
is filled along the game. We set a symbolic energy procurement amsint MWh
to make it price taker. The broker has no activity in retail and balancing market.

An absolute error loss function L measures the accuracy of the predictions:

- CP)Z
cp

L@ = ( 5)

Here, the lost function converges to zero, as the output and estimated price get close
to each other. Since it is a quadratic function, error values are alwsitisgoand the
higher error values mean the less prediction accuracy.

. Average Traded Volumes by Proximity
T T

Time Proximity

Fig. 5. Average trading volume by time slot proximity
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Fig. 6. Error rates of forecasting model, given learning rate8.2, a=0.4, ¢=0.6 and 0=0.8. The
higher a values mean more conservative behavior (far-sighted).

Fig. 6 summarizes the simulation results from a graphical perspective. Qugnpar
different learning rates, the model seems to be successful at far-sightedTinisd
output meets the expectation, found in the figure of partial auto corretdtseasonal
difference (see Fig. 4). Therefore, the historical price signal seems panti#dibnary.
However, the proposed method can also be used in non-statioagdegtsndue to ex-
ponential smoothing terms in it.

Table 2. Average and weighted errors.

a=02 oa=04 oa=06 a=08
Average Loss 0.0274 0.0210 0.0089 0.0039
Weighted L oss 0.0169 0.0130 0.0061 0.0029

Table 2 summarizes the overall performance by learning rate. Here, average loss
refers to arithmetic mean of all time slot proximities, whereas weighted less us
weighted arithmetic mean, considering trading volumes (see Fig. 5).dretactual
market price be 0.0029 and 25 EUR, respectively. Then 26.34 EUR and ERIB6
would be the upper and lower boundaries of the forecasting model.

312 Strategic Bidding and Results

Forecasted prices usually known as truthful information. However, firesiéctions
are not directly submitted to markets by brokérsorder to make the model compara-
ble, forecasted prices must be transforiméal strategic prices.

Forecasted prices constitute 24 price distributions whgyge. andoy,,,,- are mean
and standard deviation of an hoW'e finalize the transformation in two steps:

— Strategic price$l, 2, ..., 24] = [balancingPrice, ..., (Ut 424 — Ort24)]
— Strategic price$l, 2, ..., 24] *= [1 4 Dey1.6=1) -1 + Des2a,6=24]

Where probability op, s is defined as:



chearingProximity= proximity trading volume
t

Y. trading volume,

(6)

Pts =

In the first step of the transformation, we assign prices to enabled austantisg
from the first standard deviation before the mean up to the balancing grecbalBnc-
ing price is a dynamic variable which is recalculated at every time slot, basbhé
balancing market reports. Higher proximities are likely to get lower pricelse Isetc-
ond step, we take trading volume into the account. To do that, weista@ichl trading
volumes, tracking the same bidding proximities. Higher volume probakbikitsins
higher strategic price for the given proximity.

We repeated the tournament with the same settings as the previous erperhis
time, AgentUDE15 is fully functional on the Power TAC markets, and dslstnategic
prices instead of forecasted prices. The procurement amount is determinet #aroug
demand prediction process, which is out of the scope in the paper.

Table 3. Average and weighted errors

Avg. Bidding Cost  Weighted Bidding Cost Avg. Imbalance per TS

Broker (EUR) (EUR) (kWh)
AgentUDE15 61.04 52.95 460
CrocodileAgentl5  70.32 67.65 -170
cwiBrokerl5 55.55 52.93 -1738
Maxon15 45,93 43.80 -3460
TacTex15 54.06 54.29 -473

Table 3 summarizes the bidding performances. The weighted bidding ¢tbe re-
alistic indicator which takes clearing volume into account. AgentUDE15 perfamms
a decent level, having a positive average imbalance per time slot. Besides, there are two
extreme bidding schemes in the table: CrocodileAgentl5 and Maxonl5 fallgers-
erous and stingy bidding policies, respectively. However, those policies evengdally
sult in either high or low imbalance activity. Therefore, brokershaan their pro-
curements considering the balance of cost and imbalance penalties.

3.2  Weather-aided Forecasting

Wholesale energy prices have become correlated with weather conditionsims the
stalled capacity of renewable energy production increases. Germany is a typical exam
ple of this phenomenon, time to time selling power to its neighbormsgatine prices
when it is an extreme windy or sunny day. In this paetfiwd a correlation between
prices and weather conditions.

Due to a number of reasons, weather conditions have different correlagfiz
cients for different time slot proximities. To consider that, we calculate thelations
for each proximity, using the formula below:



/ P16 {:pis w
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pgindltemplcloud = corr 2+6 ’ sz (7)
Puss/ \cpd /

cov(a,b)
0a0p

Wherecorr(a, b) = , Which is known as Pearson product-moment correla-

tion coefficient Here, weather observations are mapped to the relevant time slot prox-
imity, as weather forecast data is not available for the experimentaFdate corre-
lation of the cloud cover, the formula skips evening hours as the sunshimgs at
certain hours. Therefore, correlation coefficient of the cloud cover takeshonhg
between 6:00 and 18:00. This way provides a clear result due toditigcanrelated
hours from the correlation vector. Following figure illustrates theetation coefficient

of wind, temperature and cloud cover at a glance.

Correlation of Wind by Proximity Correlation of Cloud Cover by Proximity Correlation of Temperature by Proximity

Correlation Coefficient
Correlation Coefficient
Correlation Coefficient

Proximity Proximity Proximity

Fig. 7. Correlation coefficient of wind, temperature and cloud cover by sloteproximity.
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Fig. 8. Historical correlation coefficients of weather reports and average houtkgnpaice.

Fig. 7 shows a snapshot of correlation results whereas Fig. 8 illustrat@gettage
coefficients over the timeHere, positive correlation means that price increase as the
regarded weather report value increases. Likewise, negative correlation refefs-to
verse proportion. The correlation of the temperature seems seasoliad; pesitive
value in summer and negative in winter. The cloud cover usually hasitave corre-
lation whereas the wind has a negative value.



The next question is: How to integrate those coefficients to the price-gnigdit-
tions. We calculate a contribution parametey s atorder time slot to bid for a future
time slot with proximitys, in order to calculate the value, to be added on forecasted
price.

wind|temp|cloud _ (, ’ —
cbtﬁ =\ Pus — (P(t_24)+5 pwind|temp|cloudcpt+5 (8)

Where'p denotes normalized weather observation, which is subjéckty < 1.
Likewise,cp is a predicted value, for the given future time slot. Contribugimount,
®, s can be positive or negative. Note thafiy*? is set to zero, in case-§ is an

evening hour. After all, predicted pricgs, s is derived by adding contribution amount
®, 5 to the cp-driven prediction:

—_—D
CPrys = CDes + D5

(9)

321 Experimental Setup and Results

Weather correlation approach was tested using real-world data. Marketdatawvly
sampled from the EPEX Intraday Continuous Market (DE/ATg range of time slot
proximity is1 < § < 24, which means that we start sampling data, 24 hours prior to
the delivery hour. We keep sampling the prices until the gap betweemtctime and
delivery time closes. We have 24 concurrent sampling process foexh@s hours.
Thus, our database constitutes a price history for individual auctias, ltmiailing

how the price changes as delivery time approaches. Hourly weasevations were
fetched through METAR systems, which are installed at airports. Observation
locations are chosen as Dusseldorf, Hamburg, Berlin, Munich, Stutkjankfurt,
Hannover and Dresden so that observations are weighted equally to find axaduage

for Germany. The experimental data starts from the first day of Agtillthe end of
May 2016. The experiment only covers the wind and cloud covemiatton as the
temperature correlation is not statistically satisfactory for the given date interval.
Matlab R2015b is used to compute relevant output. For simplicity, the-gien
forecasting model was choosen as the following formula:

?t+1 =Y 23 (10

P Cp) (11)

L(cp, cp) = ( o

1 Meteorological Terminal Air Report is a weather information format thasésl by aeronautic
purposes.



We apply the similar hour approach by taking the MCP of théqueday. Formula
11 depicts the error function to measure the errors. Then, we calculatetireduc-
tion, using the formula below.

errorReduction = Lyeqtner — Lprice (12

Here, we take the difference of the errorsaasndicatior of the error reduction.
Here,Lyc. is solved by FormulalO. However, .. requires an additional term

®,,, to be added to¥,, ;. Thus,L,cqtner — Lyyrice Yi€lds the error reduction for the
given time slot and proximity.

Reduced Forecasting Error by Proximity
T T

0.1

Reduced Error

Proximity

Fig. 9. Reduced forecasting error by proximity. Forecasted price enhéaycethd and cloud
cover data.

Fig. 9 illustrates the reduced forecasting error, using the windland cover data.
As seen, forecasting error was reduced up to 0.15. The modtcsighcontribution
appears on the first future time slot, as it is the most volatile auction slot data set.

4 Conclusion and Future Work

In this paper, we proposed data-driven approaches to create a foregustaigVari-
ous reinforcement learning tasks were deployed to create an adaptable anabiansfer
trading mechanism which can be used in similar markets. Sgconelather reports
and forecasts were takentaraccount to reduce prediction erroResults show that
there is a strong correlation between weather and electricity prices (in Ggrmkiiai
often drives wholesale market prices to extreme points. Using the mettnedpager,
price-driven error has been slightly reduced.

Since this is an on-going researfdillowing tasks stand asfuture work:

— Uncertainty analysiss needed to have a better understanding of the parameters (e.g.,
load, supply, reserves, congestion, etc.), influencing the market prieese param-
eters may interfere the effects of each other on the market price.

— Strategic biddinghas been shortly introduced in the paper. However, the energy
amount to be procured needs to be focused deeply. A number loihméearning



methods will be used to identify economic environments and futenelsr using
distributed energy storage customers for the trading flexibility.

In this work, we introduce our price forecasting approaches, usedhnaker agent.
The controlled experiments show that the proposed forecasting modetsfully sup-
ports our strategic bidding, outperforming many of other brokerntageterms of low
cost and low imbalance. Besides, the contribution of weather reports is alskidet
in the paper, which reduces the error rate. The latter is planned to b iRader
TAC 2016 Finals.
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