
HAL Id: hal-01678448
https://inria.hal.science/hal-01678448

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

RemindMe: Plugging a Reminder Manager into Email
for Enhancing Workplace Responsiveness

Casey Dugan, Aabhas Sharma, Michael Muller, Di Lu, Michael Brenndoerfer,
Werner Geyer

To cite this version:
Casey Dugan, Aabhas Sharma, Michael Muller, Di Lu, Michael Brenndoerfer, et al.. RemindMe: Plug-
ging a Reminder Manager into Email for Enhancing Workplace Responsiveness. 16th IFIP Conference
on Human-Computer Interaction (INTERACT), Sep 2017, Bombay, India. pp.392-401, �10.1007/978-
3-319-67684-5_24�. �hal-01678448�

https://inria.hal.science/hal-01678448
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

RemindMe: Plugging a Reminder Manager into Email

for Enhancing Workplace Responsiveness

Casey Dugan*, Aabhas Sharma*, Michael Muller*, Di Lu**, Michael

Brenndoerfer***, Werner Geyer*

*IBM Research, Cambridge MA USA; **University of Pittsburgh PA USA;

***IBM, Rueschlikon, Switzerland
{cadugan, michael_muller, Werner.Geyer}@us.ibm.com,

Aabhas.Sharma@ibm.com, dil16@pitt.edu, BRE@zurich.ibm.com

Abstract. Reminding others to do something or bringing something to some-

one’s attention by sending reminders is common in the workplace. Our goal

was to create a system to reduce the cognitive overhead for employees to man-

age their email, specifically the incoming and outgoing requests with their col-

leagues and others. We build on prior research on social request management,

interruptions, and cognitive psychology in the design of such a system that in-

cludes an email reminder creation algorithm, with a built-in learning mecha-

nism for improving such reminders over time, and a reminder delivery user in-

terface. The system is delivered to users through a browser plugin, allowing it

to be built on top of an existing web-based email system within an enterprise.

Keywords. reminders • email • request management • browser plugin

1 Introduction

Email is used for many purposes [13, 30] and the burden of managing it is a core part

of the work environment [8, 13, 20, 44]. This is particularly true as many use email

for task management [4, 5, 14, 20, 34, 40]. In this paper, we consider tasks represent-

ed in incoming and outgoing requests in email in the work place. While such requests

can occur in many kinds of channels (real-time messaging, social collaboration plat-

forms etc.), recent research has shown that email is still the predominant channel for

requests in the workplace [34]. We have observed that a common strategy in manag-

ing requests in the workplace involves reminding others to do something or bringing

something to someone’s attention by sending reminders. However, this involves sig-

nificant cognitive overhead for employees: I asked Bob for that file a couple of days

ago, is it too soon to remind him to send it? As such, we sought to create a system that

proactively reminds users of such request-based emails that require their attention –

before their colleagues need to.

A significant challenge in attempting to build such a system is that the very act

of reminding users could distract them from their tasks at hand. Most studies of re-

minding have involved the unsolicited presentation of a message -- i.e., an "interrup-

mailto:Werner.Geyer%7D@us.ibm.com
mailto:Aabhas.Sharma@ibm.com

tive notification" [36]. In workplaces, notifications interrupt on-going work, and are

therefore stressful [33] and can result in negative emotional experiences of work [22,

36]. While researchers have studied the impact of interruptions [7] and recovery from

interruptions [37] as a matter of cognitive load and task boundaries [22], there is also

evidence that people prioritize interruptions in terms of content and social relation-

ships [16]. Despite the emotional and cognitive costs, users in organizations continue

to prefer to receive interruptions, because those notifications provide awareness of

others' work and needs [23].

 In our work, we adopt an unobtrusive way of notifying users. Instead of in-

terrupting the user's on-going work, we provide a slowly-changing, ambient series of

non-interruptive notifications. These are presented in a dedicated region, directly

within the context of a user’s mail client. This allows the user to be aware of such

pending tasks, while being in control of the decision of whether the interruption is

important enough to act upon right now.

Another significant challenge in creating such a system is determining which

emails a user should be reminded about. While it is relatively easy to classify emails

into binary categories such as spam-vs.-ham [15], or single dimensions such as senti-

ment [6], the automated analysis of emails to determine which contain requests, or

actions a receiver must take, has proven more challenging. Some researchers have

explored classifying emails and email-like messages into categories [17]. Early work

analyzed rule-based classification of messages similar to emails [31]. Increasingly,

researchers are using machine-learning methods to classify emails in general (e.g., [1,

15], for activities [12], for meeting requests [26], and for specific purposes such as

prioritization [45]. The most relevant work in this area is predicting the likelihood of a

user responding to a given email [11], or the end of a conversation [29]. While such

work discusses how a reply prediction algorithm could be used to make users aware

of emails they need to reply to (such as through annotating received emails), they stop

short of proposing a reminder system. We believe this comes back to balancing the

required reply behavior (as opposed to expected) against the cost of the interruption.

For example, just because I typically reply with “Thanks” when a colleague fulfills

my requests, the system likely shouldn’t remind me to do so a week later if I forgot.

To address these challenges, we report on a system architecture for Remind-

Me, which supports identifying, presenting and acting on reminders from within com-

plex email interfaces, as part of a longer-term goal of providing automated support to

help users manage their requests and reminders. Our envisioned systems would be

similar in spirit to the opportunistic agents of Dey and Abowd [10] and Myers and

Yorke-Smith [35], but would focus on social reminders among collaborating col-

leagues. This paper constitutes a first step, which solves the problem of managing

social reminders. It takes a novel approach in delivering such reminders to users, bal-

ancing interruption and awareness. It builds on prior machine learning work in deter-

mining which emails likely require responses. And it incorporates mechanisms to

gather user feedback, necessary for the algorithm to be able to learn the user’s prefer-

ences towards the nature of requests that they would like to be reminded about and

better identify when to remind users about such requests.

2 Context, Challenges, and Technical Approach

Enterprise users face challenges with email overload [29, 44] and social request man-

agement [34], and are most likely to need proactive reminding capabilities. To help

them, we designed and built RemindMe within the context of IBM.

In evaluating how to build the reminder system, context, pluggability and

generalizability were taken into account. Reminding users within the context of a mail

application was important to ensure they were currently focused on their regular email

activity and minimize the interruptions of reminders [26]. Pluggability focused on the

ability to extend an existing IBM email tool, rather than building a new one. General-

izability related to building the tool in a way to allow for testing with users from other

organizations with minimal development costs.

To support reminding within an existing mail application context, we de-

signed our solution to extend IBM’s popular web-based email client, through the use

of a browser plugin. As Firefox was the most popular browser used to access the mail

platform within IBM, we first focused on a Firefox plugin.

The plugin format also helped with the generalizability of the solution. We

could give selected users the plugin to install for testing purposes, who could uninstall

it if they chose to. We also gained significant control over modifying the existing mail

interface, and the ability to modify the plugin to support different web-based email

systems supporting generalizability. The downsides of this approach are that our sys-

tem couldn’t automatically be rolled out to all IBM users simultaneously (since it

requires installation), we support only Firefox browser users, and we are only able to

collect data and remind users while they use the mail site within their browser.

While the Browser Plugin focuses on the interface and limited, light-weight

analysis, a server component is required to conduct more computationally intense

analysis including storage and processing of a user’s email, request identification, and

reminder creation, storage, and feedback.

 As shown in Figure 1, the ReminderMe system consists of three overall

modules. The first module is responsible for generation of Reminders. The email

synchronization is responsible for collecting the user’s emails and is the only part of

Figure 1. Flowchart depicting interactions of the different system components

this module that operates within the plugin. The mail data collected is then analyzed

on the RemindMe server, which also generates the reminders.

The second module is responsible for delivering the system-generated remind-

ers to the user; it operates entirely within the plugin. Finally, the third module is re-

sponsible for obtaining feedback from the user, analyzing the information and provid-

ing this to the Reminder creation module in the form of feedback learning. This mod-

ule is divided across both the RemindMe plugin and back-end server.

3 Creating Reminders

3.1 Email Synchronization

As part of the reminder creation process, email data must first be collected from the

underlying enterprise mail system and sent to the RemindMe server for storage and

processing (Figure 1). When the user authenticates via the email service’s web inter-

face, the browser activates the RemindMe plugin. The plugin then continuously que-

ries the same mail retrieval REST APIs used to populate the mail interface and sends

the results to the RemindMe server for synchronization. Polled emails include both

incoming and sent emails. We periodically re-poll to check for changes such as de-

letes and changes to state (such as unread/read).

3.2 Data Cleaning and Storage

Emails arriving at the server are stripped of HTML and rich text, reply histories (in

the case of replies to threads), and email signatures. New line whitespace is preserved,

resulting in an optimized line-based representation of the textual content (both subject

and body) of the emails. The procedure is similar to [9].

3.3 Request Identification

Within the RemindMe system, we chose to focus on reminding users about emails

containing requests, rather than focusing on other features related to reply prediction

[11]. To identify such requests within email messages, we use a third-party “action

identification” API from Watson Workservices, found at https://api.watsonwork.ibm

.com. This is a machine-learning classifier that analyzes provided text and returns a

set of identified requests, questions etc. (such as “please send the file”), the position in

the text where these were found, confidence scores etc. We run this identification on

each textual content line from the body of an email, as well as the subject.

3.4 Conversation Analytics, User-Reply-History Analysis

In addition to the storage of individual emails, we also store a representation of over-

all conversation threads, which tracks which emails are replies to other emails (e.g.,

[24, 41]). For each RemindMe user we also calculate statistics on their reply patterns

with other users, similar to [29]. These statistics include how often they receive

emails from another user and reply to those emails, as well as how long it takes them

to reply to those emails on average.

3.5 Reminder Creation

Users are frequently overwhelmed with the volume of work items to manage [3, 43],

email in general [29, 44], and email-requests in particular [28, 34]. However, users

are reluctant to do extra work to mark emails as needing reminders [4]. Therefore, in

RemindMe, we try to automatically determine whether a user is likely to need a re-

minder about a given email in the future. To do so, the results of the Request Identifi-

cation analysis described above are used to determine the likelihood that a given mes-

sage contains a request (based on the subject or body of the email including questions,

requests, etc., with a probability score above a certain threshold, see [11] for a related

approach). However, in practice, request identification alone is not sufficient, because

certain emails users are unlikely to reply to were found to have correctly identified

requests, such as spam emails asking “Have you checked your credit score?” There-

fore, we also analyze the reply-statistics for a given user to determine how likely they

are to reply to this particular user. If they have received many emails, but replied to

none, a reminder is not created. In addition to automatically generating reminders,

reminders are also created for emails a user has manually flagged as requiring follow-

up. However, as only 5% of IBM users actively use this feature of the underlying mail

system (see also [4]), most reminders are automatically determined.

For each reminder created, we need to determine when it should be shown. As

an initial approximation of this, we again make use of the reply history between user

dyads – i.e., a sending and receiving user (see also [29]), to determine the average

reply time for the message receiver. If a reply to this message is not processed by the

system by the time this period has elapsed, a reminder about the message is activated

for the user (Figure 1). This works in both directions, for requests a user has sent to

others where replies have not been received as well as requests sent to the user.

Finally, for each reminder, we need to determine what information from the

original email should be included as part of the reminder message. To do so, we draw

upon the significant body of research in the field of cognitive psychology that studied

the effect of providing reminders on the performance of prospective memory (or a

person’s capability to remember to do an activity in the future) since the 1990s.

Guynn et al. [18] found that the most effective reminders referred both to the infor-

mation about the trigger event of the task and to the intended activity. More recently,

Baldwin [2] showed that text-only reminders had a limited period of impact, which

could be extended by including a picture implying the task. As such, for each remind-

er, in addition to storing a reference to the original request email and when the re-

minder should be activated, we store a “trigger event” description (i.e. “Bob made a

request to you in an email with subject ‘Customer Briefing’ on May 1st”), “intended

activity” text determined from an identified request within the email with the highest

confidence score (i.e. “Send the file”), as well as a photo of the related person (i.e. the

sender if the user is the recipient of the request).

4 Delivering Reminders

While most prior reminder systems have operated through intrusive alerts [26], a key

design consideration for RemindMe was to deliver reminders in a fashion that grabs

the user’s attention, but not enough to distract them from their other email activity,

allowing users to make their own decisions about potential interruptions. The inter-

face attempts to strike this balance by creating a dedicated visual ‘reminder area,’

which is injected by the browser plugin directly above the email viewing space, as

shown in Figure 2. This area presents the user with exactly one reminder at a time, to

prevent reminder overload. Reminders determined by the server to be currently active

then appear in this area and the plugin continuously polls the server for newly activat-

ed reminders.

The interface automatically transitions from the current reminder to the next

active reminder after a set time, to provide ambient awareness, avoiding additional

notification overload. However, this automated transition between active reminders

can be personalized through user settings (a popup accessed through the Settings icon

shown on the right of Figure 2A). The user can toggle between automatic scrolling

vs. manual scrolling. Additionally, the user can manually transition from the currently

shown reminder to other active reminders by using two on-screen arrow keys.

The dedicated visual reminder area begins in a “minimized” state, or the area

shown in Figure 2A, which includes only the “trigger event” description and photo of

the user associated with the reminder, as described in Section 3.5. This is done to

minimize the area used by the reminder, which takes away space devoted to reading

messages within the mail interface. However, if the user chooses to see more infor-

mation about the current reminder or interact with it in some way, s/he can click on it

to expand the reminder space, to include the area shown in Figure 2B. The maximized

view of the reminder display region includes the “intended activity” text described

above as well as options for facilitating replies and providing other feedback on the

Figure 2. RemindMe browser plugin injects interface components into existing mail appli-

cation, including: A. Minimal active reminder view. B. Maximized view. C. Contextual

reminder information for a selected email. D. Reminder annotations on list views

reminder. The user has the option of viewing the entire conversation thread related

through a “See Conversation” button. A “Reply” button also enables the user to write

their response to original reminder-triggering email directly from the RemindMe

plugin interface. Choosing either of these options causes the relevant content to open

up in a new tab rather than disturbing the current state of the email interface.

5 Reminder Feedback & Learning Mechanisms

As reminder creation in RemindMe involves various aspects of machine learning

(learning user reply behaviors, request identification etc.), we have designed the sys-

tem to collect, store, and learn from both implicit and explicit user feedback on these

reminders (Figure 1). Three of the four user interface regions highlighted in Figure 2

include feedback mechanisms for the identification of emails requiring reminders as

well as the selection of the appropriate time to present a reminder.

 The maximized area shown in Figure 2B addresses currently active remind-

ers. Here, the user can give feedback on both the validity as well as the timing of the

reminder. For example, clicking the “Reply” button in this area informs the Remind-

Me server a request was completed, which deactivates the reminder and removes it

from this area. While both the “Done” and “Remove” buttons trigger the removal of

the current reminder, they provide different feedback. With the “Done” option, the

user provides feedback that the identified request was valid, they have simply already

completed it. This feedback tells the system that more work may be necessary to au-

tomatically identify completion of requests like these in the future. The “Remove”

button, in contrast, provides feedback to the RemindMe server that the current re-

minder was misidentified. This feedback can be used to tune a personalized machine

learning classifier of messages that should be treated as reminders for this user.

 The final functionality of Figure 2B is a set of “snooze” options that allow

the user to simultaneously give feedback to the system that this was a valid reminder

given at the wrong time, while also enabling the user to reschedule it for a better time.

The interface provides four options to snooze a currently active reminder: fixed dura-

tions of thirty minutes, two hours and one day, and a user-adjustable interval.

 The areas shown in Figure 2D and 2C present alternate methods of making

users aware of emails which are likely to trigger reminders in the future. The area in

Figure 2D presents annotations in the inbox while the area in Figure 2C presents addi-

tional reminder details about the currently viewed email. As shown in Figure 2D, in

the email list, the plugin adds a small annotation next to messages that are classified

as future reminders. The annotation contains the estimated time within which the

reminder will activate. This indication allows the user to identify and view an email of

interest in a more direct fashion as well as gain early awareness of future reminding

activity. As shown in Figure 2C, when a given email is displayed, an added reminder

bar affords the user the ability to view, modify and give feedback on whether the

respective reminder is active, scheduled for the future, or does not exist. If the current

email is not marked as a reminder, the user can manually schedule a future reminder

for it, which acts as feedback to the system of a potentially missed request. Should the

current email be marked as an upcoming reminder, the user can view the estimated

time within which this email would enter the user interface as an active reminder and

manually modify that activation time if necessary. Again, by doing so, the user in-

forms the RemindMe server of a more suitable time to present the relevant reminder.

This feedback can serve as ground truth to tune a different machine-learning algo-

rithm that is focused on personalized time intervals.

6 Conclusion

We designed and built a novel proactive reminder system that helps enterprise users

cope with work requests buried in email. Our work is informed through previous re-

search [3, 4, 5, 11, 14, 19, 20, 26, 28, 30, 31, 42, 43, 44] and, to the best of our

knowledge, describes the first system design that combines various components and

algorithms together into an integrated system that tackles “email overload” [44] from

a reminder perspective, while balancing between intrusive notifications [26] and am-

bient information. We presented an architecture that allowed the system to be inte-

grated into an existing web-based mail application through the use of a browser

plugin. The interface design was informed by prior research on social request man-

agement and interruptions, as well as work in the area of cognitive psychology on the

effect of types of reminder information on prospective memory [18, 21].

 While our system incorporates prior research and functions as an end-to-end

request management tool, there is room for improvement in future work. The system

currently uses a simplistic model of request “fulfillment” - it assumes a reply to a

given email negates the need for a reminder. However, we understand that in practice

the process may be much more complex (i.e. a user replies that they will send a file at

a later date, rather than sending the file). As such, we plan to incorporate a more de-

tailed method of determining if a given reply satisfies the request from a previous

email, using a method as described in [25]. Another possible improvement to the sys-

tem could come in the form of sensing the user’s current task or task boundaries, such

as in [22,23], in choosing when to remind them about certain emails.

Early feedback collected on the system has already established a need to ex-

pand on how users can respond to email requests through the reminder interface. For

example, a feature can be added through which the system helps the user compose a

reminder message. A user also asked for a feature to delay request response delivery

until the user’s average reply time to the request sender has been reached. A detailed

user study is planned to test the personalized learning mechanisms related to reminder

identification and timing described in the Reminder Feedback section. The user study

would also uncover additional user needs and preferences in using such a system,

such as any burden of giving manual feedback on accuracy of timing and content of

reminders, and users’ privacy requirements in the automated analysis of their email.

Finally, through the current system design and through above mentioned improve-

ments, we believe such a reminder system can change how we interact with email in

the future.

7 References

1. Alberts, I. and Andre Vellino, A. The importance of context in the automatic classification

of email as records of business value: A pilot study. Proc. AIST, art. 113. (2013)

2. Baldwin, M. The effects of reminder distinctiveness and anticipatory interval on prospec-

tive memory. MS Thesis, Clemson University. (2014)

3. Barreau, D., and Nardi, B.A. Finding and reminding: File organization on the desktop.

SIGCHI Bul. 27(3), 39-43. (1995)

4. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., and Ducheneaut, N. What a to-

do: Studies of task management towards the design of a personal task list manager. Proc.

CHI 2004, 735-742. (2004)

5. Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I. Taking email to task: The design

and evaluation of a task management centered email tool. Proc.CHI 2003, 345-352. (2003)

6. Bogawar, P.S., and Bhoyar, K.K. Soft computing approaches to classification of emails for

sentiment analysis. Proc. ICIA 2016, art. 22. (2016)

7. Bogunovich, P. and Salvucci, D. The effects of time constraints on user behavior for defer-

rable interruptions. Proc. CHI 2011, 3123-3126. (2011)

8. Bota, H., Bennett, P.N., Awadallah, A.H., and Dumais, S.T. Self-Es: The role of emails-to-

self in personal information management. Proc. CHIIR 2017, 205-214. (2017)

9. Carvalho, V.R., and Cohen, W.W. Learning to Extract Signature and Reply Lines from

Email. Proc. Conf. Email Anti-Spam. (2004)

10. Dey, A.K., and Abowd, G.D. Cybreminder: A context-aware system for supporting re-

minders.Proc. HUC 2000, 172-186.

11. Drezde, M., Brooks, T., Carroll, J., Magarick, J., Blitzer, J., and Pereira, F. Intelligent

email: Reply and attachment prediction. Proc. IUI 2008, 321-324. (2008)

12. Drezde, M., Lau, T., and Kushmerick, N.. 2006. Automatically classifying emails into ac-

tivities. Proc. IUI 2006, 70-77. (2006)

13. Ducheneaut, N. and Bellotti, V.. 2001. Email as habitat. Interactions 8(5), 30-38. (2001)

14. Flores, F., Graves, M., Hartfield, B., and Winograd, T. 1988. Computer systems and the

design of organizational interaction. ACM TOIS 6(2), 153-172. (1988)

15. George, P., and Vinod, P. Machine learning approaches for filtering spam emails. Proc.

SIN 2015, 271-274. (2015)

16. Grandhi, S. Human interruptability: A relational perspective. Proc. GROUP 2007, art. 2.

(2007)

17. Grbovic, M., Halawi, G., Karnin, Z., and Maarek, Y. How many folders do you really

need? Classifying email into a handful of categories. Proc. CIKM 2014, 869-878. (2014)

18. Guynn, M.J., McDonald, M.A., and Einstein, G.O. Prospective memory: When reminders

fail. Mem. & Cog. 26(2), 287-298.

19. Gwizdka, J. Email task management styles: The cleaners and the keepers. Proc. CHI 2004,

1235-1238. (2004)

20. Gwizdka, J. Reinventing the inbox –Supporting the management of pending tasks in email.

Proc. CHI 2002, 550-551. (2002)

21. Gwizdka, J. Supporting prospective information in email. CHI EA 2001, 135-136. (2001)

22. Iqbal, S.T., and Bailey, B.P. Effects of intelligent notification management on users and

their tasks. Proc. CHI 2008, 93-102. (2008)

23. Iqbal, S.T., and Horvitz, E. Notifications and awareness: A field study of alert usage and

preferences. Proc. CSCW 2010, 27-30. (2010)

24. Joty, S., Carenini, G., Murray, G., and Ng, R.T. Exploiting conversation structure in unsu-

pervised topic segmentation for emails. Proc. EMNLP 2010, 388-398. (2010)

25. Kalia, A., Nezhad, H.R.M., Bartolini, C., and Singh, M. Identifying business tasks and

commitments from email and chat Conversations. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.643.5660&rep=rep1&type=pdf (2013)

26. Kamar, E., and Horvitz, E. Jogger: Models for context-sensitive reminding. Proc. AAMAS

2011, 1089-1090. (2011)

27. Kaptein, M. and Halteren, A.. Adaptive persuasive messaging to increase service retention:

Using persuasion profiles to increase the effectiveness of email reminders. Pers. Ubiq.

Comp. 17(6), 1173-1185. (2013)

28. Karger, D.. Creating user interfaces that entice people to manage better information. Proc

CIKM 2011, 1. (2011)

29. Kooti, F., Aiello, L.M., Grbovic, M., Lerman, K., and Mantrach, A. Evolution of conversa-

tions in the age of email overload. Proc. WWW 2015, 603-613. (2015)

30. Mackay, W.E. More than just a communication system: Diversity in the use of electronic

mail. Proc. CSCW 1998, 344-353. (1998)

31. Mackay, W.E., Malone, T.W., Crowston, K., Rao, R., Rosenblitt, D., and Card, S.K. How

do experienced information lens users use roles? Proc. CHI 1989, 211-216. (1989)

32. Mandic, M., and Kerne, A. Using intimacy, chronology, and zooming to visualize rhythms

in email experience. CHI EA 2005, 1617-1620. (2005)

33. Mark, G., Gudith, D., and Klocke, U. The cost of interrupted work: More speed and stress.

Proc. CHI 2008, 107-110. (2008)

34. Muller, M., Dugan, C., Brenndoerfer, M., Monroe, M., and Geyer, W. What did I ask you

to do, by when, and for whom? Passion and compassion in request management. Proc.

CSCW 2017, 1009-1023. (2017)

35. Myers, K. and Yorke-Smith, N. Proactive behavior of a personal assistive agent. Proc

AAMAS 2008. (2008)

36. Paul, C., and Komlodi, A. Emotion as an indicator for future interruptive notification expe-

riences. CHI EA 2012, 2003-2008. (2012)

37. Salvucci, D.D. On reconstruction of task context after interruption. Proc. CHI 2010, 89-92.

(2010)

38. Scupelli, P., Kiesler, S., Fussell, S.R., and Chen, C. 2005. Project view IM: A tool for jug-

gling mutiple projects and teams. Proc. CHI 2005, 1773-1776. (2005)

39. Singh, N., Tomitsch, M., and Maher, M.L. A time and place for preparatory methods in

email. Proc. CHINZ 2013, Art. 4. (2013)

40. Siu, N., Iverson, L., and Tang, A. Going with the flow: Email awareness and task man-

agement. Proc. CSCW 2006, 441-450. (2006)

41. Thomas, G., Zahm, M., and Furcy, D. Using a sentence compression pipeline for the

summarization of email threads in an archive. J. Comp. Sci. Coll.31(2), 72-78. (2015)

42. Venoglia, G., Dabbish, L., Cadiz, J.J., and Gupta, A. Supporting email workflow.

http://research.microsoft.com/en-us/groups/coet/01-88.pdf. (2001)

43. Whittaker, S., Jones, Q., Nardi, B., Creech, M., Terveen, L., Isaacs, E., and Hainsworth, J.

ContactMap: Organizing communication in a social desktop. ACM TOCHI 11(4), 445-471.

(2004)

44. Whitaker, S., and Sidner, C. Email overload: Exploring personal information management

of email. Proc. CHI 1996, 276-283. (1996)

45. Yoo, S., Yang, Y., and Carbonell, J. 2011. Modeling personalized email prioritization:

Classification-based and regression-based approaches. Proc. CIKM 2011, 729-738. (2011)

http://citeseerx.ist.psu.edu/viewdoc/%20download?doi=10.1.1.643.5660&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/%20download?doi=10.1.1.643.5660&rep=rep1&type=pdf
http://research.microsoft.com/en-us/groups/coet/01-88.pdf

