
HAL Id: hal-01677614
https://inria.hal.science/hal-01677614

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Microservices Identification Through Interface Analysis
Luciano Baresi, Martin Garriga, Alan De Renzis

To cite this version:
Luciano Baresi, Martin Garriga, Alan De Renzis. Microservices Identification Through Interface
Analysis. 6th European Conference on Service-Oriented and Cloud Computing (ESOCC), Sep 2017,
Oslo, Norway. pp.19-33, �10.1007/978-3-319-67262-5_2�. �hal-01677614�

https://inria.hal.science/hal-01677614
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Microservices Identification through Interface
Analysis

Luciano Baresi1, Martin Garriga1, and Alan De Renzis2

1 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Italy

{luciano.baresi,martin.garriga}@polimi.it
2 Faculty of Informatics, National University of Comahue, Argentina

alanderenzis@fi.uncoma.edu.ar

Abstract. The microservices architectural style is gaining more and
more momentum for the development of applications as suites of small,
autonomous, and conversational services, which are then easy to under-
stand, deploy and scale. One of today’s problems is finding the adequate
granularity and cohesiveness of microservices, both when starting a new
project and when thinking of transforming, evolving and scaling exist-
ing applications. To cope with these problems, the paper proposes a
solution based on the semantic similarity of foreseen/available function-
ality described through OpenAPI specifications. By leveraging a refer-
ence vocabulary, our approach identifies potential candidate microser-
vices, as fine-grained groups of cohesive operations (and associated re-
sources). We compared our approach against a state-of-the-art tool, sam-
pled microservices-based applications and decomposed a large dataset of
Web APIs. Results show that our approach is able to find suitable de-
compositions in some 80% of the cases, while providing early insights
about the right granularity and cohesiveness of obtained microservices.

Keywords: Microservices, Microservice architecture, monolith decom-
position

1 Introduction

Microservices is a novel architectural style that tries to overcome the shortcom-
ings of centralized, monolithic architectures [1,2], in which the application logic
is encapsulated in big deployable chunks. The most widely adopted definition of
a microservices architecture is “an approach for developing a single application
as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often a RESTful API” [3]. In contrast to mono-
liths, microservices foster independent deployability and scalability, and can be
developed using different technology stacks [4,5].

Although microservices can be seen as an evolution of Service-Oriented Ar-
chitectures (SOA), they are inherently different regarding sharing and reuse [6]:
given that service reuse has often been less than expected [7], instead of reusing

existing microservices for new tasks or use cases, they should be small and in-
dependent enough to allow for rapidly developing a new one that can coexist,
evolve or replace the previous one according to the business needs [1].

Several companies have recently migrated, or are considering migrating, their
existing applications to microservices [8], and new microservice-native applica-
tions are being conceived. While the adoption of this architectural style should
help one address the typical facets of a modern software system: for example,
its distribution, coordination among parts, and operation, some aspects are still
blurred [9,10]. One key issue is the definition of the right granularity level, that
is, the trade-off between size and number of microservices [1].

The problem is not new: the literature has already addressed the decomposi-
tion problem —for identifying modules, packages, components, and “traditional”
services— mainly by means of clustering techniques upon design artifacts [11] or
source code [12]. However, the boundaries between software modules settled by
these approaches were too flexible and allowed software to evolve into “big balls
of mud” [13]. Microservices make these boundaries physical, and their unique
characteristics in terms of distribution, granularity, and independent deploya-
bility, call for a new wave of techniques. Notwithstanding the existing body
of knowledge, the elicitation of strong interface boundaries at the right level
of granularity, along with proper tool support, remains an important challenge
inherited from the early times of SOA [14]. The identification of “proper” mi-
croservices not only aims to partition the system to ease maintenance [7], but
also defines how the system will be able to evolve and scale.

This paper borrows from the aforementioned experiences to introduce a novel
approach to reason on microservices starting from an initial OpenAPI specifi-
cation [15] (a language-agnostic, machine-readable interface for REST APIs) of
the operations that the application should offer. This means that either the ap-
plication, along with its interfaces, already exists and it must be re-engineered,
or some design artifacts/specifications are available.

The process starts with mapping available OpenAPI specifications onto the
entries of a reference vocabulary by means of a fitness function. In this paper,
we use Schema.org3 as reference, but any other shared vocabulary or even a
domain-specific ontology would be appropriate. The fitness function is based
on DISCO (DIStributionally related words using CO-occurrences, [16]), a pre-
computed database of collocations and distributionally similar words that allows
for computing the semantic similarity of terms according to their co-occurrences
in large corpora of text. The goal is to provide a usable, automated solution
to devise a decomposition —that is, a set of candidate microservices defined by
groups of operations and their associated resources. The idea is to pair stan-
dardized (OpenAPI) specifications with homogeneous —because of the shared
reference vocabulary— semantic characterizations. The reference vocabulary also
act as a context that allows us to address large domains, in which certain con-
cepts are used with different meanings across the system. The main properties
driving the decomposition are granularity (a tradeoff between size and number

3 http://Schema.org/docs/full.html

of microservices), loose coupling (minimising inter-service calls) and high cohe-
sion (keeping similar functionality together), while allowing the user to explore
different alternatives by tunning the procedure.

In summary, the contribution of this work is an automated process for identi-
fying candidate microservices by means of a lightweight, domain-agnostic seman-
tic analysis of the concepts in the input specification with regard to a reference
vocabulary.

The rest of this paper is organized as follows. Section 1.1 presents an example
application to illustrate our approach. Section 2 introduces the main technolo-
gies used throughout the paper. Section 3 presents our approach for identifying
microservices. Section 4 discusses the experimental validation. Section 5 surveys
related work and Section 6 concludes the paper.

1.1 Example Application: Cargo Tracking

Figure 1 shows a simplified class diagram (domain model) of Cargo Tracking4, a
well-known example application [17] used to illustrate the approach. Each class
defines a key concept and introduces a first set of attributes and operations.

The main focus of the application is to move a Cargo (identified by a Tracking-
Id) between two Locations through a RouteSpecification. Once a Cargo be-
comes available, it is associated with one of the Itineraries (lists of CarrierMove-
ments), selected from existing Voyages. HandlingEvents then trace the progress
of the Cargo on the Itinerary. The Delivery of a Cargo informs about its state,
estimated arrival time, and being on track.

Fig. 1. Domain model and expected decomposition (dotted boxes) of the Cargo Track-
ing application.

2 Background

DISCO [16] is a pre-computed database of collocations and distributionally simi-
lar words. The similarities are based on the statistical analysis of very large text

4 https://github.com/citerus/dddsample-core (Java implementation)

collections (e.g., Wikipedia), through co-occurrence functions. For each word,
DISCO indexes the first and second order vectors of related words.

The similarity between two words is then obtained by computing the sim-
ilarity —based on co-occurrences— of the corresponding vectors. The highest
the similarity value ([0, 1]) is, the closer the two words are. For example, if bread
co-occurred with bake, eat, and oven, and cake also co-occurred with these three
words, then bread and cake would be distributionally similar [16], and their
similarity value would be 1 (if the vectors only comprised the three words).

OpenAPI, formerly known as Swagger5, is a machine-readable, language-
agnostic interface for RESTful APIs. Although OpenAPI can be seen as yet
another attempt to define Web Service interfaces, it is just intended to describe
RESTful APIs, and is supported by major industry partners such as Google,
IBM, Microsoft, and PayPal. OpenAPI follows a JSON-based format6 and is
modular and extensible by means of the $ref keyword, with the goal of linking
elements to concepts in a shared schema, or even a reference vocabulary. The
elements/objects tagged with keyword $ref are then linked to a concept in a
certain schema, which can be based on high level vocabularies, such as FOAF7

or Schema.org. For example:

{"name":"Cargo",

"description": "A cargo (product) identified by its TrackingId.",

"schema": {

"$ref": "schema.org.apis.apievangelist.com/api-commons/product/

openapi-spec.json"

}}

says that Cargo is a Product, as defined in Schema.org. That is, all the attributes
defined for type Product in the reference vocabulary are then usable in this
description, and any external (automated) client can easily exploit them.

3 Our Approach

The identification process consists of matching the terms used in the OpenAPI
specifications supplied as input against a reference vocabulary to suggest pos-
sible decompositions. Note that when OpenAPI specifications are not available
beforehand, they can be automatically generated from existing interface specifi-
cations8 The terms extracted from input artifacts are iteratively mapped on the
concepts in the vocabulary by means of a fitness function based on the semantic
similarity measure provided by DISCO. The best concept mappings are obtained
through maximization of a co-occurrence matrix that contains all the possible
pairs of terms and concepts.

5 http://swagger.io
6 Developers can thus exploit OpenAPI through the same tools and libraries used for

JSON (e.g., Jackson).
7 http://xmlns.com/foaf/spec/
8 E.g., the APIMatic tool (https://apimatic.io/transformer) accepts Swagger, WSDL,

WADL and RAML among others.

Algorithm 1: Decomposition Algorithm
Data: OpenAPI specs, ref. vocabulary
Result: OpenAPI microservices’ specifications

1 mappings ← ∅ ;
2 foreach input specification do
3 map ← SemanticAssessment(specification,vocabulary);
4 mappings ← mappings + map;

5 end
6 candidateMS ← GroupSimilar(mappings,vocabulary,level);
7 microserviceSpecs ← GenerateOpenApiSpecs(candidateMS, vocabulary);
8 return microserviceSpecs

Algorithm 1 summarizes the main steps of the decomposition algorithm. It
receives a set of OpenAPI specifications and the reference vocabulary as input,
and computes the best mappings between them through the DISCO-based se-
mantic assessment algorithm (Line 3), further detailed later. This step generates
a mapping between each operation in the input and a reference concept in the
vocabulary, that is, the concept that most accurately describes the operation.
The idea is that operations that share the same reference concept are highly co-
hesive, and should be grouped together (Line 6). Parameter level9 determines
the granularity of these groupings, that is, the level of interest in the hierarchy
of concepts. For example, level=0 would only generate one candidate microser-
vice, since everything would be grouped up to the root node of the vocabulary
—Thing in Schema.org. The empirical assessment (Section 4), allowed us to set
level to 2 to achieve a good compromise between the number of microservices
and their granularity. Needless to say, the user can play with different values for
level, identify different groupings, and analyze them.

Then, the suggested decomposition (Line 6) comprises one candidate mi-
croservice per identified reference concept. Each microservice is defined through
its operations and their parameters, (public) complex types, and return values.

For example, if we started from the operations in Figure 1 for the Cargo
Tracking application, the process of Algorithm 1 would map Delivery and Hand-
ling onto DeliveryEvent (in Schema.org), and they would share the latter as
reference concept. Delivery and Handling should then be part of the same
candidate microservice, which could be named, for instance, EventTracker.

The OpenAPI specification of microservice EventTracker would then con-
tain the operations defined within Delivery and Handling, and also a reference
to the corresponding “shared” concept. The complete results for the case study
are discussed in Section 4.

Algorithm 2 details the DISCO-based semantic assessment, called at Line 3
of the decomposition algorithm (Algorithm 1). It analyzes each operation of
a specification artifact, along with the resources it defines (parameters, return
value, complex types), with respect to the concepts in the shared vocabulary.
The algorithm uses a robust term separator10 [18] to identify and split words in
the input terms (T) even when identifiers do not strictly follow any predefined

9 Its values can range from 0 to the maximum depth of the vocabulary tree, which is
5 in Schema.org.

10 https://github.com/aderenzis/IdentifiersTermSeparator

naming convention (Line 3). The term separator also filters stop words11, that is,
meaningless words such as articles, pronouns, prepositions, digits, single alphabet
characters, and possibly further domain- or context-specific words.

Then, the algorithm iteratively maps the set of input terms T onto all pos-
sible concepts C in the vocabulary by using DISCO (Line 5 to 8). For example,
let us consider term CargoTracking and concept DeliveryEvent, with the fol-
lowing similarity scores:

Cargo Tracking

Delivery 0.3 0.1
Event 0.2 0.1

At a first glance, the best mappings are (cargo, delivery) and (cargo, event)
with overall score = (0.3 + 0.2)/2 = 0.25. However, this mapping is not valid
since it would consider word Cargo twice, but it would not use Tracking, and
thus it would not be an acceptable mapping for the whole term. We must then
find a suitable set of mappings that cover all the words in t and maximize the
overall mapping score. When both t and c contain multiple words, finding the
best mapping is not trivial, since it should consider all the words in t. This is
done by applying the fitness function (Formula 1), followed by the Hungarian
algorithm [19], a classical algorithm that solves the assignment problem in O(n3).
As said, both t and c can be composed of multiple words (as CargoTracking

and DeliveryEvent). col(ti, cj) is the set of collocation scores for pairs of words
(ti, cj) ∈ (t, c), and N is the number of collocations between the different words
in t and c that conform to the mapping (e.g., if t and c contain two words, then
N = 2 since there can only be two possible valid mappings with two pairs each).
Values range from 0 to 1, given the range of DISCO similarity function and the
normalization factor N . The highest col is, the closest the two terms are. Note
that although col ranges between 0 and 1, values are in general closer to 0, since
col = 1 would mean that all the words appear together for all their occurrences in
the DISCO corpus, which is highly unlikely in practice [16]. Scores are stored in
a correlation matrix, where each column is a word in t and each row corresponds
to a word in c linked to at least an element in t. Finally, the algorithm uses the
matrix (Line 9) to identify the most adequate mappings.

score(t, c) =
∑

(col(ti, cj))/N (1)

In the end, the concept in the reference vocabulary with the highest mapping
score for a given input operation is elected as reference concept. The algorithm
then returns a list with the best mapping for each operation in the input speci-
fication.

Back to the running example, for operation CreateCargo defined in Cargo,
the concept in the vocabulary that shares the highest similarity according to
DISCO is Vehicle, where: (col(Create, V ehicle) = 0.07 + col(Cargo, V ehicle) =

11 http://www.webconfs.com/stop-words.php

0.61)/2 = 0.34. Then, given the desired grouping granularity Vehicle can also
become a Product in the vocabulary hierarchy. Since Cargo in Figure 1 only
shows one operation, it is grouped under Product as reference concept.

Algorithm 2: Semantic Assessment Algorithm
Data: OpenAPI specification, ref. vocabulary
Result: best mappings

1 bestMappings ← ∅ ;
2 foreach operation in specification do
3 termsInput ← TermSeparation(operation);
4 correlationMatrix ← [][];
5 foreach concept in vocabulary do
6 termsContext ← TermSeparation(concept);
7 correlationMatrix ← DiscoCoOcurrrences(termsIput,termsContext);

8 end
9 bestMappings ← bestMappings + hungarianMax(correlationMatrix);

10 end
11 return bestMappings

4 Evaluation

This section presents the experiments we conducted to assess and validate the
approach12.

4.1 Decomposition of the Cargo Tracking Application

We performed the decomposition of the cargo tracking application (presented
in Section 2), and compared our approach against Service Cutter [20], a state-
of-the-art tool for microservice decomposition. The dotted boxes in Figure 1
(Section 2) show the expected decomposition for the cargo tracking applica-
tion (as defined in [20]). The input to our tool is an OpenAPI specification of
the application that describes its different interfaces, operations, and resources.
Schema.org is given as reference vocabulary. Figure 3 presents the candidate
decomposition we obtained. As examples, we can take a closer look at some
mappings. For interface Voyage, its operation CreateVoyage was mapped to
the reference concept Trip, which is in turn an Intangible in Schema.org.
Analogously, operation RouteCargo of interface Leg is also mapped to the ref-
erence concept Trip. Thus, these two operations will be grouped together in
the candidate microservice PlanningService, along with all the other opera-
tions mapped to Trip or other Intangibles. In turn, the remaining operation
in Voyage is HandleCargoEvent, which is mapped to reference concept Event.
This operation will be grouped under another candidate microservice named
EventTracker, with the other operations also mapped to Event (or other con-
cepts under Event in Schema.org), such as ViewCargos (from Delivery) and
ViewTrackings (from HandlingEvent).

The input to Service Cutter is a set of specification artifacts, and a set of
weighted coupling criteria, and the output is a graph where nodes represent
candidate microservices, and weighted arcs indicate how cohesive and/or coupled

12 Both the experimental prototype of the decomposition tool and the datasets used
are available here: https://github.com/mgarriga/decomposer.

two candidates are. Finally, a clustering algorithm provides the most suitable
service cuts. Figure 2 depicts the best decomposition provided by Service Cutter,
after manually prioritizing and fine-tuning the weights of coupling criteria to
reflect the requirements of the application.

Fig. 2. Obtained decomposition with Service Cutter [20]

Fig. 3. Obtained decomposition with our approach

Our microservice decomposition process generated different candidate mi-
croservices than those obtained with Service Cutter. No approach returned the
“expected” service decomposition, although it was defined manually in [20].
Thus, one can argue whether the expected decomposition is optimal, since it

may be subjective, and biased by certain design decisions. From a comparative
perspective, the main difference is service Voyage\&Planning (Fig. 2) which in
Service Cutter’s decomposition encapsulates seven input artifacts, nine opera-
tions and two different business aspects. In contrast, our solution decomposes it
in three different microservices (Fig. 3): Trip, Planning and EventTracking, all
with a similar and finer granularity (three, four and five operations respectively).
The only candidate microservice that could be too fine-grained is Cargo, which
only encapsulates one operation.

From a comparative perspective, our approach requires as input the reference
vocabulary and the OpenAPI descriptions of the interfaces (which can be auto-
matically generated from other descriptions). In turn, Service Cutter requires a
detailed and exhaustive specification of the system, together with ad-hoc spec-
ification artifacts associated with coupling criteria [20]. The availability of such
a broad range of documentation is, at least, arguable.

This section provided insights about the rationale of our approach and a
comparison with a state-of-the-art-tool through a simple example. The experi-
ments described in the next section use real-life microservice applications and a
broader dataset of real-world Web APIs to help us better devise the feasibility
of our approach.

4.2 Decomposition of Microservice Applications

The goal of the second experiment is to automatically devise adequate decom-
positions of two microservice-based applications13: Money Transfer, composed
of four microservices (Customers, Accounts, Transfer, and Login) and Kanban
Board, composed of three microservices (Boards, Tasks, and Authentication).

The original microservice architecture of each application acts as a gold stan-
dard to validate the results obtained with our approach. Again, we used the
OpenAPI specifications as input — a single JSON per application, that acts as
its “monolithic-like” description — and Schema.org as vocabulary.

Table 1 shows the decompositions for both applications. Each group of opera-
tions constitutes a different candidate microservice. Then, the rightmost column
indicates if the mapping is adequate in the context of each decomposition, that
is, whether the grouped operations corresponded to the same microservice in the
original architecture.

Particularly, for MoneyTransfer, 8 operations out of 10 (80%) were correctly
decomposed, that is, as prescribed in the original architecture. For example, op-
eration getAccountForCustomer was correctly placed in microservice Account

despite containing also terms of Customer. This is based on the co-occurrences
criteria and the use of a reference vocabulary to provide contextual information
to the concept analysis. This can be illustrated also by considering an operation
with completely different terms, e.g., getStatement, which would be grouped
into microservice Account since Account and Statement are highly correlated

13 http://eventuate.io/exampleapps.html – from the curator of microservices.io [8]

according to DISCO (0.48 as similarity value). For the two remaining oper-
ations, getCustomersByEmail was placed in another candidate microservice,
while transactionsHistory was not mapped to any concept of Schema.org,
since the relationships found are too weak (according to the defined threshold)
to devise a similarity.

In turn, for KanbanBoard, 10 operations out of 13 (77%) were correctly
decomposed. As for the three remaining operations, they were grouped together
in another candidate microservice.Obtained results suggest that our approach is
able to detect correct candidate microservices for around 80% of an application’s
functionality, given that the expected decomposition (gold standard) was known
beforehand.

Application Cand. microservice Operation Suitable?

Money

Transfer

Customer
createCustomer,getCustomer,

getCurrentUser Yes

Account
getAccountsForCustomer Yes
addToAccount,createAccount

Login doAuthorization Yes
MoneyTransfer moneyTransfer Yes
Other getCustomersByEmail No
N/A transactionsHistory No

Total 8/10

Kanban

Board

Task

listAllTasks,saveTask,update-

Task,deleteTask,backlogTask,

completeTask,getTaskHistory

Yes

Auth doAuthentication Yes
Board listAllBoards,getBoard Yes
Other readAction,scheduleAction,resumeAction

No

Total 10/13

Table 1. Obtained Decomposition for MoneyTransfer and KanbanBoard.

4.3 Decomposition of a Large Dataset of Real-world APIs

The goal of this experiment is to decompose a dataset of real-world APIs and an-
alyze the potential applicability/utility of our approach. Moreover, this is helpful
to profile the decomposition process and find its optimal configuration, accord-
ing to expected decompositions defined by software engineers. We used a dataset
of OpenAPI specifications from APIs.Guru14, currently the largest repository of
publicly available, real-world OpenAPI specifications. From all the APIs avail-
able in the repository (550 in total), we focused on specifications with at least
two operations, which is the minimal condition to be potentially decomposable,

14 https://apis.guru/openapi-directory/

and less than fifty operations, which avoids the noise introduced by too large
APIs. We ended up with a dataset of 452 OpenAPI specifications defining a
total of 6634 endpoints, which are equivalent to the notion of operations in this
paper.

From this dataset, we randomly selected 5 samples of 14 services, that were
delivered to five different software engineers (both PhD. students and researchers
in software engineering with industry experience). Then the engineers manually
defined the decompositions for these services. Note that the engineers were un-
aware of the rationale behind our approach, to avoid biasing their answers. We
configured different similarity thresholds over the fitness function (Formula 1)
and different values for the grouping level (Algorithm 1) and executed the de-
composition over the sample services, comparing our candidate microservices
with those suggested by the developers. The results were measured in terms of
precision and recall, according to the expected and achieved decompositions.
Fig. 4 shows the precision/recall curve that considers an average of the differ-
ent samples and different configurations for the aforementioned values threshold
and level. The tiny x on the curve represents the optimal compromise between
precision/recall among all the tested configurations, where precision = 0.8 and
recall = 0.8.

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

P
re

c
is

io
n

Recall

Fig. 4. Precision/Recall curve for the
APIs.Guru dataset.

Operations Services Avg. Concepts

2...5 115 1.47
6...10 106 2.56

11...20 120 4.18
21...30 54 6.25
31...40 34 7.79
41...50 23 8.26

Tot.: 452 Avg.:3.8

Table 2. APIs.Guru dataset and number
of concepts mapped in Schema.org.

After this profiling and configuration step, we executed the decomposition al-
gorithm with the whole dataset of 452 OpenAPI specifications as input. Table 2
shows the number of operations per service and the average concepts mapped
in Schema.org. Input APIs were decomposed in 3.8 candidate microservices on
average. Although it is not possible to analyze each suggested decomposition
individually, this value can be considered close enough to the expected range
for this dataset, since the previous step of manual decomposition generated 3.2
microservices per API on average. It could be also interesting to analyze whether
the obtained decompositions minimize the number of inter-service calls for sam-
ple use cases, but this is outside the scope of this experiment.

This experiment shows that the OpenAPI specifications in the repository are
good candidates for decomposition. The original dataset of 452 APIs potentially
contains 1735 microservices, which would be cohesive and fine-grained, according
to our decomposition approach. This also suggests the applicability/utility of our
approach to decompose real-world service APIs, particularly in scenarios where
these APIs define a high number of operations, which can then be cumbersome
to understand and analyze.

4.4 Possible Limitations

These experiments, and some others not reported here, helped us identify some
possible limitations of our solution. In certain cases, we noticed that the input
artifacts may be mapped to too few concepts of the shared vocabulary, and
thus the decomposition would generate coarse-grained microservices. If it is the
case, one should think of: (a) using a domain-specific vocabulary to reduce the
ambiguity of terms, (b) fine-tuning parameter level to analyze different decom-
positions, and (c) augmenting obtained results with manual improvements to
get a more appropriate decomposition.

Our approach relies on well-defined and described interfaces that provide
meaningful names, and follow programming naming conventions such as camel
casing and hyphenation. Unfortunately, this is not always the case and some sit-
uations are difficult to cope with (e.g., identifiers like op1, param or response).
This can be mitigated by the heuristics in the term separation algorithm, and
by applying state-of-the-art techniques to improve readability and understand-
ability of interfaces [18].

To conclude, a limitation that is not specific to our approach is the lack of
a comprehensive, well-known dataset of microservices to run experiments and
replicate/compare the results. Although an industry case study in a large or-
ganization is important for validation of a single approach [21], an open-source
large dataset of microservices can act as a gold-standard for current and future
research in the field. Due to this limitation, we performed our validation upon
case studies, example applications, and a large dataset of traditional Web APIs.

5 Related Work

The approach presented in this paper can be seen from a clustering perspective,
since candidate microservices are devised by grouping operations according to
their shared reference concepts. Clustering techniques have been broadly applied
in the SOA field, for Web Service discovery [22,23] and composition [24]. Tradi-
tional flat clustering techniques, such as k-means, are straightforward to apply
but their results in the context of traditional Web Services [23] and microser-
vices [20] report a below-average performance. More complex techniques, such
as Hierarchical Agglomerative Clustering (HAC, [25]), have proven to be more
effective than traditional flat clustering at the cost of lower efficiency but, to
the best of our knowledge, these techniques have not been applied to the field

of microservices, thus further research in this direction is required to determine
their suitability.

Moving to other decomposition approaches for microservices, the Service Cut-
ter tool and framework [20] and the comparison with our approach are already
discussed in Section 4.1. In the same direction, the work in [21] describes a tech-
nique to identify microservices based on dependency graphs among the different
tiers of the application (client, server, database). This is a white-box approach, in
which interfaces between components in different tiers are analyzed to generate
the dependency graph, and then code inspection is performed to devise in detail
the boundaries of candidate microservices. The authors claim that the approach
is successful since in the case study (a large banking application), candidate mi-
croservices were identified and suggested for all subsystems. The authors assume
the availability of white-box information (i.e., source code), which is not always
the case. Additionally, for complex domains such as banking, it is suggested to
start the decomposition gradually and at the edges (where the system is more
dynamic and its external interfaces are explicit) [2].

The Enterprise Services Architecture Model Integration (ESAMI) [26] sup-
ports the systematic manual integration of microservices by exploiting an ad-hoc
architectural reference model [27], and correlation matrices to identify similar-
ities. In contrast, we generalize the idea of reference model, which can be any
high-level shared vocabulary or even a domain-specific ontology. We also provide
automated support for the identification of microservices.

From the deployment point of view, [28] addresses decomposition in microser-
vices as a suitable means for cloud migration, being the first cloud-native novel
architectural style. An industry case study shows applicability scenarios and mi-
gration patterns. In this case, the target microservices in the architecture are
defined a priori and in a manual way, since the focus is on the deployment
of the solution while our approach focuses on its design. Also [29] presents a
microservices-based architecture from a deployment point of view. They do not
fully migrate the application to microservices at application-level, but preserved
the monolithic structure of the application and replicated certain components.
This work considers microservices as a way to scale the development process
itself rather than the application’s functionality, as our solution does.

6 Conclusions and Future Work

This paper proposes a novel approach to support the identification of microser-
vices and the specification of the resulting artifacts both during the initial phases
of the design of a new system and while re-architecting existing applications. The
specification artifacts of available operations are mapped onto the entries of a
reference vocabulary to highlight their similarities and thus their willingness of
being part of different microservices. Then, identified microservices are rendered
using OpenAPI, which allows for standardization and fine-grained reuse. Con-
ducted experiments show that our approach found suitable decompositions in

some 80% of the cases, while providing early insights about the right granularity
and cohesiveness of obtained microservices.

Our future work comprises the addition of non-functional aspects that can
affect the decomposition (response time, resource allocation or cost) and the sup-
port to “smart” deployment and execution through our deployment framework
EcoWare [30].

References

1. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: A self-adaptive
roadmap. In: IEEE International Conference on Services Computing (SCC), IEEE
(2016) 813–818

2. Fowler, M.: Monolith first (2015) Retrieved from: http://martinfowler.com/bli-
ki/MonolithFirst.html.

3. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014) Retrieved from: http://martinfowler.com/articles/microservices.html.

4. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: Migration to a cloud-native architecture. IEEE Software 33(3) (2016)
42–52

5. Garriga, M.: Towards a Microservices Taxonomy (2017) Microservices: Science and
Engineering Workshop, co-located with Software Engineering and Formal Methods
(SEFM), Trento, Italy (accepted for publication).

6. Richards, M.: Microservices vs. service-oriented architecture. (2015)
7. Wilde, N., Gonen, B., El-Sheik, E., Zimmermann, A.: Approaches to the Evolution

of SOA Systems. Intelligent Systems Reference Library. In: Emerging Trends in
the Evolution of Service-Oriented and Enterprise Architectures. Springer (2016)

8. Richardson, C.: Microservices architecture (2014) Retrieved from: http://micro-
services.io/.

9. George, F.: Challenges in implementing microservices (2015) Retrieved from:
http://gotocon.com/dl/goto-amsterdam-2015/slides/FredGeorgeChallengesIn-
ImplementingMicroServices.pdf.

10. Zimmermann, O.: Do microservices pass the same old architecture test? or: Soa
is not dead–long live (micro-) services. In: Microservices Workshop at SATURN
conference, SEI (2015)

11. Browning, T.R.: Applying the design structure matrix to system decomposition
and integration problems: a review and new directions. IEEE Transactions on
Engineering Management 48(3) (Aug 2001) 292–306

12. Kuhn, A., Ducasse, S., Gorba, T.: Semantic clustering: Identifying topics in source
code. Information and Software Technology 49(3) (2007) 230 – 243 12th Working
Conference on Reverse Engineering.

13. Chen, L.: Continuous delivery: Overcoming adoption challenges. Journal of Sys-
tems and Software 128 (2017) 72 – 86

14. Pautasso, C., Zimmermann, O., Leymann, F.: Restful Web services vs. “Big”
Web services: Making the Right Architectural Decision. In: 17th International
Conference on World Wide Web, ACM Press (2008) 805–814

15. OpenAPI Consortium: The OpenAPI Initiative (OAI) (2016) Retrieved from:
https://www.openapis.org/.

16. Kolb, P.: Experiments on the Difference Between Semantic Similarity and Related-
ness. In: Proceedings of the 17th Nordic Conference on Computational Linguistics
- NODALIDA’09, Link University Electronic Press (May 2009)

17. Evans, E.: Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional (2004)

18. Renzis, A.D., Garriga, M., Flores, A., Cechich, A., Mateos, C., Zunino, A.: A
domain independent readability metric for web service descriptions. Computer
Standards & Interfaces 50 (2017) 124 – 141

19. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistic Quarterly 2 (1955) 83–97

20. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: A sys-
tematic approach to service decomposition. In: European Conference on Service-
Oriented and Cloud Computing, Springer (2016) 185–200

21. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting mi-
croservices from monolithic enterprise systems. In: 3rd Brazilian Workshop on
Software Visualization, Evolution and Maintenance (VEM). (2015) 97–104

22. Nayak, R., Lee, B.: Web service discovery with additional semantics and clustering.
In: IEEE/WIC/ACM International Conference on Web Intelligence, Silicon Valley,
USA, IEEE (2007) 555–558

23. Cong, Z., Fernandez, A., Billhardt, H., Lujak, M.: Service discovery acceleration
with hierarchical clustering. Information Systems Frontiers 17(4) (2015) 799–808

24. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web
service composition. In: Proceedings of the 19th international conference on World
wide web, ACM (2010) 11–20

25. Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method:
Which algorithms implement ward’s criterion? Journal of Classification 31(3)
(2014) 274–295

26. Bogner, J., Zimmermann, A.: Towards integrating microservices with adaptable
enterprise architecture. In: 2016 IEEE 20th International Enterprise Distributed
Object Computing Workshop (EDOCW). (Sept 2016) 1–6

27. Zimmermann, A., Sandkuhl, K., Pretz, M., Falkenthal, M., Jugel, D., Wissotzki,
M.: Towards an integrated service-oriented reference enterprise architecture. In:
Proceedings of the 2013 International Workshop on Ecosystem Architectures, ACM
(2013) 26–30

28. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: An experience report. In: European Conference on Service-
Oriented and Cloud Computing, Springer (2015) 201–215

29. Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., Bohnert, T.M.: Self-
managing cloud-native applications: Design, implementation, and experience. Fu-
ture Generation Computer Systems 72 (2017) 165–179

30. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback con-
troller for containerized cloud applications. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. FSE
2016, New York, NY, USA, ACM (2016) 217–228

