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Abstract. The detection of covert channels in communication networks
is a current security challenge. By clandestinely transferring information,
covert channels are able to circumvent security barriers, compromise sys-
tems, and facilitate data leakage. A set of statistical methods called DAT
(Descriptive Analytics of Traffic) has been previously proposed as a gen-
eral approach for detecting covert channels. In this paper, we implement
and evaluate DAT detectors for the specific case of covert timing chan-
nels. Additionally, we propose machine learning models to induce clas-
sification rules and enable the fine parameterization of DAT detectors.
A testbed has been created to reproduce main timing techniques pub-
lished in the literature; consequently, the testbed allows the evaluation
of covert channel detection techniques. We specifically applied Decision
Trees to infer DAT-rules, achieving high accuracy and detection rates.
This paper is a step forward for the actual implementation of effective
covert channel detection plugins in modern network security devices.

Keywords: covert channels, decision trees, forensic analysis, machine
learning, network communications, statistics

1 Introduction

Network communication platforms and protocols have been devised with clear
structures and policies to allow fluent data transmission between different ac-
tors in networks. Covert channels profit from such structures and policies to
send information in ways that are not in compliance with the original design
of the communication schemes. The purpose of this unorthodox communica-
tion is that the covert data transfer remains generally unperceived but for the
sender and receiver of the covert information. Ultimately, the pragmatic goal is
usually—although not always—fraudulent or illicit, such as data exfiltration, or
malware communication. For this reason, modern Intrusion Detection systems



(IDS) should incorporate covert channel detection capabilities to cope with those
hidden communication methods.

In [11], detectors based on descriptive analytics of traffic (DAT) were pre-
sented as a broad-scope solution for covert channel identification in TCP/IP
networks. DAT detectors operate by extracting meaningful information from
network traffic and transform it into flow vectors. In such vectors, every sus-
ceptible TCP/IP field is represented by a set of features based on aggregations,
statistics, autocorrelation, and multimodality estimations.

There exists a wide variety of ways to send covert information in IP networks.
Diverse taxonomies and schemes to classify covert channels have been proposed
in the literature over the years, e.g., [19] [30] [28]. More recent surveys are given
in [24] and [11]. In [24], Wendzel et al. analyze 109 techniques developed between
1987 and 2013 and organize covert channel techniques as variations of 11 charac-
teristic patterns. In [11], covert channels are differently classified from a detection
perspective. The interested reader can find good overviews as well as links to
multiple publications about the design and detection of covert channels in the
cited papers. Beyond accurate classifications, from a global perspective covert
channels were originally differentiated as: timing channels, if timing properties
of communications mask the covert message, and storage channels, if covert data
is somehow conveyed inside packets. In this work, we focus on timing channels.

In [11], DAT detectors were theoretically depicted. The evaluation was con-
ducted with a proof of concept where the rules of a DAT detector prototype
were adjusted solely based on experts knowledge, achieving moderate perfor-
mance rates. Therefore, the main goals and contributions of this paper are:

1. To deeply evaluate DAT detectors for the specific case of covert timing chan-
nels. To this end, a testbed for generating and testing covert channels has
been created. The evaluation has been conducted by implementing eight of
the most popular covert timing techniques proposed in the literature.

2. To establish a methodology for tuning DAT detector parameters and rules
based on Decision Trees learners.

3. To generalize a set of constituent rules for DAT detectors in the scope of
covert timing channels, thus enabling the incorporation of DAT detectors in
future IDS.

2 Related Work

Already in the ’70s, covert timing channels were identified by the USA Air Force
experts as a potential problem of secure communications even in end-to-end en-
cryption scenarios [16]. Actually, devised without paying a special attention to
security concerns, TCP/IP protocols entail many possibilities to conceal covert
information. As a consequence, a considerable number of covert channel tech-
niques have been presented in the related literature since then.

In the '90s, J. C. Wray noticed that the partition between storage and timing
channels was not always appropriate, since there are covert channels that share
properties of both types [25]. An example of half-timing half-storage channel is



given in [8], where a little delay is introduced in the packet delivery to make the
lowest bit of TCP timestamps—usually seemingly random—to coincide with the
covert bit to send. In this case, information is hidden in a TCP field, but the
method invariably affects time properties in the communication. Note that, in
this case, even if it is not possible for a warden to decode the message with-
out checking packet fields, the detection by only analyzing packet inter-arrival
times (henceforth iats) is theoretically possible. Another hybrid technique was
proposed by W. Mazurczyk and K. Szczypiorski, who developed a method that
inserts covert data in the payloads of VoIP packets that were intentionally de-
layed and normally dropped [15]. In [9], C. G. Girling tested a covert timing
channel assuming that a sender could address a number of hosts in a network,
and a wiretapper in the middle would interpret destination addresses as codifi-
cations (e.g., 16 addresses can conceal 4 bits of information).

Nevertheless, covert timing channels do not usually involve using information
of packet fields. The attention is normally focused on iats. For example, in [3]
the sender and receiver of the covert communication are synchronized and agree
on a fixed sampling time interval. The existence or absence of a packet in the
interval transports the covert information. V. Berk, A. Giani and G. Cybenko
show a timing channel technique where covert 1s and Os are deduced from two
different packet delays [2]. Authors also discuss the bandwidth commitment in
the design and implementation of covert timing channels, i.e., a low bandwidth is
undesired for transmitting information but makes the covert channel stealthier.

Packet delays are also manipulated in [18], where a Jitterbug slightly modi-
fies the time behaviour (in a millisecond scale) of hacked input devices, such as
a keyboard, in order to allow an eavesdropper to guess the introduced data by
observing the generated time sequence. This is a good example of how different
malware can exploit covert channels. Video stream data is proposed as a carrier
for sending binary covert information in [5], and a threshold for packet-iats is
used to differentiate between Os and 1s at the destination. Video on Demand
services are used in [31] to transport covert information also by carefully manip-
ulating iat values. In [26] message redundancy is exploited by applying Huffman
coding to transform covert symbols into packet delays.

Given that detection methods are often based on statistics and distributions
of the network usage, in [7] covert timing channels are created by matching
time-distributions generated by legitimate services. In [13], Kiyavash and Cole-
man study a method for interactive traffic that relies on encoding mechanisms,
statistical structures of network queues and packet iat for sending covert in-
formation. A different time-based approach is proposed in [14]. Here, bursts of
packets transport the covert information, and the total number of packets in
the burst represents the covert symbol. Additional timing-based convert channel
techniques can be consulted, for example, in [10], [23] or [1].

The detection of covert timing channels has been classically faced from the
perspective of the analysis of statistical properties. For instance, in [3], in ad-
dition to present some covert timing techniques, the detection of the proposed
channels is conducted by means of calculations on variance patterns and mea-



suring similarity between adjacent iats. Entropy calculations are also used for
such purpose, for example, Gianvecchio and Wang test entropy-based detection
on three different techniques in [6]. More recently, in [4], time-deterministic re-
play has been introduced as a technique that can reproduce the precise timing of
applications and, therefore, be used for disclosing covert timing channels. As for
machine learning approaches, Support Vector Machines has been proposed for
covert channel detection several times, e.g., in [21], and specifically for timing
channels in [20], achieving good results against four popular timing techniques.
Decision tree learners also obtain successful detection rates when tested with
basic timing techniques in [29].

The detection framework presented in [11]—i.e., DAT detectors—focuses on
the characterization of flows by means of a careful selection of statistical calcu-
lations and estimations. Therefore, it is a statistical approach in nature; never-
theless, in this paper we propose the application of machine learning to induce
and adjust the rules embedded in DAT detectors, enhancing the basic proposal
and making the most of the depicted framework. The excellent properties of
Decision Trees for knowledge abstraction and generalization make them highly
appropriated for the aimed purpose.

3 DAT Detector

DAT detectors are primarily introduced and widely described from a theoretical
perspective in [11]. They are devised to be lightweight, fast traffic analyzers in
network middleboxes. DAT detectors basically operate with descriptive analytics
of traffic flows, creating flow vectors whose features are based on aggregations,
statistics, autocorrelation, and multimodality estimations.

A DAT detector consists of three well-differentiated phases (Figure 1): pre-
processing (P), feature extraction and transformation (T), and flow labeling and
covert channel detection (D).

packet OD-flow

R . vectors vectors
aw traffic p o T J b labeled
capture flows

P — Preprocessing
T - Feature extraction and transformation
D - Flow labeling and CC detection

Fig. 1. DAT overall three-phase scheme.

1. Preprocessing
The first phase takes raw traffic captures as inputs (e.g., PCAP files). Traffic



captures are parsed and packet vectors are formed with meaningful, homo-
geneous information for the subsequent analysis.

For the specific case of covert timing channels, the selected information must
provide time characteristics and allow the identification of flows. Assuming
that raw traffic is obtained as packet captures and a flow is simply defined
by the source IP and destination IP tuple', the output of the preprocessing
phase will contain packet vectors as shown in equation 1:

pkt; = {timestamp, src.IP, dst.IP} (1)

where pkt; stands for the i*"-captured-packet, “timestamp” refers to the ac-
tual time when packet ¢ was captured, and “src.IP” and “dst.IP” correspond
to the flow source and destination IP addresses respectively.

2. Feature extraction and transformation

In this step, packet vectors are transformed into flows. At the same time, pre-
defined calculations and estimations are conducted upon the flows. Finally,
new two-level structured OD-flow vectors are created (origin-destination flow
vectors). The first level corresponds to the packet fields to explore (e.g., IP
Protocol, Time to Live, TCP Window, iat?), and the second level contains
the calculations and estimations performed for every analyzed field. The
general set of features proposed in [11] are:

U number of unique values.

Sk number of multimodality distribution peaks.
wg relative width of the main distribution.

Ss number of main symbols.

Mo  statistical mode value.

p(Mo) number of packets (or iats) with the mode value (percentage).
PA sum of autocorrelation coefficients.

N mean of differences.

pkts  total number of packets.

The proposed features may vary depending on the field to analyze. In our
experiments only iats are required, and we specifically redefine some features
for the iat field. For example, ua and Mo are not used, and pu,,s is a novelty
and replaces wg. p,gs is the mean of standard distributions of peaks obtained
by kernel density estimations. Therefore, u,s allows to easily abstract the
average distribution width. In addition, we add ¢, which depends on Sy
and pkts. ¢ is an estimation of the number of potential covert bytes and

! Note that the classic 5-tuple used to identify communication flows is not used here
(i.e., src.IP, dst.IP, Protocol, src.Port, dst.Port). Unlike overt IP communications,
covert channels can be constructed using different protocols, source and destination
ports in the transmission of the same hidden message.

2 jat is treated like a header field for DAT detectors.



is calculated by means of simple ad-hoc tables [11]. In the cited work, c is
incorporated in the last detection phase, but it can perfectly be estimated in
the OD-flow generation and included in the vector. Therefore, for the specific
case of covert timing channel detection, a OD-flow vector is expressed as
(equation 2)3:

flow_vec = {Ua Skaﬂva837p(Mo)apAapktS7c} (2)

P(at;) . .

0.12 ¢ 1

0.1+ M :
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0 f (ms)
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Fig. 2. iat-distribution of an example flow. Probability frequency diagram (blue) and
kernel density estimation curve (red).

The meaning of the features can be better understood with an example.
Imagine a flow of 200 packets from host A to host B (i.e., 199 iats). The
detected iat-distribution matches Figure 2. Considering a granularity of 5
ms, out of 199 actual iats, the number of observed unique iat-values (U) is
25 (every bar of the frequency diagram or histogram). In Figure 2, the kernel
density estimation (red curve) shows two peaks (S, = 2) with an average
standard distribution (p,s) close to 20 ms (i.e., average width between 40ms
and 50ms). S; equals 13 according to the main symbols calculation proposed
in [11] (i.e., it is approximately the number of outstanding histogram bars).
The statistical mode for captured iats is 30 ms, which occurs 20 times, then
p(Mo) = % ~ 0.10. The iats series is highly chaotic, showing p4 = 0.05.
With S, = 2 and pkts = 200, a proper estimation of ¢ is 28 (according to
the methods in [11]). The OD-vector would remain:

flow_veca_, 5 = {25,2,19.3m, 13,0.10,0.05, 199, 28} (3)

3 Features in equation 2 should be annotated with the first-level field to which they
correspond (i.e., Urrr, Usrc.Port, Uiat,...). Since in this work we only use iats, we
omit such subindices for the sake of clarity.



3. Flow labeling and covert channel detection
A complete implementation of DAT detectors is expected to analyze traffic
according to four different blocks or steps:

— A Packet Compliance Checker, which, according to a set of fixed policies,
detects traffic that is corrupted or does not comply to standard practices.

— The Intra-field Analysis block, which checks TCP/IP header fields sep-
arately by examining the corresponding OD-flow vector values.

— The Inter-field Analysis block, which considers combinations of OD-flow
vector values in different TCP/IP header fields.

— A ML-based Detector (machine-learning-based), which compares OD-
flows by using a library that contains representative patterns (footprints)
of OD-flows with covert channels. Such patterns are linked to known,
published techniques.

Here we aim to detect solely covert timing channels, so only a single TCP/IP
flow field is to be analyzed: iats. It also means that only the Intra-field Analy-
sis block must be adjusted and tested. Considering the specific case of covert
timing channels, the evaluation of the Intra-field Analysis, the validation of
Decision Trees as rule extractor-learners, and the proposal of a set of rules
for actual implementations are the goals of this work.

4 Implemented Timing Techniques

We have created a testbed for the evaluation of covert channel detection tech-
niques. Eight of the covert timing channels introduced in Section 2 have been
implemented for the conducted experiments. We depict them with mnemonic
names, using the first three letters of the author who originally published the
technique and the corresponding reference. Note that covert channel generation
manipulates packet delays in the communication source (aka inter departure
times, henceforth abbreviated as idts), but detection uses iats; i.e., for two con-
secutive packets a and b, iaty, = idte + (dp — dg), where d, and dp are the
transmission delays of packet a and packet b.
The implemented covert timing techniques are:

— Packet presence (CAB)
As presented in [3], the CAB technique requires synchronicity between the
sender and the receiver, who agree on a fixed interval as sampling time.
The absence or presence of a packet during an interval represents the binary
symbol 0 or 1 respectively (Figure 3). In [3], different implementations for
ensuring synchronization are suggested.

— Differential/derivative (ZAN)
This differential covert channel was originally proposed for the IP-packet
Time to Live field [27], but can be easily implemented by using packet de-
lays. Given a basic idt (¢;), whenever a 1 is to be send the previous idt is
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Fig. 3. CAB technique: presence or absence of a packet.

modified by adding or subtracting t;,.; in case of a 0, the last idt is kept the
same, i.e., with no modification (Figure 4).

1 0 1 1 0 1
O
73 tp+line tpttine T tpttine tb+tinc tb

Fig. 4. ZAN technique: differential idt.

— Fized intervals (BER)
Proposed in [2], this technique establishes fixed idts to represent Os and 1s,

respectively to and t; (Figure 5).

t; to

Fig. 5. BER technique: fixed idts.

— Jitterbug/modulus (SHA)
The Jitterbug [18] manipulates an existing transmission. It establishes a

ground sampling time interval w and adds a little delay to idts to make them
divisible by w or w/2 according to the covert symbol to send (Figure 6).
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Fig. 6. SHA technique: jitterbug delay manipulation.

— Huffman coding (JIN)
This technique codes every covert symbol directly into a set of packets with
different idts according to the frequency of the symbol and based on a Huff-
man codification. For the experiments we applied this technique only for
plain text files and using the codification presented in [26] (Figure 7).

Covert message: “hi 5”

frequency time
“h” normal 50ms + 70ms
“i” high 140ms
“r very high 60ms
“5” low 80ms + 140ms
“h o s

OO0 0-0-0 1

Fig. 7. JIN technique: Huffman coding.

— Timestamp manipulation (GIF)
By this technique [8], packet idts are manipulated based on the least signifi-
cant bit (LSB) of the TCP timestamp. A minimum idt (¢;) between packets
must be respected (authors propose, at least, t;, = 10ms). If the LSB co-
incides with the covert symbol, the packet is sent; if not, the condition is
checked again after a time ¢,, (Figure 8).

— One threshold (GAS)
Devised for Android platforms and with video services as carriers, this tech-
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i
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(last bits) i
packet1| ... 1001 +-+-+» equal? YES» send
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packet2 | ... 1011 - equal? NO» wait
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packet2 | ... 11¢0 equal? YES» send
1 0
tptty

Fig. 8. GIF technique: timestamp manipulation.

nique establishes a threshold th for iats [5]. Delays above and below th will
be considered 1s and Os respectively (Figure 9).

>th  <th >th >th <th >th

Fig. 9. GAS technique: one threshold.

— Packet bursts (LUO)
By this technique presented in [14], packet bursts are sent separated by a
waiting time interval t,,. The number of packets in a burst directly repre-
sents the covert symbol or piece of code to send. For example, three packets
in a burst are used to send the symbol “3” (Figure 10).
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Fig. 10. LUO technique: packet bursts.

5 Experiments

The objective of the experiments was to create and refine DAT rules for the
detection of covert timing channels. For this purpose, training and testing pro-
cesses were performed with known—i.e., labeled—datasets. Figure 11 illustrates
the training process, which consisted of three main phases: (1) dataset genera-
tion, (2) model obtaining, and (3) rule generalization.

Files-to-send:
Text.txt, image.png, compressed.zip,
encrypted.des3, etc.

|
|
|
Techniques: |
CAB,BER,SHA, GIF Configuration |
JIN,GAS,LUO,ZAN parameters |
: DAT-rules
|
|
| Rule
Datase't MAWI data | generalization
generation |
|

Fig. 11. Phases of the training process: dataset generation, model obtaining, and rule

generation.

DAT feature
extraction and
transformation

,,,,,,Jvr,,, ,,,,,,,,,,,,,, L= ___
@ model

DAT feature
extraction and
transformation

Classified Perfor.:
\ j flows TP, FP,
) ) TN, FN
CC True Flow Flow | “CCFalse”
— . i
labeling labeling T
OD-flows OD-flows ificati
0Dflow without CC Classification
‘ ! (trees)

Jumble
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1.

Dataset Generation

A testbed for traffic generation was built for creating IP flows containing
covert channels as defined by the techniques published in the literature and
briefly described in Section 4. In addition to selecting techniques, inputs
included the files to covertly send and configuration parameters necessary
for the setup. We have created two datasets (cc_training and cc_testing)
with different files and random seeds. Selected files included different kinds
of plain-text documents (poems, list of passwords, technical reports and
programming scripts), images (PNG and JPEG), compressed files (in ZIP
and GZ formats) and 3DES encrypted files. Parameters for the automated
generation of flows with covert channels were randomly selected within the
ranges defined in Table 1. The parameter ranges were adjusted according
to the papers in which the techniques were originally presented or, if not
documented, based on the knowledge of network traffic measurement experts.

Table 1. Parameters for the random generation of covert channels.

Technique Parameters

d; (delay) By default, transmissions delays are modeled with a Lomax
(Pareto Type II) distribution with o = 3 ms and A = 10 ms

CAB tine € [60,140] ms

BER to € [10,50] ms, ¢; € [80,220] ms

SHA pkt-dist.: Gamma with k& € [40, 760] ms, ¢ € [40, 360] ms
w € [10,90] ms

GAS 0-idts pkt-dist.: to = th — ts
1-idts pkt-dist.: t1 = th — ts + t,
th € [100, 300] ms, ¢, € [60, 140]ms, t, € [20,80] ms

JIN Codification from [26]

LUO tw € [50,250] ms
Packets in a burst are sent every ms

ZAN ty € [30,70] ms, tinc € [30,70] ms
GIF tp € [10,30] ms, t, € [4,12] ms

As for the training sets that are free of covert channels, real network data was
downloaded from the MAWI Working Group Traffic Archive. In the MAWI
database*, 15 minutes of real backbone traffic is published every day for re-
search purposes. We downloaded traffic corresponding to Sun Feb. 5, 2017,
and divided into three 5-minute datasets, from which we used one dataset
for training (nocc_training), one for testing (nocc_testing), and discarded the
third one.

* http://mawi.wide.ad.jp/mawi,/
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2. Model Obtaining

During the second phase, OD-flows were extracted from the datasets, la-
beled, and jumbled before undergoing classification. To speed up classifica-
tion, all flows with less than one packet were already discarded in this phase.
For all explored datasets (with and without covert channels), the maximum
observation window for a OD-flow was set to five minutes (the rest was sim-
ply discarded). The interested reader can freely download the used OD-flow
datasets from [22].

The objective in this phase was to obtain a classification model that could
differentiate flows with covert channels from flows without. Since generaliza-
tion was desired, Decision Trees were selected as classifiers. Decision Trees
are known to be efficient learners, with good accuracy rates and, more impor-
tantly, they allow easy interpretation and rule extraction from results [12].
We used basic Decision Tree algorithms based on recursive partitioning in-
stead of more complex options (e.g., Random Forest) because they are more
interpretable and predictions are easier to explain and generalize. Another
characteristic of Decision Trees that make them eligible for the current ap-
plication is that they are embedded feature selection methods [17], i.e., they
can potentially ignore features that are redundant or irrelevant.

During the experiments, pre- and postpruning were performed to avoid over-
fitting and favor generalization.® In addition, a 10-fold cross-validation pro-
cess was performed to reinforce disclosed models. During the training phase,
models were obtained from the cc_training and nocc_training datasets.

3. Rule Generalization
In the final phase, rules were extracted from the Decision Tree complete
model. These rules were manually checked later and adjusted according to
generalization criteria. An enhanced set of rules was obtained and imple-
mented in DAT detectors.

Once new rules were embedded, DAT detectors underwent an additional
testing phase with reserved datasets. Such validation was conducted with
completely new data (not used before): cc_testing and nocc_testing.

It is worth remarking that, even not among the purposes of the current work,
the presented testbed enables the modeling of covert timing channel techniques
and the obtaining of patterns for the ML-based Detector block introduced in
Section 3.

® Details of the conducted parametrization are: Decision Trees used Information Gain
(i.e., entropy-based) as splitting criterion; the minimal size for splitting was four
samples; the minimal leaf size was two samples, allowing a maximal tree depth of 20
levels; the minimal gain for splitting a node was 0.1; the confidence level used for the
pessimistic error calculation of pruning was 0.25, whereas the number of prepruning
alternatives was three.
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6 Results

The outcomes of the tests conducted in Section 5 were used to evaluate the per-
formance of DAT detectors and the validity of the obtained constituent decision
rules. Results were divided into two distinct phases:

1. Obtaining a rule-based decision model based on Decision Tree induction.

2. Validation of the generalized model with testing datasets.

6.1 Rule extraction experiments

Decision Trees generated the model illustrated in Figure 12. The corresponding
performances indices are shown in Table 2. Results in Table 2 discloses that
Decision Trees were able to capture significant patterns to discriminate between
flows with and without covert channels. Provided training data is representative
enough, the use of cross validation ensures the robustness of the obtained model

and indices.
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Fig. 12. Decision Tree obtained during the training phase. ‘1’ corresponds to leaves
that identify covert channels, ‘0’ for leaves that identify normal traffic.

One of the first aspects that draws attention from Figure 12 is the absence
of pa, Ss and Si in the solution model. Not using p4 is not surprising as iats
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Table 2. Performance Indices of the complete model during training (datasets:
ce_training and nocc_training).

Predicted CC Predicted Normal

Real CC 1015 (TP) 17 (FN)

Real Normal 7 (FP) 16302 (TN)
Accuracy 99.86% =4 0.05%
Precision 99.96% =+ 0.04%
Recall 99.90% =+ 0.06%

AUC (area under ROC) 0.996 + 0.004

time series are chaotic and low self-correlated regardless of the class. This is due
to the fact that, given a sampling resolution of 1 ms, delays in generation and
transport invariably entail scenarios with a considerable entropy. The absence of
S is also understandable due to same reason, i.e., transmission delays make iats
to take approximate but different values even when coming from the same idt by
design. In this respect, Sy is a better estimation of main symbols for the iat-case
but, even so, it does not appear in the Tree either. Actually, Sy is indirectly
affecting the model through other parameters, such as ¢ and p,s (which depend
on Si). Decision Trees just avoided redundancy with respect to this variable
(given to its capabilities for feature selection), but the use of multimodality by
kernel density estimation was determinant for the detection.

6.2 DAT testing after generalization

The close examination of the model in Figure 12 allows to carry out a rule
generalization like the one exposed in Figure 13. The generalized Decision Tree in
Figure 13 condenses the detection in two main common patterns (green leaves).
One of these patterns corresponds to flows that, during the observation scope (5
minutes), show a considerable amount of packets (pkts > 170) but low potential
covert bytes (¢ < 25). This is idiosyncratic of flows with most iats very close
to one center value, making Sy and Ss equal one or close to one (for instance,
the packet bursts technique, LUO). However, the behaviour emphasized by this
decision branch can also be matched by some legitimate services and is prone to
generate some false positives (see Table 3).

The second branch, which concentrates most of the discovered covert chan-
nels, reveals that covert channels show distributions where packet-iats are in a
range between 1 ms and 50 ms around the center values; also, the iat-mode-value
represents less that 70% of iats, the number of estimated possible covert bytes
must be high (¢ > 50) and the number of unique values (in ms resolution) is
somehow below the estimated covert bytes (U/c < 0.9). This revealing last prop-
erty suggests the footprint of a structure behind iat-values, which are generated
by algorithmic patterns.
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Fig. 13. Generalized Decision Tree implemented in final DAT detectors.

Note that in Figure 13 the U > 1 condition has been included, as such condi-
tion is not inferred by Decision Trees but previously imposed in the experiments
(i.e., a flow with only one iat value cannot hide a covert timing channel). Except
for this specific feature U, a certain fuzziness is naturally assumed when estab-
lishing rule thresholds. Therefore, in DAT detectors, instead of strictly applying
the thresholds discovered by Decision Trees with a step function, the fitting of
every feature to the given rules has been adjusted by using a smooth step func-
tion. Later, the final evaluation is obtained with the product t-norm among the
different branch conditions.

Table 3 shows the results for the final validation experiments. Indices are
promising for detectors that are designed to be lightweight detection barriers,
although reveal some false positives to be corrected in final applications. Future
implementations will gain robustness by the incorporation of fuzzy controllers in
the DAT-decision making, whose capabilities to deal with vague thresholds make
them perfect for the application. Detection accuracy is also expected to improve
by the complementary analysis carried out by the ML-based Detector block,
which stores a library with patterns related to known covert channel techniques.
The development of such pattern library can be easily performed by the same
testbed used together with Decision Trees rule extractors.



17
Table 3. Performance Indices of the generalized model during evaluation and testing.

DATA: cc_training dataset and nocc_training dataset

Predicted CC Predicted Normal

Real CC 990 (TP) 33 (FN)
Real Normal 94 (FP) 16320 (TN)

Accuracy  99.23%
Precision  91.33%
Recall 96.77%

DATA: cc_testing dataset and nocc_testing dataset

Predicted CC Predicted Normal

Real CC 995 (TP) 42 (FN)
Real Normal 99 (FP) 16013 (TN)

Accuracy 99.18%
Precision  90.95%
Recall 95.95%

7 Conclusion

This work tested and validated statistics-based framework—DAT detectors—for
the detection of covert timing channels. To this end, multiple cover channels have
been generated based on a set of eight popular covert timing techniques, which
were then mixed up with real traffic captures. Decision Trees classifiers were
used to infer rules from training data to embed in final implementations of the
DAT detector decision making. The final testing with new datasets corroborated
the fitness of DAT detectors. In short, this work complements and satisfactorily
proves the theoretical foundations exposed in [11], paving the way for an easy
integration of fast covert channel detection in modern IDSs.
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