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Weak Nominal Modal Logic

Joachim Parrow, Tjark Weber, Johannes Borgstrom, and Lars-Henrik Eriksson

Department of Information Technology, Uppsala University, Sweden

Abstract. Previous work on nominal transition systems explores strong
bisimulation and a general kind of Hennessy-Milner logic with infinite but
finitely supported conjunction, showing that it is remarkably expressive.
In the present paper we treat weak bisimulation and the corresponding
weak Hennessy-Milner logic, where there is a special unobservable action.
We prove that logical equivalence coincides with bisimilarity and explore
a few variants of the logic. In this way we get a general framework for
weak bisimulation and logic in which formalisms such as the pi-calculus
and its many variants can be uniformly represented.

1 Introduction

In many models of concurrent computation there is a fundamental distinction be-
tween two kinds of actions: on one hand, those that are strictly internal to a pro-
cess, and thus cannot be observed by its environment; on the other hand, those
that represent an interaction with the environment and thus are observable. The
discriminatory power of the model must then be weak enough, roughly speak-
ing, that unobservables do not count. This idea emerged in the early 1980s in a
variety of concurrency models, for example in Milner’s observation equivalence,
Lamport’s notion of stuttering, and the denotational models of Hoare [20/T9J6]. A
good example is weak bisimulation in numerous process calculi. Here the special
action 7 represents anything unobservable, and the bisimulation game requires
a simulating process to mimic actions with the same observable content, i.e., it
is allowed to have more or fewer 7s. Similarly, the so called weak modal logics
cannot express formulas to test for the presence or absence of 7s.

In our earlier work [23] we develop a theory of nominal transition systems,
bisimulation, and modal logic, with the goal to be as general as possible and
subsume many models in the literature. The states of the transition systems
may be tested by state predicates from an arbitrary logic. Transitions between
states can take arbitrarily structured labels and also bind names (like in the
scope extrusions of the pi-calculus). Thus we can uniformly represent not only
the pi-calculus but also many of its high-level extensions. Our results include a
treatment of bisimulation and an adequate Hennessy-Milner logic (HML) where
logical equivalence coincides with bisimilarity. We make ample comparisons to
other work to support our claim that their primitives can be encoded in our
general framework. Main technical points include the use of nominal sets to rep-
resent how states, actions and predicates depend on names, and the use of finitely
supported infinite conjunctions in the logic to represent a variety of quantifiers



and fixpoints. Section 2 below recapitulates the necessary background. All of
that work is of the so-called strong variety: all actions are counted as observable.

In this paper we extend our investigation to nominal transition systems where
there is a special unobservable action 7. In Section 3 we define and explore the
notion of weak bisimulation. In comparison to existing work in process algebra
there are subtleties in the interplay of unobservable actions and state predicates.
In Section 4 we introduce a weak HML and prove that its induced logical equiv-
alence coincides with weak bisimulation. The logic is formulated as a sublogic of
our earlier logic [23] and contains only formulas that do not distinguish between
weakly bisimilar states. Again the main subtlety is in the interplay between state
predicates and action modalities. The logic does not admit disjunctions of state
predicates, and in Section 5 we prove that this does not affect the expressive
power. In Section 6 we demonstrate that state predicates can be encoded as
additional transitions: self loops labelled with the predicate. Section 7 describes
how our results can apply to existing models of computation, Section 8 relates
to existing work on weak modal logics, and in Section 9 we conclude with a
summary of the main insights gained and prospects for further work.

Our main results in Sections 3 and 4, including the adequacy of the weak
logic, have been formalised in the interactive theorem prover Isabelle/HOL using
the nominal datatype package. Our Isabelle theories, comprising approximately
1,300 lines of machine-readable definitions and proofs, are available from the
Archive of Formal ProofsE| They extend an earlier formalisation [25] of nominal
transition systems and our logic for strong bisimilarity, from which they re-use
the definition of (strong) formulas.

2 Background

In this section we recapitulate the relevant definitions from our earlier work [23],
to which we refer for more extensive explanations, examples, and relation to
previous work on transition systems and Hennessy-Milner logics.

2.1 Nominal sets

Nominal sets [24] is a general theory of objects that contain names, and in
particular formulates the notion of alpha-equivalence when names can be bound.
The reader need not know nominal set theory to follow this paper, but some key
definitions will make it easier to appreciate our work, and we recapitulate them
here.

We assume a countably infinite multi-sorted set of atomic identifiers or names
N ranged over by a, b, .... A permutation is a bijection on names that leaves all
but finitely many names invariant. The singleton permutation that swaps names
a and b and has no other effect is written (ab), and the identity permutation,
which swaps nothing, is written id. Permutations are ranged over by m, 7’. The
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effect of applying a permutation 7 to an object X is written 7 - X. Formally,
the permutation action - can be any operation that satisfies id - X = X and
7 (n'-X) = (ron’)- X, but a reader may comfortably think of 7 - X as the
object obtained by permuting all names in X according to «.

A set of names N supports an object X if for all w that leave all elements
of N invariant it holds 7 - X = X. In other words, if NV supports X then names
outside N do not matter to X. If a finite set supports X then there is a unique
minimal set supporting X, called the support of X, written supp(X), intuitively
consisting of exactly the names that matter to X. In general, the support of a
set is not the same as the union of the support of its members. An example is
the set of all names; the support of each element a is the set {a}, but the whole
set has empty support since 7 - A" = N for any permutation .

We write a# X, pronounced “a is fresh for X,” for a & supp(X). The intuition
is that if a# X then X does not depend on a in the sense that a can be replaced
with any fresh name without affecting X. If A is a set of names we write A#X
for Va € A.a#X.

A nominal set S is a set with a permutation action such that X € S implies
m-X € S, and where each member X € S has finite support. A main point
is that then each member has infinitely many fresh names available for alpha-
conversion.

A set of names N supports a function f on a nominal set if for all 7 that
leave all elements of N invariant it holds 7 - f(X) = f(« - X), and similarly for
relations and functions of higher arity. Thus we extend the notion of support to
finitely supported functions and relations as the minimal finite support, and can
derive general theorems such as supp(f(X)) C supp(f) Usupp(X).

An object that has empty support is called equivariant. For instance, a unary
function f is equivariant if 7- f(X) = f(7- X) for all 7, X. The intuition is that
an equivariant object does not treat any name special.

2.2 Nominal transition systems
Definition 1. A nominal transition system is characterised by the following

— STATES: A nominal set of states ranged over by P, Q.

— PRED: A nominal set of state predicates ranged over by .

— An equivariant binary relation = on STATES and PRED. We write P F ¢ to
mean that in state P the state predicate ¢ holds.

— ACT: A nominal set of actions ranged over by c.

— An equivariant function bn from ACT to finite sets of names, which for each
a returns a subset of supp(«), called the binding names.

— An equivariant transition relation — on states and residuals. A residual is a
pair of action and state. For — (P, (a, P')) we write P = P'. The transition
relation must satisfy alpha-conversion of residuals: If a € bu(a), b#a, P’ and

P % P’ then also P “2%, (ab)- P'.



In [23] we motivate and demonstrate many examples of nominal transition sys-
tems, including the pi-calculus and several extensions of it. Here states, actions
and transitions are familiar, and the binding names correspond to the names in
scope extrusions. State predicates represent what the environment can perceive
of a state, for example equality tests of expressions, or connectivity between
communication channels.

Definition 2. A bisimulation R is a symmetric binary relation on states in a
nominal transition system satisfying the following two criteria: R(P, Q) implies

1. Static implication: P + ¢ implies Q + ¢.
2. Simulation: For all «, P such that bn(a)#Q there exist Q' such that if
P2 P then Q% Q' and R(P', Q)

We write P ~ Q to mean that there exists a bisimulation R such that R(P,Q).

Static implication and symmetry means that bisimilar states must satisfy
the same state predicates. The simulation requirement is familiar from the pi-
calculus.

2.3 Hennessy-Milner logic

We define a Hennessy-Milner logic including infinitary conjunctions; as demon-
strated in [23] this results in high expressiveness using a very compact formal
definition. In order to avoid set-theoretic paradoxes we begin by fixing some
infinite cardinal s to bound the cardinality of conjunctions. We define the for-
mulas, ranged over by A, B,..., and the validity of a formula A in a state P,
written P = A, by induction as

Definition 3.

P = N,cr Aiif for alli € I it holds that P |= A;

P E-A ifnot P = A

Py ifP

P = (a)A  if there exists P’ such that P = P' and P’ = A

Support and name permutation are defined as usual (permutation distributes
over all formula constructors). In A, 4; it is required that the indexing set I
has bounded cardinality, by which we mean that |I| < k. We assume that & is
sufficiently large; specifically, we require x > R (so that we may form countable
conjunctions) and x > |STATES|. It is also required that the set of conjuncts
{4; | i € I'} has finite support; this is then the support of the conjunction. This
is strictly weaker than requiring the set to be uniformly bounded, i.e., that there
is a finite set of names supporting all members. Alpha-equivalent formulas are
identified; the only binding construct is in («)A where bn(a) binds into A. In
the last clause we assume that («)A is a representative of its alpha-equivalence
class such that bn(a)#P.



We write T for the empty conjunction and AgA A; for the binary conjunction
Nic (0.1} A;. Bounded and finitely supported disjunction \/ is defined in the usual
way as the dual of conjunction. Universal and existential quantifiers are defined
as conjunction and disjunction over the set of instances. In [23] we expand on
the expressive power and relate to existing logics.

Definition 4. Two states P and Q are logically equivalent, written P = Q, if
for all A it holds that P |E A iff @ &= A.

Theorem 1. (Theorems 6 and 9 in [23]) P~ Q iff P =Q

The implication from left to right is by induction over formulas. The other direc-
tion is by contraposition: if not P ~ @ then there is a distinguishing formula A
such that P = A and not Q E A.

3 Weak bisimulation

The logics and bisimulations considered in [23] are of the strong variety, in the
sense that all transitions are regarded as equally significant. In many models of
concurrent computation there is a special action that is unobservable in the sense
that in a bisimulation, and also in the definition of the action modalities, the
presence of extra such transitions does not matter. This leads to notions of weak
bisimulation and accompanying weak modal logics. For example, a process that
has no transitions is weakly bisimilar to any process that has only unobservable
transitions, and these satisfy the same weak modal logic formulas. We shall here
introduce these ideas into the nominal transition systems, where the presence of
state predicates requires some care in the definitions.

To cater for unobservable transitions assume a special action 7 with empty
support. The following definitions are standard:

Definition 5.

1. P = P’ is defined by induction to mean P = P' or P 1 o = P’.
2. P2 P means P =0 < 0= P'.
3. P3P means P= P’ ifa =1 and P = P’ otherwise.

Intuitively P = P’ means that P can evolve to P’ through transitions with the
only observable content a«. We call this a weak action « and it will be the basis
for the semantics in this section. A

The normal way to define weak bisimilarity is to weaken Q = Q' to Q = Q'
in the simulation requirement. This results in the weak simulation criterion:

Definition 6. A binary relation R on STATES is a weak simulation if R(P,Q)
implies that for all a, P" with bn(a)#Q there exists Q' such that

if P2 P then Q2 Q' and R(P', Q')



However, just replacing the simulation requirement with weak simulation in
Definition [2] will not suffice. The reason is that through the static implication
criterion in Definition[2] an observer can still observe the state predicates directly,
and thus distinguish between a state that satisfies ¢ and a state that does not
but can silently evolve to another state that satisfies ¢:

Example 1.

P——» Q
2

Certainly {(P,Q),(Q,Q)} is a weak simulation according to Definition [} But
Pt ¢ and @ F ¢, thus they are in no static implication. We argue that if ¢
is the only state predicate (in particular, there is no predicate —¢), then the
only test that an observer can apply is “if ¢ then ...,” and here P and @Q will
behave the same; P can pass the test after an unobservable delay. Thus P and
Q@ should be deemed weakly bisimilar, and static implication as in Definition
is not appropriate.

Therefore we need a weak counterpart of static implication where 7 transi-
tions are admitted before checking predicates, that is, if P F ¢ then Q = Q' F .
In other words, () can unobservably evolve to a state that satisfies . However,
this is not quite enough by itself. Consider the following example where P - ¢y,
PF 1, RF ¢ and Q F o, with transitions P — R and Q = R:

Example 2.
T T
P —» R 44— (Q
¥o
o1 $1 %0

Here we do not want to regard P and @) as weakly bisimilar. They do have the
same transitions and can satisfy the same predicates, possibly after a 7 transition.
But an observer of P can first determine that ¢; holds, and then determine
that ¢ holds. This is not possible for @: an observer who concludes ¢; must
already have evolved to R.

Similarly, consider the following example where the only difference between
P and @ is that P = ¢ but not Q F ¢:

Example 3.
@ 0 @
j2 — T~ Q
TN p

P,
Py
¥



Again we do not want to regard P and () as weakly bisimilar. Intuitively, an
observer of @) that determines that ¢ holds must already be at P; and thus have
preempted the possibility to do «, whereas for P, the predicate ¢ holds while
retaining the possibility to do «. For instance, P in parallel with a process of
kind “if ¢ then 4”7 can perform 7 followed by «, but @ in parallel with the same
cannot do that sequence.

In conclusion, the weak counterpart of static implication should allow the
simulating state to proceed through unobservable actions to a state that both
satisfies the same predicate and continues to bisimulate. This leads to the fol-
lowing:

Definition 7. A binary relation R on states is a weak static implication if
R(P,Q) implies that for all ¢ there exists Q' such that

if PE o then Q = Q' and Q'+ ¢ and R(P, Q")

Definition 8. A weak bisimulation is a symmetric binary relation on states
satisfying both weak simulation and weak static implication. We write P = @ to
mean that there exists a weak bisimulation R such that R(P, Q).

In Example 1, {(P,Q), (Q, P),(Q,Q)} is a weak bisimulation. In Examples 2
and 3, P and @ are not weakly bisimilar.

It is interesting to compare this with weak bisimilarities defined for psi-
calculi [I6]. A psi-calculus contains a construct of kind “if ¢ then ...” to test
if a state predicate is true. These constructs may be nested; for instance, “if g
then if @7 then ...” effectively tests if both ¢, and ¢y are true simultaneously.
If state predicates are closed under conjunction, Definition |8| coincides with the
definition of simple weak bisimulation in [16]. In general, however, Definition
is less discriminating. Consider Py = P; =5 Py where for i = 0,1: P; - ;.
Compare it to @ with no transitions where both Q - ¢g and Q F ¢1:

Example 4.
-
) — ) Q
0 047—— %Pl Yo ©1

Here all of Py, P, and @ are weakly bisimilar, unless the predicates are closed
under conjunction, in which case the predicate ¢y A @1 distinguishes between
them. In psi-calculi @ would not be simply weakly bisimilar to Py or P; for the
same reason.

We proceed to establish some expected properties of weak bisimilarity.

Lemma 1. If P ~ Q and P & P owith bn(a)#Q then for some Q' it holds
P ~Q and Q= Q'.

Proof. The proof has been formalised in Isabelle; it is by induction and case
analysis according to Definition



Lemma 2. =~ is an equivariant equivalence relation.

Proof. The proofs of equivariance, reflexivity, symmetry, and transitivity have
been formalised in Isabelle.

4 Weak logic

We here define a Hennessy-Milner logic adequate for weak bisimilarity. Since
weak bisimilarity identifies more states than strong bisimilarity, the logic needs
to be correspondingly less expressive: it must not contain formulas that distin-
guish between weakly bisimilar states. Our approach is to keep the definition of
formulas (Definition [3)) and identify an adequate sublogic.

One main idea is to restrict the action modalities («) to occur only in accor-

dance with the requirement of a weak bisimulation, thus checking for = rather
than for . We therefore define the derived weak action modal operator (o))
in the following way, where (7)?A is defined to mean A if i = 0 and (7)(7)"*A
otherwise.

Definition 9 (Weak action modality).

(ryA=\/(r)'A (o)A = (T)(a)(T)A fora#T

€W

Note that in {{«)) A the names in bn(«) bind into A. As usual we consider formulas
up to alpha-conversion in the standard sense, i.e., to prove a property of a formula
it is enough to prove a property of an alpha-variant. It is then straightforward to
show (and formalise in Isabelle) that {(a))A corresponds to the weak transitions
used in the definition of weak bisimilarity:

Proposition 1. Assume bn(a)#P. Then
PE (o)A iff IP. P2 P andP E A

In particular, for & = 7, we have that (7)) A holds iff A holds after zero or more
T transitions.

Thus a first step towards a weak sublogic is to replace («) by (()) in Def-
inition [3] By itself this is not enough; that sublogic is still too expressive. For
instance, the formula ¢ asserts that ¢ holds in a state; this holds for @ but not
for P in Example 1, even though they are weakly bisimilar.

To disallow ¢ as a weak formula we require that state predicates only occur
guarded by a weak action {(7)). This solves part of the problem. In Example 1 we
can no longer use ¢ as a formula, and the formula (7)) holds of both P and Q.
Still, in Example 1 there would be the formula {(7))—¢ which holds for P but not
for @, and in Example 4 the formula {7))(¢0 A 1) holds for @ but not for Fy.
Clearly a logic adequate for weak bisimulation cannot have such formulas. The
more draconian restriction that state predicates occur immediately under {(7))



would indeed disallow both (7)—¢ and {(7))(vo A ¢1) but would also disallow
any formula distinguishing between P and @ in Examples 2 and 3.

A solution is to allow state predicates under (7)), and never directly under
negation or in conjunction with another state predicate. The logic is:

Definition 10 (Weak formulas). The set of weak formulas is the sublogic of
Definition[3 given by

A w= NA T A | {a)A | (AN

icl

Note that since P = o = P’ holds iff P = P’ we have that ((a){7)A is
logically equivalent to ((«)) A. We thus abbreviate (o)) (T) (AAp) to (a)(AA).
We also abbreviate {(a))(T A ¢) to {a)e.

Compared to Definition[3] the state predicates can now only occur in formulas
of the form (7))(A A ), i.e., under a weak action, and not under negation or
conjunction with another predicate. For instance, in Example 1 above, neither ¢
nor (7)) are weak formulas, and in fact there is no weak formula to distinguish
between P and . Similarly, in Example 4 (7)) (¢o A ¢1) is not a weak formula,
and no weak formula distinguishes between @ and P;.

To argue that the logic still is expressive enough to provide distinguishing
formulas for states that are not weakly bisimilar, consider Example 2 and the
formula (7)) (({7))%0) A ¢1) which holds for P but not for @. Similarly, in Ex-
ample 3 (T)(({a)T) A ¢) holds for P but not for Q.

Definition 11. Two states P and Q are weakly logically equivalent, written
P =Q, if for all weak formulas A it holds that P = A iff Q & A.

Theorem 2. If P~ Q then P = Q

Proof. The proof has been formalised in Isabelle. It is by induction over weak
formulas.

Theorem 3. If P =Q then P~ Q

Proof. The proof has been formalised in Isabelle. The idea is to prove that = is
a bisimulation by contraposition: for any non-bisimilar pair of states there exists
a distinguishing weak formula.

5 Disjunction elimination

As defined in Section [2] disjunction is a derived logical operator, expressed
through conjunction and negation. This is still true in the weak modal logic,
but there is a twist in that neither general conjunctions nor negations may be
applied to unguarded state predicates. The examples in Section [3| demonstrate
why this restriction is necessary: negated or conjoined state predicates in for-
mulas would mean that adequacy no longer holds. Interestingly, we can allow



disjunctions of unguarded predicates while maintaining adequacy; in fact, adding
disjunction would not increase the expressive power of the logic. In this section
we demonstrate this.

The extended weak logic is as follows, where a simultaneous induction defines
both extended weak formulas (ranged over by F) and preformulas (ranged over
by B) corresponding to subformulas with unguarded state predicates.

Definition 12 (Extended weak formulas E and preformulas B).
E ui= Neg B | 2E | {e)E | (T)B

B = EAB | ¢ | VB

The last clause in the definition of preformulas is what distinguishes this
logic from the logic in Definition (Thus an extended weak formula is also an
ordinary weak formula if it does not contain a disjunction of unguarded state
predicates.) For instance, {(7))(¢o V ¢1) is an extended weak formula, as is

(A BYT) A o) V(W) T) A )

saying that it is possible to do a sequence of unobservable actions such that either
continuing with 3 and satisfying (( hold, or continuing with + and satisfying ¢,
hold.

Theorem 4. For any extended weak formula E there is an (ordinary) weak
formula A(E) such that E = A(E).

Proof. The idea is to push disjunctions in preformulas to top level using the
fact that (finite) conjunction distributes over disjunction, and then use the fact
that the action modality distributes over disjunction to transform disjunctions
of preformulas into disjunctions of weak formulas.

6 State predicates as actions

We shall here demonstrate that omitting state predicates does not really entail
a loss of expressiveness: for any transition system T there is another transition
system S(T) where state predicates are replaced by self-loops. In this section
we formally define this transformation & and derive some of its properties. To
formulate this idea we introduce the notation STATEST to mean the states in the
transition system T, and similarly for actions, bn, transitions, bisimilarity, etc.

Definition 13. The function S from transition systems to transition systems is
defined as follows:

— STATESS(T) = STATEST

— ACTg(T) = ACTT & PREDT

— bng(r)(a) = bnr(a) if @ € ACTT; bugr)(p) =0 if ¢ € PREDT
— PREDg(T) = () =0



— P Sgey P if P Sp P (for o € AcTr); P Sog0my P if P b ¢ (for
¢ € PREDT)

It is easy to see that if T is a transition system then so is S(T). In particular
equivariance of — sty follows from equivariance of — and Fr and the fact that
the union of equivariant relations is equivariant.

Theorem 5. If P~ Q then P SS(T) Q.
Proof. We prove that ~r is a weak S(T)-bisimulation.
Theorem 6. If P QS(T) Q then P ~r1 Q.

Proof. We prove that éS(T) is a weak T-bisimulation. It needs a lemma that if
P=Q= Rand P= R then Q =~ R.

A corresponding transformation of weak formulas turns state predicates into
actions in the following way.

Definition 14. The partial function S from weak formulas on the transition
system T to weak formulas on the transition system S(T) is defined by

ST (((THA) A ) = () S(A)
and is homomorphic on the first three cases in Definition [10

S is not total since a formula {(7))(A A ¢) is in its domain only when A =
{(T)H A’ for some A’. Tt is easy to see that S is injective and surjective, i.e., every
weak formula A on S(T) has a unique formula B on T such that S(B) = A. We
write S~! for the inverse of S. Thus

STH(eNA) = (IS TH(A) Aw)
and S~ is homomorphic on all other operators.
Theorem 7. P =gy A iff P v S7'(A)

Proof. By induction over weak formulas on S(T).

An interesting consequence is that to express the distinguishing formulas
guaranteed by Theorem [3] it is enough to consider formulas in dom(S), i.e., in
the last clause of Definition[I0] it is enough to consider A = (7)) A’. The reason is
that if P ¢ Q then by Theorem [ also P #s(1) @, which by Theorem [3| means
there is a distinguishing formula B for P and @ in §(T), which by Theorem
means that S™!(B) is a distinguishing formula in T.

Finally, consider the apparently more appealing definition of S by

SN (AN @) = (p)S(A)

Here S is total and a bijection, but with this definition, Theorem [7] fails. A
counterexample is A = ~(a) T, P Fr ¢ with P 551 Q and P %1 Q for some
a # 7, where @ has no outgoing transitions, cf. the diagrams below:



—a
¥

Since P é’>5(T) Q@ and Q has no (o)) action, we have that

P s (eh~(a)T

The only state that satisfies ¢ also has an {(«)) action, thus it does not hold that

P e () ((={a)T) A )

7 Applications

In our earlier work [23] we outlined how several advanced process algebras can
be given a semantics in terms of nominal transition systems. For all of these the
present paper thus defines weak bisimulation, a weak HML, and an adequacy
theorem. We here comment briefly on some of them.

The pi-calculus already has several notions of weak bisimulation, and Defi-
nition [§] corresponds to the early weak bisimulation. In the pi-calculus there are
no state predicates, thus the weak static implication is unimportant. There is an
HML adequate for strong bisimulation [22] but we are not aware of a weak HML.
Our result here contributes a weak HML adequate for early weak bisimulation.

The applied pi-calculus [I] comes equipped with a labelled transition system
and a notion of weak labelled bisimulation. States contain a record of emitted
messages; this record has a domain and can be used to equate open terms M and
N modulo some rewrite system. The definition of bisimulation requires bisimilar
processes to have the same domain and equate the same open terms, i.e., to be
strongly statically equivalent. In order to model this strong static equivalence in
our weak logic, we add state predicates “z € dom” and “M = N” to the labelled
transition system. Since these are invariant under silent transitions, weak and
strong static implication coincide, and our weak HML is adequate for Abadi and
Fournet’s early weak labelled bisimilarity.

The spi-calculus [2] has a formulation as an environment-sensitive labelled
transition system [4] equipped with state formulae ¢. As above, adding state
predicates “z € dom” to this labelled transition system makes our weak HML
adequate with respect to Boreale’s weak bisimilarity.

Our earlier work also describes how to make nominal transition systems of
multiple-labelled transition systems [I1], the explicit fusion calculus [26], the
concurrent constraint pi-calculus [7], and psi-calculi [I6]. These calculi can be-
come interesting applications of our ideas since they have actions with binders
and nontrivial state predicates. Each of them has a special unobservable action,
but until now only psi-calculi have a notion of weak labelled bisimulation (as
remarked in Section , and none have a weak HML. Through this paper they
all gain both bisimulation and logic, although more work is needed to establish
how compatible the bisimulation equivalence is with their respective syntactic



constructs. A complication with all but the multiple-labelled systems is that the
natural formulation of bisimulation makes use of substitutive effects (or in psi-
calculi, the similar assertion extensions) which are bisimulation requirements on
neither predicates nor actions. In order to map them into our framework these
would need to be cast as actions. This could be an interesting area of further
research.

8 Related work

The first published HML is by Hennessy and Milner (1980-1985) [I3I21J14]. They
work with image-finite CCS processes, where finite (binary) conjunction suffices
for adequacy, and define both strong and weak versions of the logic. Milner et
al. (1993) [22] give a strong HML for the pi-calculus.

Kozen’s modal p-calculus (1983) [18] subsumes several other weak temporal
logics including CTL* (Cranen et al. 2011) [9], and can encode weak transi-
tions using least fixed points. Dam (1996) [10] gives a modal p-calculus for the
pi-calculus, treating bound names using abstractions and concretions, and pro-
vides a model checking algorithm. Bradford and Stevens (1999) [5] give a generic
framework for parameterising the u-calculus on data environments, state predi-
cates, and action expressions. The logic defined in the present paper can encode
the weakest fixpoint operator of p-calculi by a disjunction of its finite unrollings,
in the same way as the strong version of our logic [23].

There are several weak HMLs for variants of the pi-calculus. Hiittel and Ped-
ersen (2007) [15] define a weak HML for an applied pi-calculus with a subterm-
convergent rewrite system augmented with test rules. Koutavas and Hennessey
(2012) [I7] give a weak HML for a higher-order pi-calculus with both higher-order
and first-order communication using an environment-sensitive LTS. The conjunc-
tion operator of the logic is infinite, without an explicit bound on its cardinality.
Without such a bound the set of formulas is not well-defined: let F be the set
of all formulas, and consider the subset of formulas S := {\ ,.; A | I C F}. By
Cantor’s Theorem |S| > |F|, which is a contradiction. Xu and Long (2015) [27]
define a weak HML with countable conjunction for a purely higher-order pi-
calculus. The adequacy proof uses stratification.

There are several extensions of HML with spatial modalities. The one most
closely related to our logic is by Berger et al. (2008) [3]. They define an HML
with both strong and weak action modalities, fixpoints, spatial conjunction and
adjunction, and a scope extrusion modality, to study a typed value-passing pi-
calculus with selection and recursion. The logic has three (may, must, and mixed)
proof systems that are sound and relatively complete.

9 Conclusion

Nominal transition systems include both labelled transitions and state predi-
cates, and can therefore accommodate a wide variety of formalisms. We have
defined weak bisimulation and a corresponding weak modal logic on nominal



transition systems, and proved the adequacy result: logical equivalence coin-
cides with weak bisimilarity. The use of finitely supported infinite conjunctions
is critical for this result.

A key insight is the notion of weak static implication: to bisimulate a state
satisfying a state predicate it must be possible to take zero or more unobservable
transitions to reach a state that both satisfies the predicate and continues to
bisimulate. Another important conclusion is that in the logic, state predicates
must be guarded by a weak action and cannot directly be combined conjunctively
or negated. They may be combined disjunctively, but doing so does not increase
expressiveness, since the action modality distributes over disjunction.

Many formalisms, among them most process algebras, feature labelled tran-
sitions but no state predicates. It is a folklore fact that this entails no loss of
expressiveness. Here we formulate this as a theorem, showing that checking a
predicate corresponds to executing a transition leading back to the same state.
Formally this is done through a transformation that replaces predicates with
loops, and showing that weak bisimilarity is precisely preserved. We also show
how the so obtained weak modal logic correlates with the original one.

Nominal transition systems constitute a possible semantics for many for-
malisms, and an interesting idea for further work is to explore operators on
them. For instance, a parallel composition operator would enable closer rela-
tions to existing process algebras. There are many different ways to approach
this, and to gain general results it would be interesting to define classes of opera-
tors, for example through general formats, and explore their properties. There is
a huge literature on operator formats for process algebras, of which a few are on
nominal process algebras [12/8], but as we understand it none yet treat nominal
transition systems in their full generality.
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