
HAL Id: hal-01657337
https://inria.hal.science/hal-01657337

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Full-Abstraction for Must Testing Preorders
Giovanni Bernardi, Adrian Francalanza

To cite this version:
Giovanni Bernardi, Adrian Francalanza. Full-Abstraction for Must Testing Preorders. 19th Interna-
tional Conference on Coordination Languages and Models (COORDINATION), Jun 2017, Neuchâtel,
Switzerland. pp.237-255, �10.1007/978-3-319-59746-1_13�. �hal-01657337�

https://inria.hal.science/hal-01657337
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Full-abstraction for Must Testing Preorders
(Extended Abstract)

Giovanni Bernardi and Adrian Francalanza

1 Université Paris-Diderot, IRIF; gio@irif.fr
2 University of Malta, Msida; adrian.francalanza@um.edu.mt

Abstract. The client must preorder relates tests (clients) instead of processes
(servers). The existing characterisation of this preorder is unsatisfactory for it
relies on the notion of usable clients which, in turn, are defined using an exis-
tential quantification over the servers that ensure client satisfaction. In this paper
we characterise the set of usable clients for finite-branching LTSs, and give a
sound and complete decision procedure for it. We also provide a novel coinduc-
tive characterisation of the client preorder, which we use to argue that the preorder
is decidable, thus positively answering the question opened in [6,3].

1 Introduction

The standard testing theory of De Nicola–Hennessy [12,15] has recently been employed
to provide theoretical foundations for web-services [9,25] (where processes denote
servers). To better fit that setting, in [6] this theory has been enriched with preorders
for clients (tests) and peers (where both interacting parties mutually satisfy one an-
other). Client preorders also tie testing theory with session type theory, as is outlined
in [2]: they are instrumental in defining semantic models of the Gay & Hole subtyping
[14] for first-order session types [3, Theorem 6.3.4] and [5, Theorem 5.2].

The testing preorders for clients and peers are contextual preorders, defined by com-
paring the capacity of either being satisfied by servers or the capacity of peers to mu-
tually satisfy one another. This paper focuses on the client preorder due to the must
testing relation [12,15]: a client r2 is better than a client r1, denoted r1 @∼clt r2, when-
ever every server p that must pass r1 also must pass r2. Although this definition is
easy to understand, it suffers from the endemic universal quantification over contexts
(servers) and, by itself, does not give any effective proof method to determine pairs in
the preorder. To solve this problem, contextual preorders usually come equipped with
behavioural characterisations that avoid universal context quantification thereby facili-
tating reasoning. In [6] the authors develop such characterisations for the client and the
peer must preorders; these preorders are however not fully-abstract, for they are defined
modulo usable clients, i.e., clients that are satisfied by some server.

Usability is a pivotal notion that appears frequently in the literature of process cal-
culi and web-service foundations, cf. viability in [18,26] and controllability in [8,24],
and has already been studied, albeit for restricted or different settings, in [18,25,7,6,26].
In general though, the characterisation of usability is problematic, for solving it requires
finding the conditions under which one can either (a) construct a server p that satisfies

c.(a. 1 + b. 0)

a. 1 + b. 0

1 0

c

a b

c.(a. 0 + b. 1)

a. 0 + b. 1

01

c

ab

r1 + r2

a. 1 + b. 0

01

a. 0 + b. 1

1

c c

ba a b

r1 r2 r1 + r2

Fig. 1. LTS depictions of the behaviours described in Eq. (1)

a given client, or (b) show that every p does not satisfy a given client. Whereas proving
(b) is complicated by the universal quantification over all servers, the proof of (a) is
complicated by the non-deterministic behaviour of clients. In particular, the approach
in (a) is complicated because client usability is not compositional. For instance consider
the following clients, whose behaviours are depicted in Figure 1:

r1 = c.(a. 1 + b. 0) and r2 = c.(a. 0 + b. 1) (1)

where 1 denotes satisfaction (success). Both clients are usable, since r1 is satisfied by
the server c.a. 0 , and r2 is satisfied by server c.b. 0. However, their composition r1 + r2
is not a usable client, i.e., p 6must r1 + r2 for every p; intuitively, this is because
r1 and r2 impose opposite constraints on the processes that pass one or the other (e.g.,
c.(a. 0 + b. 0) does not satisfy r1 + r2). A compositional analysis is even more unwieldy
for recursive tests. For instance, the client µx.

(
c.(a. 1 + b.x) + c.(a. 0 + b. 1)

)
is not

usable because of the non-determinism analogous to r1 + r2, and the unsuccessful
computations along the infinite trace of interactions (c.b)∗; this argument works because
infinite unsuccessful computations are catastrophic wrt. must testing.

This paper presents a sound and complete characterisation for usable clients with
finite-branching LTSs. Through the results of [6] — in particular, the equivalence of us-
ability for clients and peers stated on [6, pag. 11] — our characterisation directly yields
a fully-abstract characterisation for the must preorder for clients and peers. We go a step
further and use this characterisation to develop a novel coinductive and fully-abstract
characterisation of @∼clt, which we find easier to use than the one of [6] when proving
inequalities involving recursive clients. This coinductive characterisation turns out to
be informed by our study on usability, and differs from related coinductive character-
isations for the server preorder [18,25] in a number of respects. Finally, our inductive
definition for usable clients also provides deeper insights into the original client pre-
order of [6]: we show that limiting contexts to servers offering only finite interactions
preserves the discriminating power of the original preorder. Our contributions are:

– a fully-abstract characterisation of usable clients, Theorem 2;
– a coinductive, fully-abstract characterisation of the client preorder @∼clt, Theorem 5;
– a contextual preorder @∼

f
clt that is equivalent to @∼clt but relies only on non-recursive

contexts Theorem 6;
– decidability results for usable clients and the client preorder, Theorem 7.

The solutions devised here addressing client usability are directly relevant to con-
trollability issues in service-oriented architectures [21,30]. Our techniques may also be
extended beyond this remit. The ever growing sizes of test suites, together with the ubiq-
uitous reliance on testing for the increasing quality-assurance requirements in software
systems, has directed the attention to non-deterministic (or flaky) tests. Such tests arise
frequently in practice and their impact on software development has been the subject
of various studies [22,20,19]. By some measures, ≈ 4.56% of test failures of the TAP
(Test Anything Protocol) system at Google are caused by flaky tests [19]. We believe
that our concepts, models and procedures can be extended to such testing methodolo-
gies to analyse detrimental non-deterministic behaviour arising in test suites, thereby
reducing the gap between empirical practices and theory.

Structure of the paper: Section 2 outlines the preliminaries for client must testing.
Section 3 tackles client usability and gives a fully-abstract definition for it. Section 4
uses this result to give a coinductive characterisation for client preorders. In Section 5
we present expressiveness results for servers with finite interactions together with de-
cidability results for client usability and the client testing preorder. Section 6 concludes.

2 Preliminaries

Let a, b, c, . . . ∈ Act be a set of actions, and let τ, X be two distinct actions not in Act; the
first denotes internal unobservable activity whereas the second is used to report success
of an experiment. To emphasise their distinctness, we use α ∈ Actτ to denote Act∪ { τ },
and similarly for λ ∈ ActτX. We assume Act has an involution function, with a being
the complement to a.

A labelled transition system, LTS, consists of a triple 〈Proc, ActτX, −→〉, where
Proc is a set of processes and −→ ⊆ (Proc × ActτX × Proc) is a transition relation

between processes decorated with labels drawn from the set ActτX; we write p
λ
−→ q

in lieu of (p, λ, q) ∈−→. An LTS is finite-branching if for all p ∈ Proc and for all

λ ∈ ActτX, the set { q | p
λ
−→ q } is finite. For s ∈ (ActX)? we also have the standard

weak transitions, p
s
=⇒ q, defined by ignoring the occurrences of τs.

We limit ourselves to finite-branching LTSs. Whenever sufficient, we describe such
LTSs using a version of CCS with recursion [23] and augmented with a success oper-
ator, denoted as 1. The syntax of this language is depicted in Figure 2 and assumes a
denumerable set of variables x, y, z . . . ∈ Var. For finite I, we use the notation

∑
i∈I pi

to denote the resp. sequence of summations p1 + . . . + pn where I = 1..n. Similarly,
when I is a non-empty set, we define

⊕
i∈I pi =

∑
i∈I τ.pi to represent process internal

choice. The transition relation p
λ
−→ q between terms of the language is the least one

determined by the (standard) rules in Figure 2. As usual, µx.p binds x in p and we iden-
tify terms up to alpha conversion of bound variables. The operation p{µx.p/x} denotes
the unfolding of the recursive process µx.p, by substituting the term µx.p for the free
occurrences of the variable x in p.

To model the interactions taking place between the server and the client contracts,
we use the standard binary composition of contracts, p || r, whose operational semantics

Syntax p, q, r, o ∈ CCSµ ::= 0 | 1 | α.p | p + q | µx.p | x
Semantics

1
X
−→ 0

(A-OK)
α.p

α
−→ p

(A-PRE)
µx.p

τ
−→ p{µx.p/x}

(A-UNFOLD)

p
λ
−→ p′

p + q
λ
−→ p′

(R-EXT-L)
q

λ
−→ q′

p + q
λ
−→ q′

(R-EXT-R)

Contract Composition Semantics

p
λ
−→ p′

p || r
λ
−→ p′ || r

(P-SRV) r
λ
−→ r′

p || r
λ
−→ p || r′

(P-CLI) p
a
−→ p′ r

a
−→ r′

p || r
τ
−→ p′ || r′

(P-SYN)

Fig. 2. Syntax and Semantics of recursive CCSµ with 1.

is given in Figure 2. A computation consists of sequence of τ actions of the form

p || r = p0 || r0
τ
−→ p1 || r1

τ
−→ . . .

τ
−→ pk || rk

τ
−→ . . . (2)

It is maximal if it is infinite, or whenever pn || rn is the last state then pn || rn
τ

6−→. We

say (2) is client-successful if there exists some k ≥ 0 such that rk
X
−→.

Definition 1 (Client Testing preorder [6]). We write p must r if every maximal com-
putation from p || r is client-successful, and write r1 @∼clt r2 if, for every p, p must r1
implies p must r2. �

Although intuitive, the universal quantification on servers in Definition 1 complicates
reasoning about @∼clt. One way of surmounting this is by defining alternative characteri-
sations for @∼clt of Definition 1, that come equipped with practical proof methods.

2.1 Characterising the client preorder

In [6, Def. 3.10, pg. 9], an alternative characterisation for the preorder @∼clt is given and
proven to be sound and complete. We recall this characterisation, restating the resp.
notation. The alternative characterisation relies on unsuccessful traces: r

s
=⇒6X r′ means

that r may weakly perform the trace of external actions s reaching state r′ without pass-
ing through any successful state; in particular neither r nor r′ are successful. Formally,

r
s
=⇒6X r′ is the least relation satisfying (a) r

X
6−→ implies r

ε
=⇒6X r, and (b) if r′′

s
=⇒6X r′

and r
X
6−→ then (i) r

a
−→ r′′ implies r

as
=⇒6X r′, and (ii) r

τ
−→ r′′ implies r

s
=⇒6X r′. The

unsuccessful acceptance set of r after s, are defined as

Acc6X(r, s) = { S (r′) | r
s
=⇒6X r′

τ

6−→ } (3)

where S (r) = { a ∈ Act | r
a
−→} denotes the strong actions of r. Intuitively, for the client

r, the set Acc6X(r, s) records all the actions that lead r out of potentially deadlocked (i.e.
stable) states that it reaches performing unsuccessfully the trace s. It turns out that these
abstractions are fundamental to characterise must-testing preorders and also compliance

preorders [3,6,25]. In the sequel, we shall also use r
α
−→6Xr′ whenever r

α
−→ r′, r

X
6−→

and r′
X
6−→ hold.

Example 1. For client r3 = τ.(1 + τ. 0) we have Acc6X(r3, ε) = ∅, but for r′3 = r3 + τ. 0
we have Acc6X(r′3, ε) = { ∅ }. We also have Acc6X(r′′3 , ε) = ∅ for r′′3 = r3 + µx.x. �

Note that, whenever Acc6X(r, s) = ∅, then any sequence of moves with trace s from r
to a stable reduct r′ must pass through a successful state, for otherwise we would have
S (r′) ∈ Acc6X(r, s) for some r′.

Definition 2 (Usable Clients). U = { r | there exists p. p must r }. �

Example 2. Recall clients r1 and r2 from (1) in Section 1. We show that despite being
individually usable, the sum of these clients is not: p 6must r1 + r2 for every p. Fix a
process p. If p does not offer an interaction on c, then, plainly, p 6must r1 + r2. Suppose

that p
c
−→ p′; to prove p 6must r1 + r2, it suffices to show that there exists a client r

reached by r1 + r2 by performing action c (i.e., r ∈ { a. 1 + b. 0, a. 0 + b. 1 }) such
that p′ 6must r. Indeed, for r = a. 1 + b. 0, if p′ must r implies p′ has to interact on a
and not on b, but then such a p′ does not satisfy the derivative r = a. 0 + b. 1, i.e.,
p′ 6must r (because the composition p′ || r is stable but not client-successful). Using a
symmetric argument we deduce that if p′ must a. 0 + b. 1 then p′ 6must a. 1 + b. 0,
and thus no process p exists that satisfies r1 + r2; note that the argument above crucially
exploits the external non-determinism of r1 + r2. The client µx.

(
c.(a. 1 + b.x) + c.b. 1

)
from Section 1 is unusable for similar reasons, the analysis being more involved due to
infinite computations. �

We let (r after6X s) = { r′ | r
s
=⇒6X r′ }, and call the set (r after6X s) the residuals

of r after the unsuccessful trace s. We extend the notion of usability and say that r is
usable along an unsuccessful trace s whenever r usbl6X s, which is the least predicate
satisfying the conditions (a) r usbl6X ε whenever r ∈ U, and (b) r usbl6X as whenever
(i) r ∈ U and (ii) if r

a
=⇒ 6X then

⊕
(r after6X a) usbl6X s. If r usbl6X s, any state

reachable from r by performing any unsuccessful subsequence of s is usable [6]. Finally,
let uaclt(r, s) = { a ∈ Act | r

sa
=⇒6X implies r usbl6X sa } denote all the usable actions for

a client r after the unsuccessful trace s.

Definition 3 (Semantic client-preorder). Let r1 -clt r2 if, for every s ∈ Act? such
that r1 usbl6X s, we have (i) r2 usbl6X s, (ii) for every B ∈ Acc6X(r2, s) there exists a
A∈Acc6X(r1, s) such that A ∩ uaclt(r1, s) ⊆ B, (iii) r2

s
=⇒6X implies r1

s
=⇒6X . �

Theorem 1. In any finite branching LTS, r1 @∼clt r2 if and only r1 -clt r2.

Proof. Follows from [6, Theorem 3.13] and König’s Infinity Lemma.

Definition 3 enjoys a few pleasing properties and, through Theorem 1, sheds light
on behavioural properties of clients related by @∼clt. Concretely, it shares a similar struc-
ture to well-studied characterisations of the (standard) must-testing preorder of [12,15],
where process convergence is replaced by client usability, and traces and acceptance
sets are replaced by their unsuccessful counterparts (modulo usable actions). Unfor-
tunately, Definition 3 has a major drawback: it is parametric wrt. the set of usable
clients U (Definition 2), which relies on an existential quantifications over servers.
As a result, the definition is not fully-abstract, and this makes it hard to use as proof
technique and to ground decision procedures for @∼clt on it.

3 Characterising usability

We use the behavioural predicates of Section 2.1, together with the new predicate in
Definition 4, to formulate the characterising properties of the set of usable clients U
(Proposition 1). We use these predicates to construct a set Ubhv that coincides with U
(Theorem 2); this gives us an inductive proof method for determining usability.

Definition 4. We write r ⇓X whenever for every infinite sequence of internal moves

r
τ
−→ r1

τ
−→ r2

τ
−→ . . ., there exists a state ri such that r1

X
−→. �

Recalling Eq. (3), let Acc6X(r) = Acc6X(r, ε). Proposition 1 crystallises the charac-
teristic properties of usable clients, providing a blue print for our alternative definition
Definition 5. Instead of giving a direct proof of this proposition, we obtain it indirectly
as consequence of our other results.

Proposition 1. For every r ∈ Proc, r ∈ U if and only if
1. r ⇓X, and
2. if A ∈ Acc6X(r), then there exists a ∈ A.

(
r

a
=⇒6X implies

⊕
(r after 6X a) ∈ U

)
. ut

The proposition above states that a client r is usable if and only if, for every potentially
deadlocked state r′ reached via silent moves by r, there exists an action a that leads r′

out of the potential deadlock, i.e., into another state r′′where r′′ is certainly usable.

Example 3. We use Proposition 1 to discuss the (non) usability of clients from previous
example. Recall r3 = τ.(1 + τ. 0), r′3 = r3 + τ. 0 and r′′3 = r3 + µx.x from Example 1.
Since we have r3 ⇓X and Acc6X(r3) = ∅, r3 satisfies both condition of Proposition 1, with
the second one being trivially true. As a consequence r3 is usable, and indeed 0 must
r3. On the contrary, we have Acc6X(r′3) = { ∅ }, thus r′3 violates Proposition 1(2) and
thus r′3 is unusable. Client r′′3 is unusable as well, but violates Proposition 1(1) instead.
Conversely, client r′′′3 = r3 + τ.(1 + µx.x) satisfies both conditions of Proposition 1, and
it is usable. For instance, 0 must r′′′3 .

A more involved client is r1 + r2 from Example 2. There we proved that r1 +

r2 < U, and indeed r1 + r2 does not satisfy Proposition 1(2). This is true because
Acc6X(r1 + r2) = { { c } }, and r′ < U, where

r′ =
⊕(

(r1 + r2) after6X c
)
= τ.(a. 1 + b. 0) + τ.(a. 0 + b. 1).

In turn, the reason why r′ is not usable is that Acc6X(r′) = { { a, b } }, and Proposition 1(2)
requires us to consider every set in { { a, b } }— we have only { a, b } to consider — and
show that for some action a′ ∈ { a, b },

⊕
(r′ after 6X a′) ∈ U. It turns out that neither

action in { a, b } satisfies this condition. For instance, in the case of action b, we have⊕
(r′ after 6X b) = τ. 1 + τ. 0 and Acc6X(τ. 1 + τ. 0) = { ∅ }, so

⊕
(r′ after 6X b) violates

Proposition 1(2) and as a result
⊕

(r′ after6X b) < U. The reasoning why action a is
not a good candidate either is identical. �

Definition 5. Let F : P(Proc) −→ P(Proc) be defined by letting r ∈ F (S) whenever

1. r ⇓X, and
2. if A ∈ Acc6X(r), then there exists an a ∈ A.

(
r

a
=⇒6X implies

⊕
(r after6X a) ∈ S

)
.

We letUbhv = µx.F (x), the least fix-point of F . �

The function F is continuous over the CPO 〈P(Proc),⊆〉, thus Kleene fixed point
theorem [31, Theorem 5.11] ensures that µx.F (x) (the least fix-point of F) exists and
is equal to

⋃∞
n=0 F

n(∅) where F 0(S) = S and F n+1(S) = F (F n(S)).
The bulk of the soundness result follows as a corollary from the next lemma, which

also lays bare the role of non-recursive servers in proving usability of clients.

Lemma 1. For every n ∈ N and r ∈ Proc, r ∈ F n(∅) implies that there exists a non-
recursive server p such that p must r. ut

An inductive argument is used to prove that Ubhv is complete wrt. U, where we
define the following measure over which to perform induction. We let MC(r, p) denote
the set of maximal computations of a composition r || p and, for every computation
c ∈ MC(r, p), we associate the number #itr(c) denoting the number of interactions that
take place between the initial state of c, and the first successful state of the computation c
(#itr(c) = ∞ whenever c is unsuccessful). Let itr(r, p) = max{ #itr(c) | c ∈ MC(r, p) }.
For instance, if r = µx.a.x+b. 1, we have itr(r, a.a.b. 0) = 3, but itr(r, µx.a.x + b. 0) = ∞.

Lemma 2. Let T be a tree with root v. If T is finite branching and it has a finite number
of nodes, then the number of paths v −→ . . . is finite. ut

Lemma 3. In a finite branching LTS, p must r implies the number itr(r, p) is finite.

Proof. If p must r, every c ∈ MC(r, p) reaches a successful state after a finite number of
reductions. Since the number of interactions is not more than the number of reductions:

for every c ∈ MC(r, p). #itr(c) ∈ N (4)

A set of successful computations from r || p, e.g., MC(r, p), may also be seen as a com-
putation tree, where common prefixes reach the same node in the tree. In general, such
a tree may have infinite depth. Consider the computation tree T obtained by truncating
all the maximal computations of r || p at their first successful state, and let TMC(r, p)
be the set of all the computations obtained this way. It follows that

{ #itr(c) | c ∈ MC(r, p) } = { #itr(c) | c ∈ TMC(r, p) } (5)

r

r2r110 . . .

a a a a

a a a
X

p

a

r′

1

0

τ
b

a
X

q

0

τ
b

a

Fig. 3. Servers and clients to discuss the hypothesis in Lemma 3

From itr(r, p) = max{ #itr(c) | c ∈ MC(r, p) }, (4) and (5) we know that that itr(r, p) is
finite if the set { c | c ∈ TMC(r, p) } is finite. This will follow from Lemma 2 if we
prove that the tree T has a finite number of nodes. By the contrapositive of König’s
Lemma [17,16],since every node in the tree T above is finitely branching, and there are
no infinite paths, then T necessarily contains a finite number of nodes. By Lemma 2,
{ c | c ∈ TMC(r, p) } must also be finite, and hence we can put a (finite) natural number
itr(r, p) ∈ N as an upper bound on the number of interactions required to reach success.

ut

If the LTS is not image-finite then Lemma 3 is false. To see why, consider the infi-
nite branching client r and the server p depicted in Figure 3. Since r engages in finite
sequences of a actions which are unbounded in size, and the p offers any number of
interactions on action a, we have that p must r, but the set MC(r, p) contains an infinite
amount of computations, and the number itr(r, p) is not finite. Dually, even if the LTS of
a composition r || p is finite branching and finite state, it is necessary that p must r for
itr(r, p) to be finite. Lemma 3 lets us associate a rank to every usable client r, defined
as rank(r) = min{ itr(r, p) | p must r }. The well-ordering of N ensures that rank(r)
is defined for every usable r. When defined, the rank of a client r gives us information
about its usability,3 where we can stratifyU as follows:

U =
⋃

i∈NU
i, whereUi = { r ∈ Proc | rank(r) = i } (6)

Lemma 4. For every i ∈ N, r ∈ Ui implies r ∈ F (F j(∅)) for some j ≤ i. ut

We are now ready to prove the main result of this section.

Theorem 2 (Full-abstraction usability). The setsU andUbhv coincide.

Proof. To show U ⊆ Ubhv, pick an r ∈ U. By (6), r ∈ Ui for some i ∈ N, and by
Lemma 4 we obtain r ∈ F j(∅) ⊆ Ubhv for some j ∈ N+. To show Ubhv ⊆ U, pick an
r∈Ubhv. Definition 5 ensures thatUbhv ⊆

⋃∞
n=0 F

n(∅), thus r ∈ F n(∅) for some n ∈ N.
Lemma 1 implies that r∈U. The reasoning applies to any r∈Ubhv, thusUbhv⊆U. ut

4 The client preorder revisited

By combining the definition of -clt withUbhv of Definition 5, Theorem 2 yields a fully-
abstract characterisation of the client preorder @∼clt. In general, however, this charac-
terisation still requires us to consider an infinite number of (unsuccessful) traces to

3 Function min is not defined for empty sets, thus rank(r) is undefined whenever r is unusable.

establish client inequality. In this section, we put forth a novel coinductive definition
for the client preorder and exploit the finite-branching property of the LTS to show that
this definition characterises the contextual preorder @∼clt, Theorem 5. We also argue that
this new characterisation is easier to use in practice than Definition 3, a claim that is
substantiated by showing how this coinductive preorder can be used to prove the sec-
ond result in this section, namely that servers offering a finite amount of interactions are
sufficient and necessary to distinguish clients, Theorem 6. Subsequently, in Theorem 7,
we also show that the coinductive preorder is decidable for our client language.

Example 4. The use of -clt is hindered, in practice, by the universal quantification over
traces in its definition. Consider, for instance, clients r4 and r5,

r4 = a. 1 + µy.(a.r′′3 + b.y + c. 1) and r5 = (µz.(b.z + c. 1)) + d. 1

where r′′3 = (τ.(1 + τ. 0)) + µx.x from Example 1. One way to prove r4 @∼clt r5 amounts
in showing that r4 -clt r5, even though this task is far from obvious. Concretely, the
definition of -clt requires us to show that for every trace s ∈ Act? where r4 usbl6X s
holds, clauses (i), (ii) and (iii) of Definition 3 also hold. In this case, there are an infinite
number of such unsuccessful traces s to consider and, a priori, there is no clear way how
to do this in finite time. Specifically, there are (unsuccessful) traces that r4 can perform
while remaining usable at every step, such as s = bn, but also (unsuccessful) traces
that r4 cannot perform (which trivially imply r4 usbl6X s according to the definition in
Section 2.1), such as s = d(bn), s = (db)n or s = (ac)n.

The definition of r4 usbl6X s does however rule out a number of traces to con-
sider, and Definition 5 helps us with this analysis. For instance, for s = a, we have
¬(r4 usbl6X a) because

⊕
(r4 after6X a) = (τ. 1+τ.r′′3 + τ. 0+τ.µx.x) and, by using sim-

ilar reasoning to that in Example 3 for r′′3 , we know that ¬((r4 after 6X a) ⇓X) which
implies

⊕
(r4 after6X a) < Ubhv and, by Theorem 2, we have

⊕
(r4 after 6X a) < U. ut

To overcome the problems outlined in Example 4, we identify three properties of
the preorder @∼clt, stated in Lemma 5, which partly motivate the conditions defining the
transfer function G in Definition 6. Conditions (ii) and (iii) are explained in greater
detail as discussions to points (2) and (3c) of Definition 6 below.

Lemma 5. r1 @∼clt r2 implies (i) if r2
τ
−→6Xr′2 then r1 @∼clt r′2; (ii) if r2

X
6−→ then r1

X
6−→

(iii) if r2
a
−→6X then

(
r1

a
=⇒6X and

⊕
(r1 after 6X a) @∼clt

⊕
(r2 after 6X a)

)
. ut

Definition 6. Let G : P(Proc × Proc) −→ P(Proc × Proc) be the function such that
(r1, r2) ∈ G(R) whenever all the following conditions hold:

1. if r2
τ
−→6Xr′2 then r1 R r′2

2. if r2
X
6−→ then r1

X
6−→

3. if r1 ∈ Ubhv then
(a) r2 ∈ Ubhv

(b) if B ∈ Acc6X(r2) then there exists an A ∈ Acc6X(r1) such that A ∩ uabhv(r1) ⊆ B
(c) if r2

a
−→6X then

(
r1

a
=⇒6X and

⊕
(r1 after6X a) R

⊕
(r2 after6X a)

)

where uabhv(r) = { a | r
a
=⇒6X implies

⊕
(r after6X a) ∈ Ubhv }. Let 4clt = νx.G(x)

where νx.G(x) denotes the greatest fixpoint of G. The function G is monotone over the
complete lattice 〈P(Proc × Proc),⊆〉 and thus νx.G(x) exists. ut

The definition of G follows a similar structure to that of the resp. definitions that coin-
ductively characterise the must preorder for servers [18,25]. Definition 6, however,
uses predicates for clients, i.e., unsuccessful traces and usability, in place of the predi-
cates for servers, i.e., traces and convergence. Note, in particular, that we use the fully-
abstract version of usability,Ubhv, from Definition 5 and adapt the definition of usable
actions accordingly, uabhv(r). Another subtle but crucial difference in Definition 6 is
condition (2). The next example elucidates why such a condition is necessary for 4clt to
be sound.

Counterexample 3 Let Gbad be defined as G in Definition 6, but without part (2). In
this case, we prove that the pair of clients (1, τ. 1) is contained in the greatest fixed
point of Gbad, and then proceed to show that this pair is not contained in @∼clt. Let
R = { (1, τ. 1) }. It follows that R ⊆ Gbad(R) if all the conditions for Gbad are satis-
fied: condition (1) in is trivially true, condition (3a) is true because 0 must 1 and
0 must τ. 1, condition (3b) holds trivially because Acc6X(τ. 1) = ∅, whereas condition
(3c) is satisfied because τ. 1 does not perform any strong actions. It therefore follows
that (1, τ. 1) ∈ µx.Gbad(x). Contrarily, 1 6@∼clt τ. 1 because the divergent server τ∞ dis-
tinguishes between the two clients: whereas τ∞ must 1 since the client succeeds im-
mediately, we have τ∞ 6must τ. 1 because the composition τ. 1 || τ∞ has an infinite
unsuccessful computation due to the divergence of τ∞. �

A more fundamental difference between Definition 6 and the coinductive server
preorders in [18,25] is that, in Definition 6(3c), the relation R has to relate internal sums
of derivative clients on both sides. Although non-standard, this condition is sufficient to
compensate for the lack of compositionality of usable clients (see clients r1 and r2 (1)
from Section 1). Using the standard weaker condition makes the preorder 4clt unsound
wrt. @∼clt, as we proceed to show in the next example.

Counterexample 4 LetGbad be defined asG in Definition 6, but replacing the condition
(3c) with the relaxed condition in (3bad) below, which requires each derivative r′2 to be
analysed in isolation. We show that the greatest fixpoint of Gbad, 4bad

clt , contains client
pairs that are not in @∼clt.

if r2
a
−→6Xr′2 then

(
r1

a
=⇒6X and

⊕
(r1 after6X a) R r′2

)
(3bad)

Consider the clients r6 = c.r′6 and r7 = (r1 + r2) + τ. 1 where

r′6 = τ.r
a
6 + τ.r

b
6 ra

6 = a. 0 + τ. 1 rb
6 = b. 0 + τ. 1

and r1 and r2 are the clients defined in (1) above. On the one hand, we have that
r6 6@∼clt r7, because c. 0 must r6 whereas c. 0 6must r7. On the other hand, we now
show that r6 4

bad
clt r7. Focusing on condition Definition 6(3), we start by deducing that

r6 ∈ Ubhv (either directly using Definition 5 or indirectly through c. 0 must r6, recall-
ing Theorem 2). Now, Definition 6(3a) is true because 0 must r7, thus r7 is usable,

and thanks to Theorem 2 we have r7 ∈ Ubhv. Also point (3b) is satisfied, because
Acc6X(r7) = Acc6X(r6) = { { a } }.4 To prove that the (relaxed) condition (3bad) holds, we
have to show that

rc
6 4

bad
clt a. 1 + b. 0 and rc

6 4
bad
clt a. 0 + b. 1, with rc

6 = r′6 + τ.r
a
6 + τ.r

b
6 (7)

Let r′7 = a. 1 + b. 0. We only show the proof for the inequality rc
6 4

bad
clt r′7, since the

proof for the other inequality is analogous. We focus again on conditions (3a), (3b),
and (3bad). Condition (3a) is true because 0 must rc

6, and thus rc
6 ∈ U = Ubhv, and

because r′7 ∈ U = Ubhv as well (e.g., a. 0 must r′7). Condition (3b) holds because
Acc6X(r′7) = { { c } } and Acc6X(rc

6) = { { b }, { c } }. Finally for (3bad) we only have to check

the case for r′7
b
−→6X 0, which requires us to show that τ. 0 4bad

clt 0; this latter check is
routine. As a result, we have rc

6 4
bad
clt r′7. Since we can also show that rc

6 4
bad
clt a. 0 + b. 1

holds, we obtain (7), and consequently r6 4
bad
clt r7. �

After our digression on Definition 6, we outline why 4clt coincides with @∼clt. A
detailed proof can be found in the full version of this paper [4].

Lemma 6. Whenever r1 4clt r2, for every s ∈ Act?, r1 usbl6X s implies r2 usbl6X s
and also that for every B ∈ Acc6X(r2, s), there exists an set A ∈ Acc6X(r1, s) such that
A ∩ uaclt(r2, s) ⊆ B; and that if r2

s
=⇒6X then r1

s
=⇒6X . ut

Theorem 5. In any finite branching LTS r1 @∼clt r2 if and only if r1 4clt r2.

Proof. We have to show the set inclusions, @∼clt ⊆ 4clt and 4clt ⊆ @∼clt. Lemma 5 and
Theorem 1 imply that @∼clt ⊆ G(@∼clt), and thus, by the Knaster-Tarski theorem, we obtain
the first inclusion. The second set inclusion follows from Theorem 1 and Lemma 6. ut

Example 5. Recall clients r4 = a. 1 + µy.(a.r′′3 + b.y + c. 1) and r5 = (µz.(b.z +
c. 1)) + d. 1 from Example 4, used to argue that the alternative relation -clt is still
a burdensome method for reasoning on @∼clt. By contrast, We now contend that it is
simpler to show r4 @∼clt r5 by proving r4 4clt r5, thanks to Theorem 5 and the Knaster-
Tarski theorem. By Definition 6, it suffices to provide a witness relation R such that
(r4, r5) ∈ R and R ⊆ G(R). Let R = { (r4, r5), (r′4, r

′
5) } where r′′3 = (τ.(1 + τ. 0)) + µx.x

from Example 1, r′4 = µy.(a.r′′3 + b.y + c. 1), and r′5 = µz.(b.z + c. 1). Checking that R
satisfies the conditions in Definition 6 is routine work. To prove condition (3b), though,
note that Acc6X(r5) = Acc6X(r′5) = { { b, c } } and that Acc6X(r4) = { { a, b, c } }. However
uabhv(r4)= { b, c } and thus the required set inclusion ({ a, b, c }∩{ b, c })⊆{ b, c } holds.�

The coinductive preorder of 4clt may also be used to prove that two clients are not in
the contextual preorder @∼clt: by iteratively following the conditions of Definition 6 one
can determine whether a relation including the pair of clients exists. This approach is
useful when guessing a discriminating server is not straightforward; in failing to define
a such relation R one obtains information on how to construct the discriminating server.

4 The restriction of the left hand side of the inclusion of Definition 6(3b) by uabhv(r6) is super-
fluous.

Example 6. Recall the clients r6 and r7 considered in Counterexample 4. By virtue of
the full-abstraction result, we can show directly that r6 6@∼clt r7 by following the require-
ments of Definition 6 and arguing that no relation exists that contains the pair (r6, r7)
while satisfying the conditions of the coinductive preorder. Without loss of generality,
pick a relation R such that r6 R r7:we have to show that R ⊆ G(R). Since r6 ∈ Ubhv,
r7

c
−→6X and r6

c
=⇒6X , Definition 6(3c) requires that we show that

rc
6 R τ.r′7 + τ.r

′′
7 where rc

6 =
⊕

(r6 after 6X c) and (τ.r′7 + τ.r
′′
7) =

⊕
(r7 after6X c) (8)

and rc
6, r′7 and r′′7 are the clients defined earlier in Counterexample 4. Since we want

to show that R * G(R), the condition Definition 6(3a) requires that, if rc
6 ∈ Ubhv, then

(τ.r′7 + τ.r
′′
7) ∈ Ubhv. However, even though rc

6 ∈ Ubhv, we have (τ.r′7 + τ.r
′′
7) < Ubhv,

violating Definition 6(3a) and thus showing that no such R satisfying both (r6, r7) ∈ R
and R ⊆ G(R) can exist. We highlight the fact that whereas (7) of Counterexample 4
resulted in r6 4

bad
clt r7, (8) is instrumental to conclude that r6 64clt r7. Note also that the

path along c leading to a violation of the requirements of Definition 6 is related to the
discriminating server c. 0 used in Counterexample 4 to justify r6 6@∼clt r7. �

5 Expressiveness and Decidability

We show that servers with finite interactions suffice to preserve the discriminating
power of the contextual preorder @∼clt in Definition 1, which has ramifications on stan-
dard verification techniques for the preorder, such as counter-example generation [11].
We also show that, for finite-state LTSs, the set of usable clients is decidable. Using
standard techniques [27] we then argue that, in such cases, there exists a procedure to
decide whether two finite-state clients are related by @∼clt.

5.1 On the power of finite interactions

We employ the coinductive characterisation of the client preorder, Theorem 5, to prove
an important property of the client preorder of Definition 1, namely that servers that
only offer a finite amount of interactions to clients are necessary and sufficient to dis-
tinguish all the clients according to our touchstone preorder @∼clt of Definition 1. Let
CCSf ::= 0 | 1 | α.p | p + q | τ∞, and

@
∼

f
clt = { (r1, r2) | for every p ∈ CCSf . p must r1 implies p must r2 }

Uf = { r | there exists p ∈ CCSf . p must r }

In what follows, we find it convenient to use the definitions above: CCSf excludes
recursively-defined processes, but explicitly adds the divergent process τ∞ because of
its discriminating powers (see Counterexample 3). Accordingly, @∼

f
clt andUf restrict the

resp. sets to the syntactic class CCSf .

Corollary 1 The sets U and Uf coincide.

Proof. The inclusion Uf ⊆ U is immediate. Suppose that r ∈ U. By Theorem 2 we
have r ∈ Ubhv. By Lemma 1, there exists a non-recursive p ∈ CCSf such that p must r,
thus r ∈ Uf follows. ut

Theorem 6. In any finite-branching LTS r1 @∼
f
clt r2 if and only if r1 @∼clt r2.

Proof. The inclusion @∼clt ⊆
@
∼

f
clt follows immediately from the resp. definitions. On the

other hand, Theorem 5 provides us with a proof technique for showing the inclusion
@
∼

f
clt ⊆
@
∼clt: if we show that @∼

f
clt ⊆ G(@∼

f
clt) then @∼

f
clt ⊆ 4clt = @∼clt. In view of the Knaster-

Tarski theorem it suffices to show that @∼
f
clt ⊆ G(@∼

f
clt). In turn, this requires us to prove

the three conditions stated in Definition 6. The argument for the first two conditions is
virtually the same to that of Lemma 5. Similarly, the arguments for the third condition
follow closely those used in Theorem 1 (albeit in a simpler setting of unsuccessful
traces of length 1). The only new reasoning required is that servers that exists because
of r1 ∈ U also belong to CCSf , which we know from Corollary 1. ut

An analogous result should also hold for the server-preorder, for the proofs of com-
pleteness in [6, Theorem 3.1] rely on clients that can be written in the language CCSf .

5.2 Deciding the client preorder

Figure 4 describes the pseudo-code for the eponymous function isUsable(r, acm), which
is meant to determine whether a client r is usable. It adheres closely to the conditions of
Definition 5 for Ubhv, using acm as an accumulator to keep track of all the terms that
have already been explored. Thus, if an r is revisited, the algorithm rejects it on the basis
that a loop of unsuccessful interactions (leading to an infinite sequence of unsuccessful
interactions that makes the client unusable) is detected (lines 2-3). If not, the algorithm
checks for the conditions in Definition 5 (lines 4-9). In particular, line 4 checks that infi-
nite sequences of internal moves are always successful (using function convtick defined
on lines 11-17) and that partially deadlocked clients reached through a finite number
of unsuccessful internal moves, Acc6X(r) , ∅, contain at least one action that unblocks
them to some other usable client (lines 7-8). This latter check employs the function
existsUnblockAction (defined on lines 19-26) which recursively calls isUsable to de-
termine whether the client reached after an action is indeed usable. isUsable(r, acm) of
Figure 4 relies on the LTS of r being finite-state in order to guarantee termination via
the state accumulation held in acm. This is indeed the case for our expository language
CCSµ of Figure 2. Concretely, we define the set of internal-sums for the derivatives that
a client r reaches via all the finite traces ∈ Act?, and show that this set is finite. Let

sumsRdx(r) = {
⊕

(r after 6X s) | for some s ∈ Act? },

Lemma 7. For every r ∈ CCSµ, the set sumsRdx(r) is finite. ut

Proof. Let Reachr = { r′ | r
s
=⇒ r′ for some s ∈ Act? } denote the set of reachable

terms from client r, and PwrRr = {
⊕

B | B ∈ P(Reachr) } denote the elements of the
powerset of Reachr, expressed as internal summations of the elements ofP(Reachr). By
definition, we have that sumsRdx(r) ⊆ PwrRr. Hence, it suffices to prove that Reachr

1 isUsable (r , acm) =
2 i f r in acm
3 then f a l s e
4 e l s e i f convtick (∅ , r)
5 then i f Acc6X(r) == empty
6 then true
7 e l s e BoolS et = map (existsUnblockAction acm r) Acc6X(r)
8 conjunction BoolS et
9 e l s e f a l s e

10 where
11 convtick (acm , r) =
12 i f r in acm
13 then f a l s e

14 e l s e i f r
X
−→

15 then true
16 e l s e BoolS et = map (c o n v t i c k (acm ∪{ r })) { r′ | r

τ
−→ r′ }

17 conjunction BoolS et
18 and
19 existsUnblockAction (acm , r , A) =
20 case A of
21 empty −> f a l s e
22 { a }] A′ −>

23 i f r
a
=⇒6X

24 then i f isUsable (
⊕

(r after 6X a) , acm ∪ { r })
25 then true e l s e existsUnblockAction (r , A’ , acm)
26 e l s e t rue

Fig. 4. An algorithm for deciding inclusion in the setU

is finite to show that PwrRr is finite, from which the finiteness of sumsRdx(r) follows.
The proof of the finiteness of Reachr is the same as that of Lemma 4.2.11 of [29] for the
language serial-CCS, which is homologous to CCSµ of Figure 2 modulo the satisfaction
construct 1. ut

Theorem 7. For every r ∈ Proc we have that
(i) r ∈ U iff isUsable(r, ∅) = true,

(ii) r < U iff isUsable(r, ∅) = false.

Proof. For the only-if case of clause (i), we use Theorem 2 and show instead that
r ∈ Ubhv implies isUsable(r, ∅) = true; we do so by numerical induction on n ∈ N+

where r ∈ F n(∅). For the if case, we dually show that isUsable(r, ∅) = true implies
r ∈ Ubhv, by numerical induction on the least number n ∈ N+ of (recursive) calls to
isUsable that yield the outcome true. We note that in either direction of clause (i), there
is a direct correspondence between the respective inductive indices (e.g., for the base
case n = 1, r ∈ F 1(∅) = F (∅) implies that r ⇓X and that Acc6X(r) = ∅).

For the second clause (ii), the statements
(
r < U implies isUsable(r, ∅) = true

)
and

(
isUsable(r, ∅) = false implies r ∈ U

)
contradict the first clause (i) which we just

proved. The required result thus holds if we ensure that isUsable(r, ∅) is defined for any
r ∈ Proc. This follows from Lemma 7. ut

From Theorem 5, Theorem 7 and Lemma 7, we conclude that Definition 6 can be
used to decide @∼clt for languages such as CCSµ of Figure 2.We can do this by adapting
the algorithm of [27, Chapter 21.5], and proving that in our setting [27, Theorem 21.5.9
and Theorem 21.5.12] are true. In particular, using the terminology of [27] we have that
reachableG(X) is finite, essentially because the resp. LTS is finite-state, and thus the
decidability of 4clt follows from Theorem 21.5.12.

6 Conclusion

We present a study that revolves around the notion of usability and preorders for clients
(tests). Preorders for clients first appeared for compliance testing [2], and were subse-
quently investigated in [3,6] for must testing [12] and extended to include peers. The
characterisations given in [6] relied fundamentally on the set of usable termsU which
made them not fully-abstract and hard to automate. This provided the main impetus for
our study. In general, recursion poses obstacles when characterising usable terms, but
the very nature of must testing — which regards infinite unsuccessful computations as
catastrophic — let us treat recursive terms in a finite manner (see Definition 5).

We focus on the client preorder, even though [6] presents preorders for both client
and peers; note however that [6, Theorem 3.20] and Theorem 2 imply full-abstraction
for the peer preorder as well. Our investigations and the resp. proofs for Theorem 2,
Theorem 5 and Theorem 6 are conducted in terms of finitely-branching LTSs, which
cover the semantics used by numerous other work describing client and server con-
tracts [8,18,9,6] — we only rely on an internal choice construct to economise on our
presentation, but this can be replaced by tweaking the resp. definitions so as to work
on sets of processes instead. As a consequence, the results obtained should also extend
to arbitrary languages enjoying the finite-branching property. Theorem 7 relies on a
stronger property, namely that the language is finite-state. In [29], it is shown that this
property is also enjoyed by larger CCS fragments, and we therefore expect our results
to extend to these fragments as well.

6.1 Related Work

Client usability depends both on language expressiveness and on the notion of testing
employed. Our comparison with the related work is organised accordingly.

Session types [14] do not contain unsuccessful termination, 0, restrict internal (resp.
external) choices to contain only pair-wise distinct outputs (resp. inputs) and are, by
definition, strongly convergent [25] (i.e., no infinite sequences of τ- transitions). E.g.,
τ.!a. 1 + τ.!b.?c. 1 corresponds to a session type in our language (modulo syntac-
tic transformations such as those for internal choices), whereas τ.!a. 0 + τ.!b.?c. 1,
τ.!a. 1 + τ.!a.?b. 1 and ?a. 1 + ?a.!b. 1 do not. Since they are mostly determinis-
tic — only internal choices on outputs are permitted — usability is relatively easy to

characterise. In fact [7, Section 5] shows that every session type is usable wrt. com-
pliance testing (even in the presence of higher-order communication) whereas, in [26,
Theorem 4.3], non-usable session types are characterised wrt. fair testing. First-order
session types are a subset of our language, and hence, Theorem 2 is enough to (posi-
tively) characterise usable session types wrt. must testing; we leave the axiomatisation
ofU in this setting as future work.

Contracts [25] are usually formalised as (mild variants of) our language CCSµ. In
the case of must testing, the authors in [6, Theorem 6.9, Lemma 7.8(2)] characterise
non-usable clients (and peers) for the sublanguage CCSf as the terms that can be re-
written into 0 via equational reasoning. Full-abstraction for usable clients wrt. compli-
ance testing has been solved for strongly convergent terms in [25, Proposition 4.3] by
giving a coinductive characterisation for viable (i.e., usable wrt. compliance) contracts.
If we restrict our language to strongly convergent terms, that characterisation is neither
sound nor complete wrt. must testing. It is unsound because clients such as µx.a.x are
viable but not usable. It is incomplete because of clients such as r = 1 + τ. 0; this client
is usable wrt. must because, for arbitrary p, any computation of p || r is successful

(since we have r
X
−→ immediately). On the other hand, r is not viable wrt. compliance

testing of [25] (where every server is strongly convergent), because for any server p we
observe the computation starting with the reduction p || r

τ
−→ p || 0, and once p sta-

bilises to some p′, the final state p′ || 0 contains an unsuccessful client. This argument
relies on subtle discrepancies in the definitions of the testing relations: in must testing it
suffices for maximal computations to pass through a successful state, whereas in com-
pliance testing the final state of the computation (if any) is required to be successful.
This aspect impinges on the technical development: although our Definition 5(2) re-
sembles [25, Definition 4.2], the two definitions have strikingly different meanings: we
are forced to reason wrt. unsuccessful actions and unsuccessful acceptance sets whereas
[25, Definition 4.2] is defined in terms of (standard) weak actions and acceptance sets
(note that Definition 5(1) holds trivially in the strongly convergent setting of [25]). We
note also that our Definition 5 is inductive whereas [25, Definition 4.2] is coinductive.
More importantly, our work lays bare the non-compositionality of usable terms and how
it affects other notions that depend on it, such as Definition 6 (and consequently Theo-
rem 5). We are unaware of any full-abstraction results for contract usability in the case
of should-testing [28,8,24].

Future work: In the line of [10], we plan to show a logical characterisation of the
client and peer preorder. We also intend to investigate coinductive characterisations for
the peer preorder of [6] and subsequently implement decision procedures for the server,
client, and peer preorders in CAAL [1]. Usability is not limited to tests. We expect it
to extend naturally to runtime monitoring [13], where it can be used as a means of
lowering runtime overhead by not instrumenting unusable monitors.

Acknowledgements: This research was supported by the COST Action STSMs IC1201-
130216-067787 and IC1201-170214-038253. The first author was supported by the EU
FP7 ADVENT project. The second author is partly supported by the RANNIS THE-
OFOMON project 163406-051. The authors acknowledge the Dagstuhl seminar 17051
and thank L. Aceto, M. Bravetti, A. Gorla, M. Hennessy, C. Spaccasassi and anonymous
reviewers for their help and suggestions.

References

1. J. R. Andersen, N. Andersen, S. Enevoldsen, M. M. Hansen, K. G. Larsen, S. R. Olesen,
J. Srba, and J. Wortmann. CAAL: concurrency workbench, aalborg edition. In ICTAC, 2015.

2. F. Barbanera and F. de’Liguoro. Two notions of sub-behaviour for session-based client/server
systems. In PPDP, 2010.

3. G. Bernardi. Behavioural Equivalences for Web Services. PhD thesis, TCD, 2013.
4. G. Bernardi and A. Francalanza. Full-abstraction for must testing preorders (extended ab-

stract). Available from https://www.irif.fr/ gio/papers/BFcoordination2017.pdf.
5. G. Bernardi and M. Hennessy. Modelling session types using contracts. In SAC, 2012.
6. G. Bernardi and M. Hennessy. Mutually testing processes. LMCS, 11(2), 2015.
7. G. Bernardi and M. Hennessy. Using higher-order contracts to model session types. LMCS,

12(2), 2016.
8. M. Bravetti and G. Zavattaro. A foundational theory of contracts for multi-party service

composition. Fundam. Inf., 89(4), 2008.
9. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services. ACM

Trans. Program. Lang. Syst., 31(5), 2009.
10. A. Cerone and M. Hennessy. Process behaviour: Formulae vs. tests. In EXPRESS, 2010.
11. E. M. Clarke and H. Veith. Counterexamples revisited: Principles, algorithms, applications.

In Verification: Theory and Practice, 2003.
12. R. De Nicola and M. Hennessy. Testing equivalences for processes. TCS, 34(1–2), 1984.
13. A. Francalanza. A Theory of Monitors. In FoSSaCS, LNCS, 2016.
14. S. J. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Inf., 42(2-3),

2005.
15. M. Hennessy. Algebraic Theory of Processes. 1988.
16. D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algo-

rithms. Addison Wesley Longman Publishing Co., Inc., 1997.
17. D. König. Über eine schlussweise aus dem endlichen ins unendliche. Acta Litt. ac. sci.

Szeged, 3, 1927.
18. C. Laneve and L. Padovani. The must preorder revisited. In CONCUR, 2007.
19. Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of flaky tests. In FSE,

2014.
20. P. Marinescu, P. Hosek, and C. Cadar. Covrig: A framework for the analysis of code, test,

and coverage evolution in real software. In ISSTA, 2014.
21. A. Martens. Analyzing Web Service Based Business Processes. In FASE, 2005.
22. A. M. Memon and M. B. Cohen. Automated testing of gui applications: Models, tools, and

controlling flakiness. In ICSE, 2013.
23. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
24. A. J. Mooij, C. Stahl, and M. Voorhoeve. Relating fair testing and accordance for service

replaceability. J. Log. Algebr. Program., 79(3-5), 2010.
25. L. Padovani. Contract-based discovery of web services modulo simple orchestrators. TCS,

411(37), 2010.
26. L. Padovani. Fair subtyping for multi-party session types. MSCS, 26(3), 2016.
27. B. Pierce. Types and programming languages. 2002.
28. A. Rensink and W. Vogler. Fair testing. Information and Computation, 205(2), 2007.
29. C. Spaccasassi. Language Support for Communicating Transactions. PhD thesis, TCD,

2015.
30. D. Weinberg. Efficient controllability analysis of open nets. In WS-FM, 2009.
31. G. Winskel. The Formal Semantics of Programming Languages: An Introduction. 1993.

	Full-abstraction for Must Testing Preorders (Extended Abstract)

