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Abstract. The degree of nondeterminism is a measure of syntactic com-
plexity which was investigated for parallel and sequential rewriting sys-
tems. In this paper, we consider the degree of nondeterminsm for tree
adjoining grammars and their languages and head grammars and their
languages. We show that a degree of nondeterminism of 2 suffices for
both formalisms in order to generate all languages in their respective
language families. Furthermore, we show that deterministic tree adjoin-
ing grammars (those with degree of nondeterminism equal to 1), can
generate non-context-free languages, in contrast to deterministic head
grammars which can only generate languages containing a single word.

Keywords: Tree Adjoining Languages, Head Grammar Languages, De-
gree of Nondeterminism

1 Introduction

The degree of nondeterminism for tabled Lindenmayer systems and languages
has been studied in [9] and [8] as a measure of syntactic complexity. The degree of
nondeterminism has also been considered for sequential rewriting systems in [2]
and [3]. The degree of nondeterminism is usually defined as the maximal number
of production rules with the same left-hand side which provides a measure of
the amount of choice available during derivations using the grammar. In this
paper we consider the degree of nondeterminism for tree adjoining grammars
and head grammars. Tree adjoining grammars were first introduced in [5] and
their formal properties and linguistic relevance have been considered in [4] and
[10]. TAGs are tree-generating grammars which use an adjoining operation that
generates new trees by joining and attaching two different trees at a particular
node. Head Grammars were first introduced in [7]. The principle feature which
distinguishes a Head Grammar (HG) from a context-free grammar is that the
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head grammar includes a wrapping operation which allows one string to be
inserted into another string at a specific point (the head). It is known that for
both tree adjoining grammars and head grammars, the class of string languages
generated by the grammars is larger than the class of context-free languages (e.g.
they are able to define the language {anbncndn|n ≥ 0} [10]). In [10] it is shown
that the two formalisms generate exactly the same class of string languages, and
that these languages are mildly context-sensitive.

The notion of mild context-sensitivity tries to capture mathematical and
computational properties that formal models for the description and analysis
of natural language should possess. The notion of mild context-sensitivity was
first mentioned in [4] and sparked active research yielding to many different
approaches and definitions thereof (see, for example, [6]). There has been much
discussion about the linguistic differences between mildly context-sensitive gram-
mar formalisms, and in general, investigations mainly focus on polynomial pars-
ing algorithms. Formal properties of mild context-sensitive grammar formalisms
have not been as extensively considered. The examination of degree of nondeter-
minism for TAGs and MHGs is a step in that direction. It would be interesting to
consider whether there are any linguistic implications for the degree of nondeter-
minism — for example, are there aspects of natural language modelling which are
best done with a grammar having a higher (or lower) degree of nondeterminism
than others?

2 Notational Conventions

The reader is assumed to be familiar with the basic notions in formal language
theory. We use the following notational conventions and definitions in this paper.
|S| denotes the cardinality of the set S, ∅ denotes the empty set, ∪ denotes set
union, and \ denotes set difference. S is called an alphabet if it is a finite non-
empty set of symbols. N denotes the set of natural numbers {1, 2, 3, . . .}. For
any set X, a word over X is a finite sequence of symbols from X. λ will be used
to denote the empty word. The concatenation of two words x and y is denoted
by xy and represents the word formed by the juxtaposition of x and y. The
concatenation of a word x and a set S is xS = {xy | y ∈ S} (Sx is similarly
defined). X∗ is the free monoid generated by X with concatenation as binary
operation and λ as identity element. X+ = X∗ \ λ.

3 Tree Adjoining Grammars (TAGs)

Tree Adjoining Grammars (TAGs) are linguistically motivated tree-generating
grammars which were originally introduced in [5]. For linguistic applications,
TAGs have an advantage over string generating grammars such as context-free
grammars because the elementary objects and all the objects generated are trees,
which represent syntactic structure explicitly, as opposed to strings, which do
not. In what follows, we give an informal description of TAGs first and their
formal definition later.
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The components of a TAG are a set of initial trees and a set of auxiliary
trees. Each node in an initial tree or an auxiliary tree is labelled by a terminal
symbol, by λ, or by a nonterminal symbol and constraints (which serve to restrict
adjunction at that node, as will be explained later). The initial trees are the
axioms used in the generation of new trees. The only means by which new trees
are generated is the adjunction operation, which allows an auxiliary tree to be
inserted into an initial tree or a derived (i.e. previously generated) tree. TAGs
which include a second operation, substitution, are not discussed here as they
are equivalent in generative power to TAGs which use only adjoining.

Tree adjunction is illustrated in Figure 1 (adapted from [10]). The tree shown
on the left, γ, is an initial tree or a derived tree. The root node of γ is labelled
by the nonterminal A, and γ contains an interior node n which is labelled by
the nonterminal B. The tree in the centre, β, is an auxiliary tree in which both
the root node and the foot node, a special node on the frontier of the tree, are
labelled by B. As the nonterminal labelling n in γ and the nonterminal labelling
the root node of β are the same, it is possible to adjoin β at n. Adjunction results
in the new tree γ′ which is constructed by removing the subtree rooted at n from
γ, inserting β into γ at the point where n was removed, and then replacing the
foot node in β by the subtree originally rooted at n.

A

B

γ: β: γ′:

B

B

B

B

A

Fig. 1. Tree Adjunction

The language defined by a TAG G is the set of all words which are produced
as the yield of some tree generated through zero or more adjunction operations
in G. The yield of a tree is the word obtained by concatenating the terminal
symbols on the leaf nodes of the tree, read from left to right. In a TAG, initial
trees must have only terminal symbols on their leaf nodes, and auxiliary trees
have terminal symbols on all leaf nodes except for the foot node. Thus, every
tree generated through adjunction operations in G has a terminal word as its
yield, and that word is an element of L(G). All trees discussed in this paper are
finite.

In a TAG, a node n in a tree γ is labelled either by a terminal symbol, by λ, or
by a triple of the form 〈A, sa(γ,n), oa(γ,n)〉 where A is a nonterminal symbol and
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sa(γ,n) and oa(γ,n) are called the adjunction constraints and have the following
interpretations3:

– sa(γ,n) is a set of trees. For a given node, sa(γ,n) (selective adjunction) is
the set of trees from the grammar which are allowed to be adjoined at that
node. We assume that for all β in sa(γ,n), the root node of β is labelled by
the same nonterminal as n. If sa(γ,n) = ∅, then adjunction is not permitted
at that node, and we can write NA to indicate a null adjunction constraint.

– oa(γ,n) ∈ {true, false}. If oa(γ,n) has the value true then we speak about an
OA (obligatory adjunction) constraint and if oa(γ,n) has the value false then
this indicates that adjunction is optional.

Definition 1. A Tree Adjoining Grammar (TAG) is a quadrupleG = (N,T, I,A),
where, N is the alphabet of nonterminal symbols, T the alphabet of terminal
symbols, N ∩ T = ∅, I and A are given as follows

– I is a finite set of initial trees where each α ∈ I satisfies:
• All interior nodes of α are labelled by 〈B, sa(α,n), oa(α,n)〉, B ∈ N ,
sa(α,n) ⊆ A and oa(α,n) ∈ {true, false}.

• All leaf nodes of α are labelled by some u ∈ {T ∪ {λ}}.
– A is a finite set of auxiliary trees where each β ∈ A satisfies:
• All interior nodes of β are labelled by 〈B, sa(β,n), oa(β,n)〉, B ∈ N ,
sa(β,n) ⊆ A and oa(β,n) ∈ {true, false}.

• All leaf nodes of β are labelled by some u ∈ {T ∪ {λ}}, except the
foot node, denoted by ft(β), which carries the same category (but not
necessarily the same adjunction constraints) as the root node.

Tree adjunction is a partial ternary operation ∇(γ, β, n) which produces a
new tree, γ′, which is a copy of γ with the auxiliary tree β inserted at the
node with address n. We define a derived tree to be an initial tree, an auxiliary
tree or a tree produced by an application of ∇. We say adjunction is permitted
when the following conditions hold for the arguments of ∇: γ is a derived tree,
β is an auxiliary tree, and n is the address of an interior node in γ with label
γ(n) = 〈B, sa(γ,n), oa(γ,n)〉. The root node of β must be labelled by the same
nonterminal as n, that is, 〈B, sa(β,λ), oa(β,λ)〉, and β must be an element of
sa(γ,n).

After adjunction the labels of the nodes are unchanged from their original
labels in γ and β, except for the nodes affected by adjunction: the node at address
n which now carries the label from the root node of β, and the foot node of β
with the change that the oa constraint on the node is set to false.

For a TAG G = (N,T, I,A), a derivation in G will be denoted by =⇒
G

. The

tree γ′ can be derived from γ if and only if there exist β ∈ A and n in gamma
such that adjunction of β in γ at n is permitted and ∇(γ, β, n) = γ′. Then we

write γ =⇒
G

γ′. Let
∗

=⇒
G

denote the reflexive, transitive closure of =⇒
G

.

3 This notation has been changed slightly from [10] to include an index on the sa and
oa constraint.
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The tree language generated by G is the set of all trees which can be generated
in zero or more derivation steps from the initial trees of G, and in which no nodes
remain which are labelled by an OA (obligatory adjunction) constraint.

T (G) = {γ | α ∗
=⇒
G

γ for some α ∈ I and γ has no OA nodes }

The yield of a tree is the string one obtains by concatenating the labels on
the leaf nodes from left to right.

For a TAG G = (N,T, I,A) with tree language T (G), the tree adjoining
language generated by G is

L(G) = {yield(γ) | γ ∈ T (G)}

Let LTAG represent the family of tree adjoining languages.

3.1 Degree of Nondeterminism for TAGs

The degree of nondeterminism for tree adjoining grammars will measure the
amount of choice between auxiliary trees which can be adjoined within a given
TAG. When defining the degree of nondeterminism for TAGs an essential ambi-
guity in the interpretation has to be taken into account. On the one hand, when
defining the degree of nondeterminism for a given node n in a tree γ, one could
consider only the auxiliary trees in the set sa(γ,n), which can be adjoined at that
node. On the other hand, one could consider all auxiliary trees in the set A for
the given tree adjoining grammar (even if they are not in the set sa(γ,n)). We
will call these views weak degree of nondeterminism and strong degree of non-
determinism, respectively. In this section we will define strong and weak degree
of nondeterminism, and then show that the two measures are equivalent. For
the following definitions, consider a TAG G = (N,T, I,A). Let γ represent an
arbitrary tree in I ∪ A and β ∈ A represent an arbitrary auxiliary tree.

Definition 2. Weak degree of nondeterminism

– For a node in γ at address n labelled by 〈B, sa(γ,n), oa(γ,n)〉, the degree of
the node is denoted by DegG(γ, n), and is defined as the number of trees in
the selective adjunction set for the node. That is, DegG(γ, n) = |sa(γ,n)|.

– The weak degree of nondeterminism of a tree adjoining grammar G is denoted
by Detw(G), and is defined as the maximal degree of any node in a tree in G:
Detw(G) = max{DegG(γ, n) | γ ∈ I ∪ A, n ∈ dom(γ)}.

– The weak degree of nondeterminism of a tree adjoining language L, Detw(L),
is defined as the minimal weak degree of nondeterminism of any TAG capable
of generating L: Detw(L) = min{Detw(G) | G is a TAG with L(G) = L}.

Definition 3. Strong degree of nondeterminism

– The degree of a nonterminal B ∈ N , denoted by DegG(B), is the number
of auxiliary trees in A which have B labelling their root node: DegG(B) =
|{β | β ∈ A, β(λ) = 〈B, sa(β,λ), oa(β,λ)}|.
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– The strong degree of nondeterminism for a tree adjoining grammar G, de-
noted by Dets(G), is defined as the maximal degree of a nonterminal in N :
Degs(G) = max{DegG(B) | B ∈ N}.

– The strong degree of nondeterminism of a tree adjoining language L,Dets(L),
is defined as the minimal strong degree of nondeterminism of any TAG capa-
ble of generating L: Dets(L) = min{Dets(G) | G is a TAG with L(G) = L}.

We will now show that strong and weak degree of nondeterminism are equiv-
alent measures for TAGs.

Theorem 1. Given a TAG G = (N,T, I,A), Detw(G) ≤ Dets(G).

Proof. By definition, for every node n in a tree γ ∈ I ∪ A labelled by
〈B, sa(γ,n), oa(γ,n)〉, sa(γ,n) ⊆ A. Therefore, DegG(γ, n) ≤ DegG(B) for any
given node labelled by B in a tree γ at n, and thus Detw(G) ≤ Dets(G).

Theorem 2. Given a TAG G = (N,T, I,A) with Detw(G) < Dets(G), there
effectively exists a TAG G′ = (N ′, T ′, I ′,A′) for which L(G) = L(G′) and
Detw(G′) = Dets(G

′) = Detw(G).

Proof. The intuitive idea behind the proof is that the set of auxiliary trees which
can be adjoined at any given node is determined by two conditions: (i) the non-
terminal symbol labelling the node, and (ii) the sa constraint which restricts
the subset of auxiliary trees which are actually permitted to be adjoined at that
node. The Algorithm 1 below works by making copies of the auxiliary trees such
that for an sa set containing {β1, . . . , βk}, k new auxiliary trees are introduced,
whose root nodes are labelled by a common nonterminal which is used only for
the auxiliary trees in that sa set. The result of copying and relabelling is that
the strong degree of nondeterminism for the grammar is reduced to the weak
degree because the number of auxiliary trees labelled by any given nonterminal
is equal to the size of the sa set in which the auxiliary trees bearing that nonter-
minal appear. The algorithm recursively relabels all new auxiliary trees which
are created.

An example of the effect of Algorithm 1 for one node is shown in Figure 2.
The trees at the top, α1, β1 and β2, are the trees from the TAG before relabelling
takes place. In the new initial tree, α′1, the relabelled node can be seen. The new
auxiliary trees, δ1 and δ2, are copies of β1 and β2 respectively for which new root
and foot nodes have been added, and relabelling has been recursively applied to
produce β′1 and β′2.

Algorithm 1.
Preconditions: G = (N, T, I,A) is the TAG which will be relabelled.
Postconditions: A new TAG G′ = (N ′, T ′, I′,A′) is produced for which L(G) = L(G′) and
Detw(G′) = Dets(G

′) = Detw(G).
Let N ′ = ∅, T ′ = T , I′ = ∅, A′ = ∅
For each t in I

Let t′ be a new tree name, t′ /∈ (I ∪ A ∪ I′ ∪ A′)
t′ = Relabel(N ′, t,A′)
Let I′ = I′ ∪ t′

Function Relabel(N ′, t,A′)
Preconditions: N ′ is the set of nonterminal symbols defined so far, t is the tree currently being
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• 〈A,{β1,β2},false〉

α1: •

•
β1:

•

•

β2:

•〈Aβ1β2,{δ1,δ2},false〉

α′
1:

•

•

δ1:

〈Aβ1β2,∅,false〉
•

•
〈Aβ1β2,∅,false〉

β′
1

•

•

δ2:

〈Aβ1β2,∅,false〉
•

•
〈Aβ1β2,∅,false〉

β′
2

Fig. 2. Effect of Algorithm 1 for one node in α1

considered, A′ is the set of new auxiliary trees constructed so far
Postconditions: N ′ has been updated to include any new nonterminals, t is unchanged, A′ has
been updated to include any new trees resulting from the relabelling of t

Returns a new tree t′ which is the relabelled t
Let t′ be a copy of t
For each node n of t labelled by 〈A, sa(t,n), oa(t,n)〉, with sa(t,n) = {β1, . . . , βk}

Let Aβ1 · · · βk be a nonterminal symbol
If Aβ1 · · · βk /∈ N ′

Let N ′ = N ′ ∪ Aβ1 · · · βk
For each βi in sa(t,n)

Let δi be a new tree name, δi /∈ A′
Let δi be an auxiliary tree constructed as follows:
• label the root node of δi by 〈Aβ1 · · · βk, ∅, false〉
• connect the root node of δi to the root node of a copy of βi
• connect the foot node of the copy of βi to the foot node of δi
• label the foot node of δi by 〈Aβ1 · · · βk, ∅, false〉

Let A′ = A′ ∪ δi
For i from 1 to k

δi = Relabel(N ′, δi,A′)
If sa(t,n) = ∅

Let sa′(t,n) = ∅
Else

Let sa′(t,n) = {τ | τ ∈ A′, τ(λ) = 〈Aβ1 · · · βk, sa(τ,λ), oa(τ,λ)〉}
(sa′(t,n) is the set of all trees in A′ whose root nodes are labelled by Aβ1 · · · βk)

Let the node corresponding to n in t′ be labelled by 〈Aβ1 · · · βk, sa′(t,n), oa(t,n)〉
End Function

Thus, as the strong degree of nondeterminism can be reduced to the weak
degree for any given TAG, one measure of degree of nondeterminism is suffi-
cient. We can omit reference to strong or weak in our notation, and therefore,
Det(G) will be used to denote the (weak) degree of nondeterminism for TAGs,
and DetTAG(L) will denote the degree of nondeterminism for tree adjoining lan-
guages. Finally, we will show that for a TAG G with degree of nondeterminism
greater than 2, we can create an equivalent TAG G′ with degree of nondeter-
minism equal to 2. Thus, the degree of nondeterminism for any tree adjoining
language is at most 2.
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Theorem 3. Given a TAG G = (N,T, I,A) with Det(G) > 2, there effectively
exists an TAG G′ for which L(G) = L(G′) and Det(G′) = 2.

Proof. The following Algorithm 2 examines all the nodes in the initial trees and
auxiliary trees of G. When a node n in a tree γ is found with Deg(γ, n) > 2,
this indicates that there is a choice between more than two auxiliary trees for
adjunction at that node. Suppose the selective adjunction set for the node is
sa(γ,n) = {β1, . . . , βn} with n > 2. The algorithm works by introducing new
auxiliary trees δ1, . . . , δn−2 each consisting of only a root node and foot node.
The purpose of the δi trees is to reduce the choice between auxiliary trees to 2 at
any given node. Node n is relabelled such that only β1 or δ1 can be adjoined, that
is, sa(γ,n) = {β1, δ1}. At the root node of δ1, β2 or δ2 can be adjoined, that is,
sa(δ1,λ) = {β2, δ2}. Generally, for δi with 1 ≤ i < n−2, sa(δi,λ) = {δi+1, βi+1} For
δn−2, the root node is labelled by the sa set saδn−2,λ = {βn−1, βn}. Introduction
of new auxiliary trees and relabelling is done for all nodes in G with degree
greater than 2. The resulting TAG G′ generates the same language as G, but
contains no node with more than 2 trees in its sa set, and therefore Det(G′) = 2.

Algorithm 2.
Preconditions: G = (N, T, I,A) is a TAG with Det(G) > 2
Postconditions: G has been modified such that L(G) is unchanged and Det(G) = 2
For each γ ∈ I ∪ A

For each n in dom(γ) labelled by 〈A, sa(γ,n), oa(γ,n)〉 with sa(γ,n) = {β1, . . . , βk}
If k > 2

For i from 1 to (k − 2)
Let δi be a new tree name δi /∈ (I ∪ A)
Let δi be an auxiliary tree constructed as follows:
• δi consists of two nodes: the root node and the foot node
• If i < k − 2

the root and foot are labelled by 〈A, {βi+1, δi+1}, oa(γ,n)〉
Else
the root and foot are labelled by 〈A, {βi+1, βi+2}, oa(γ,n)〉

Let A = A ∪ δi
Let the label of n be replaced by 〈A, {β1, δ1}, oa(γ,n)〉

Corollary 1. For any L ∈ LTAG, DetTAG(L) ≤ 2.

4 Modified Head Grammars (MHGs)

We will consider Modified Head Grammars (MHGs) which were proposed in [11],
and differ only slightly from the definition in [7]. The strings used in modified
head grammars are called headed strings. In a headed string, a special position
between two symbols, marked by ↑, is designated as the head of the string. MHGs
use a wrapping operation to insert one string into another, and the purpose of the
head is to designate the insertion point during this operation. For an alphabet
X, let HX be the set of headed strings over X. HX is defined as:

HX = {v↑w | v, w ∈ X∗}

For example, for the alphabet X = {a, b, c}, abc↑cbacba, λ↑aaa and λ↑λ are
three of the elements of HX .
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The production rules of an MHG are defined in terms of two types of oper-
ations, wrapping and concatenation, which are performed on headed strings.

The wrapping operation, W : H2
X → HX is a binary operation which has

the effect of inserting one string into another at the head. Given headed strings
v1↑w1 and v2↑w2, the result of applying W is a new headed string comprised of
v2↑w2 inserted into v1↑w1 at its head:

W (v1↑w1, v2↑w2) = v1v2↑w2w1

The concatenation of headed strings is an n-ary operation denoted by Cm,n :
HnX → HX , where n is the number of headed strings to be concatenated and m
is the index of the string whose head becomes the head for the resulting string.
The indices must satisfy n ≥ 1 and 1 ≤ m ≤ n. The interpretation of Cm,n is as
follows:

Cm,n(v1↑w1, v2↑w2, . . . , vm↑wm, . . . , vn↑wn) = v1w1v2w2· · ·vm↑wm· · ·vnwn
Given a nonterminal alphabet N and a terminal alphabet T , a headed string

expression over N and T is recursively defined as follows:

– Every headed string σ ∈ HT is a headed string expression.
– For all A ∈ N , A is a headed string expression.
– If σ1 and σ2 are headed strings expressions, then W (σ1, σ2) is a headed string

expression.
– If σ1, . . . , σn are headed string expressions, then Ci,n(σ1, . . . , σn) are headed

string expressions for 1 ≤ i ≤ n.
– There are no other headed string expressions.

Let EN,T represent the set of headed string expressions over N and T . By con-
vention, we will use σ to represent a headed string expression. If a headed string
expression contains no nonterminals, we call it closed.

Definition 4. A Modified Head Grammar (MHG) is a quadruple,G = (N,T, P, S)
where N is a finite set of nonterminal symbols, T is a finite set of terminal sym-
bols, S ∈ N is the start symbol, P is a set of production rules {p1, . . . , pk},
where pi = A→ σi, with A ∈ N, σi ∈ EN,T .

Consider an MHG, G = (N,T, P, S), with pi = A→ σi ∈ P . Given a headed
string expression σ ∈ EN,T containing a nonterminal A, we may apply the rule
pi to replace one instance of A in σ by the right hand side of pi, σi. Let σ′ denote
the resulting string. Then we write σ =⇒

G
σ′ to indicate that σ′ can be derived

from σ using a production rule in G. If the grammar in use is clear from the
context, we write =⇒ rather than =⇒

G
. Let

∗
=⇒
G

denote the reflexive, transitive

closure of =⇒
G

.

For an MHG G = (N,T, P, S), the expression language generated by G,
E(G), is the set of all closed headed string expressions which can be derived
from S using the rules of G. Formally,

E(G) = {σ |S ∗
=⇒
G

σ, σ is closed}
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The head language generated by G, H(G), is the set of headed strings which
result from the evaluation according to the definitions of W and Cm,n of the
closed headed string expressions in E(G):

H(G) = {v↑w | v↑w ∈ E(G)}

The language generated by G, L(G), is the set of strings one obtains by
removing the heads from the strings in H(G):

L(G) = {vw | v↑w ∈ H(G)}

Let LMHG denote the family of languages which can be defined by MHGs.

4.1 Degree of Nondeterminism for MHGs

Let G = (N,T, P, S) be an MHG. For a nonterminal A, let PA be the set of
production rules with A on the left-hand side.
That is, PA = {pi | pi ∈ P, pi = A→ σ}.

Definition 5. Degree of nondeterminism

– The degree of the nonterminal A, denoted by DegG(A), is the number of
production rules with A on the left-hand side: DegG(A) = |PA|

– The degree of nondeterminism of the MHG G, Det(G), is defined as the
maximum degree of a nonterminal in G: Det(G) = max{DegG(A) |A ∈ N}.
Intuitively, the degree of nondeterminism measures how much choice between
productions rules there is during a derivation using a specific MHG.

– DetMHG(L), the degree of nondeterminism for an MHG language L, is de-
fined as the minimal degree of nondeterminism of any MHG capable of gen-
erating L: DetMHG(L) = min{Det(G) |G is an MHG for which L(G) = L}.

It will now be shown that the degree of nondeterminism for any MHG lan-
guage is at most 2. The proof of Theorem 4 contains an algorithm which gen-
erates an MHG with degree of nondeterminism equal to 2 from any MHG with
degree of nondeterminism greater than 2.

Theorem 4. Given an MHG G = (N,T, P, S) with Det(G) > 2, there ef-
fectively exists an MHG G′ = (N ′, T, P ′, S′) for which L(G′) = L(G) and
Det(G′) = 2.

Proof. An MHG G with Det(G) > 2 contains nonterminals A ∈ N which appear
on the left hand side of more than 2 production rules. The Algorithm 3 presented
below introduces new nonterminal symbols and production rules so that the
choice between production rules at any point in a derivation is always binary. To
understand how it works, suppose there is a nonterminal A ∈ N which appears
on the left hand side of 3 rules, p1 : A → σ1, p2 : A → σ2 and p3 : A → σ3.
After execution of the algorithm, the nonterminal A would be replaced by three
nonterminal, A1,A2 and A3, and the rules p1,p2 and p3 would be replaced by six
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production rules: p′1 = A1 → σ′1, p′′1 = A1 → A2, p′2 = A2 → σ′2, p′′2 = A2 → A3,
p′3 = A3 → σ′3, p′′3 = A3 → A1. The rules are “chained” such that the same
strings can be derived but the choice of production rules at any given time is
reduced to 2.

Algorithm 3.
Preconditions: G = (N, T, P, S) is an MHG with Det(G) > 2
Postconditions: New MHG G′ = (N ′, T ′, P ′, S′) such that L(G′) = L(G) and
Det(G′) = 2
Let N ′ = ∅, T ′ = T , P ′ = ∅, S′ = S1

For each A ∈ N
Let PA = {p1, . . . pj} be the set of rules with A on the left hand side
Let A1 be a new nonterminal, A1 /∈ (N ∪N ′)
Let N ′ = N ′ ∪ A1

For i = 1 to j
From pi = A→ σi
Create rule p′i = Ai → σ′i

where σ′i is the headed string expression which results
by replacing all B ∈ N appearing in σi by B1

Let P ′ = P ′ ∪ p′i
If i < j

Let Ai+1 be a new nonterminal, Ai+1 /∈ (N ∪N ′)
Create rule p′′i = Ai → Ai+1

Let N ′ = N ′ ∪ Ai+1, P ′ = P ′ ∪ p′′i
Else If j > 1

Create rule p′′i = Ai → A1

Let P ′ = P ′ ∪ p′′i

Corollary 2. For any L ∈ LMHG, DetMHG(L) ≤ 2.

A deterministic MHG is an MHG G = (N,T, P, S) for which Det(G) = 1. In
other words, no nonterminal A ∈ N appears on the left-hand side of more than
one production rule pi ∈ P .

Theorem 5. A deterministic MHG G = (N,T, P, S) defines a language with
|L(G)| ≤ 1.

Proof. We can observe the following requirements for the production rules of
a deterministic MHG with a nonempty language: (i) At least one production
rule must have only terminal symbols or λ on the right-hand side. (ii) The same
nonterminal symbol may not appear on the left and right-hand side of a given
production rule. (iii) There can be no set of production rules Pcycle ⊆ P =
p1, . . . , pk which have the following form: p1 : A1 → σ1 where σ1 contains A1 . . .
pi : Ai → σi, where σi contains Ai+1 . . . pk : Ak → σk, where σk contains A1.

(i) is necessary so that it is possible to derive a headed string expression
which is closed. (ii) and (iii) are necessary so that the sequence of derivations
does not contain a loop. Such a loop would prevent the sequence of derivations
from ending since each nonterminal appears on the left hand side of only one
rule, and therefore the derivation leading to the loop would be chosen every time.
Thus, since the sequence of derivations does not contain a loop and must start
from S, if L(G) is nonempty then |L(G)| = 1.

5 Conclusions

The relationship between TAGs and MHGs was explored in several papers [10]
and [11]. In this paper, we have shown that for both TAGs and MHGs, the de-
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gree of nondeterminism 2 suffices to generate all languages in their respective
language families. Reducing the degree of nondeterminism with our algorithms
can increase the number of elementary trees in a TAG or the number of pro-
duction in a MHG considerably. We note that there is a significant difference
between deterministic MHGs and deterministic TAGs. In [10], an example of a
TAG appears which has only one auxiliary tree (and is therefore deterministic
by our definition), and yet it generates the language {anbncndn |n ≥ 0} which
is noncontext-free. By contrast, deterministic MHGs are only capable of gener-
ating languages for which |L| ≤ 1. Finally, there is a small question which arose
concerning TAGs during our work. Although we know that deterministic TAGs
are capable of generating noncontext-free languages, we did not identify the class
of languages which can be generated by deterministic TAGs.
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