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Abstract. The quotient of a formal language K by another language
L is the set of all strings obtained by taking a string from K that ends
with a suffix from L, and removing that suffix. The quotient of a regu-
lar language by any language is always regular, whereas the context-free
languages and many of their subfamilies, such as the linear and the de-
terministic languages, are not closed under the quotient operation. This
paper establishes the closure of the family of input-driven pushdown au-
tomata (IDPDA), also known as visibly pushdown automata, under the
quotient operation. A construction of automata representing the result
of the operation is given, and its state complexity with respect to non-
deterministic IDPDA is shown to be m2n+O(m), where m and n is the
number of states in the automata recognizing K and L, respectively.

1 Introduction

Let K and L be formal languages over some alphabet Σ. Then, the right-quotient
of K by L is the following formal language, denoted by K · L−1.

K · L−1 = {u | ∃v ∈ L : uv ∈ K }

The left-quotient operation is defined symmetrically.

L−1 ·K = { v | ∃u ∈ L : uv ∈ K }

The family of regular languages is closed under quotient with any language: as
shown by Ginsburg and Spanier [6], if K is a regular language, then the languages
K · L−1 and L−1 · K are both regular, regardless of L. For formal grammars,
Ginsburg and Spanier [6] showed that for every context-free language K and a
regular language L, their quotients are again context-free. On the other hand, if
both arguments can be any context-free languages, then their quotient need not
be context-free: indeed, for K = a{ b`a` | ` > 1 }∗ and L = { amb2m | m > 1 }∗,
their quotient satisfies K−1L∩ b∗ = { b2n | n > 1 }. Besides just the non-closure,
it is known that every recursively enumerable set is representable as a quotient
of two context-free languages [8].
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For an important subfamily of grammars, the LR(k) grammars, which are
equivalently defined by deterministic pushdown automata (DPDA)—it is known
that they are closed under right-quotient with regular languages, but not closed
under left-quotient with finite languages [5]. Another classical subfamily of LL(k)
grammars is not closed under both right- and left-quotient with regular lan-
guages [18]. On the other hand, the family of languages recognized by pushdown
automata with one stack symbol (the one-counter languages) is surprisingly
closed under quotient [9].

This paper investigates the quotient operation for one of the most important
subclasses of pushdown automata: the input-driven pushdown automata (ID-
PDA). These automata were introduced in the work of Mehlhorn [10] and of von
Braunmühl and Verbeek [4], and are characterized by the following restriction:
their input alphabet is split into three disjoint classes of symbols, on which the
automaton must push one symbol onto the stack (left brackets), or must pop one
symbol off the stack (right brackets) or may not touch the stack (neutral sym-
bols). The model defined by Mehlhorn [10] was deterministic (DIDPDA); von
Braunmühl and Verbeek [4] introduced its nondeterministic variant (NIDPDA)
and presented a novel determinization construction. Furthermore, Mehlhorn [10]
and von Braunmühl and Verbeek [4] presented efficient algorithms for simulating
these automata.

Later, Alur and Madhusudan [1] reintroduced IDPDA under the name of
visibly pushdown automata and pointed out their applications to verification;
their work revived the interest in the model. One of the theoretical contributions
of Alur and Madhusudan [1] is the study of the succinctness of description by
input-driven automata. In particular, they proved that determinizing an n-state
NIDPDA requires 2Θ(n2) states in the worst case, and initiated a systematic
study of their closure properties.

In the follow-up work, the state complexity of the main language-theoretic
operations on IDPDA was determined. The precise number of states necessary
to represent concatenation, Kleene star and reversal by deterministic IDPDA
(DIDPDA) was later determined by the authors [14]. For Boolean operations, the
state complexity results were obtained by Han and Salomaa [7] and by Piao and
Salomaa [16]. Recently, the authors [15] established the closure of IDPDA under
the edit distance operation. For more details on the descriptional complexity of
input-driven automata, an interested reader is directed to a fairly recent survey
paper [12].

This paper investigates the quotient operation on IDPDA. The main result is
that the family of languages recognized by IDPDA is closed under the quotient.
If both argument languages consist only of well-nested strings, then so does their
quotient, and the construction of an IDPDA for that quotient is straightforward.
In the general case, without the well-nestendness condition, the closure is estab-
lished by a more involved construction: given a pair of NIDPDA with m and n
states, a construction of a (3m+m2n)-state NIDPDA recognizing their quotient
is described in Section 3.
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Fig. 1. A sample computation of an IDPDA on an ill-nested string.

The rest of the paper establishes a close lower bound to this construction. The
general plan of the lower bound argument, explained in Section 4, is to construct
witness languages of a special form, so that the task of constructing them is
basically a problem of finding witness NFA (nondeterministic finite automata)
for the state complexity of a certain unconventional operation on languages. This
operation has been named palindromic quotient, and the NFA state complexity
problem for it is solved in Section 5. The results are adapted to NIDPDA in the
final Section 6

2 Input-driven automata

The input alphabet of an input-driven pushdown automaton (IDPDA) [1,2,10]
is split into three disjoint sets of left brackets Σ+1, right brackets Σ−1 and
neutral symbols Σ0. If the input symbol is a left bracket from Σ+1, then the
automaton always pushes one symbol onto the stack. For a right bracket from
Σ−1, the automaton must pop one symbol. Finally, for a neutral symbol in
Σ0, the automaton may not use the stack. In this paper, symbols from Σ+1

and Σ−1 shall be denoted by left and right angle brackets, respectively (<, >),
whereas lower-case Latin letters from the beginning of the alphabet (a, b, c, . . .)
shall be used for symbols from Σ0. Input-driven automata may be deterministic
(DIDPDA) and nondeterministic (NIDPDA).

Under the original definition used by Mehlhorn [10] and by von Braunmühl
and Verbeek [4], input-driven automata operate on input strings, in which the
brackets are well-nested. When an input-driven automaton reads a left bracket
(< ∈ Σ+1), it pushes a symbol onto the stack. This symbol is popped at the exact
moment when the automaton encounters the matching right bracket (> ∈ Σ−1).
Thus, a computation of an input-driven automaton on any well-nested substring
leaves the stack contents untouched.

For instance, in Figure 1, the fragment of the computation beginning in the
state q4 and ending in the state q12 processes a well-nested substring b<<cd>e>,
and therefore ends with the same stack contents as in which it began (in this
case, the empty stack).

The more general definition of input-driven automata proposed by Alur and
Madhusudan [1] also allows ill-nested input strings, such as the whole string
<a>>b<<cd>e><f in Figure 1. For every unmatched left bracket, the symbol
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pushed to the stack when reading this bracket is never popped, and remains
in the stack to the end of the computation; in the figure, this is the case with
the symbol s′′′ pushed in the state q12. An unmatched right bracket is read
with an empty stack: instead of popping a stack symbol, the automaton merely
detects that the stack is empty and makes a special transition, which leaves the
stack empty. The latter happens in the state q3 in the figure, where the special
transition upon an unmatched right bracket leads the automaton to the state
q4.

Definition 1 (von Braunmühl and Verbeek [4]; Alur and Madhusu-
dan [1]). A nondeterministic input-driven pushdown automaton (NIDPDA)

over an alphabet Σ̃ = (Σ+1, Σ−1, Σ0) consists of

– a finite set Q of states, with set of initial states Q0 ⊆ Q and accepting states
F ⊆ Q;

– a finite stack alphabet Γ , and a special symbol ⊥ /∈ Γ for the empty stack;
– for a neutral symbol c ∈ Σ0, a transition function δc : Q→ 2Q gives the set

of possible next states;
– for each left bracket symbol < ∈ Σ+1, the behaviour of the automaton is

described by a function δ< : Q → 2Q×Γ , which, for a given current state,
provides a set of pairs (q, s), with q ∈ Q and s ∈ Γ , where each pair means
that the automaton enters the state q and pushes s onto the stack;

– for every right bracket symbol > ∈ Σ−1, there is a function δ> : Q × (Γ ∪
{⊥}) → 2Q specifying possible next states, assuming that the given stack
symbol is popped from the stack (or that the stack is empty).

A configuration is a triple (q, w, x), with the current state q ∈ Q, remaining input
w ∈ Σ∗ and stack contents x ∈ Γ ∗. Possible next configurations are defined as
follows.

(q, cw, x) `A (q′, w, x), c ∈ Σ0, q ∈ Q, q′ ∈ δc(q)
(q,<w, x) `A (q′, w, sx), < ∈ Σ+1, q ∈ Q, (q′, s) ∈ δ<(q)

(q,>w, sx) `A (q′, w, x), > ∈ Σ−1, q ∈ Q, s ∈ Γ, q′ ∈ δ>(q, s)

(q,>w, ε) `A (q′, w, ε), > ∈ Σ−1, q′ ∈ δ>(q,⊥)

The language recognized by A is the set of all strings w ∈ Σ∗, on which the
automaton, having begun its computation in the configuration (q0, w, ε), eventu-
ally reaches a configuration of the form (q, ε, x), with q ∈ F and with any stack
contents x ∈ Γ ∗.

An NIDPDA is deterministic (DIDPDA), if there is a unique initial state
and every transition provides exactly one action.

As shown by von Braunmühl and Verbeek [4], every n-state NIDPDA operat-

ing on well-nested strings can be transformed to a 2n
2

-state DIDPDA. Alur and
Madhusudan [1] proved that 2Ω(n2) states are necessary in the worst case, and
also extended the transformation to handle ill-nested inputs, with the resulting
DIDPDA using 22n

2

states.
For more details on input-driven automata and their complexity, the readers

are directed to a recent survey [12].
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3 Closure under the quotient

In this section, it is proved that the language family defined by input-driven
automata is closed under the quotient operation.

For the class of regular languages, it is well-known that they are closed under
quotient with any language. Indeed, if K is recognized by a deterministic finite
automaton (DFA), then, from each state q of this DFA, it is the case or not the
case that the DFA accepts some string from L beginning from q. Depending on
this, q is relabelled as accepting or rejecting, and the resulting DFA recognizes
exactly the quotient K · L−1.

Turning to input-driven automata, as long as all strings in L are well-nested,
the same property still holds. That is, an n-state DIDPDA recognizing K can
be transformed to an n-state DIDPDA recognizing the quotient K ·L−1, simply
by relabelling its states.

Given an arbitrary pair of NIDPDA, A and B, the goal is to construct a
new NIDPDA C that recognizes their quotient, L(A) · L(B)−1. Whenever the
automaton A accepts a string uv, and the other automaton B accepts the string
v, the simulating automaton should therefore accept u. If none of the brackets in
the u-part of uv match any brackets in the v-part, then the simulation proceeds
like in the case of finite automata, without using any extra states. In the general
case, the string u may have unmatched left brackets, v may have unmatched right
brackets, and these brackets match each other in uv; thus, the computation of A
may rely on the data transferred from u to v in the stack symbols. The simulating
automaton C is given only u, with its unmatched left brackets, and while doing
so, it has to guess the string v and imagine the computations of both A and B
on this guessed v.

In the computation of C on u, these imaginary computations on v are traced
backwards, so that whenever a left bracket (<) in u matches a right bracket
(>) in v, the simulating automaton C, upon reading u up to that left bracket,
tracks the imaginary computations of A and B that begin from the matching
right bracket (>) in v and accept in the end of v. As C finishes reading the string
u, its imaginary computations on v are backtracked to their beginning at the
boundary between u and v. Then, at this point C ensures that B’s computation
is in its initial configuration, whereas the actual simulated computation of A on
u smoothly continues into the imaginary computation of A on v. Thus, C finally
verifies that a string v and a computation on it that it has been guessing actually
do exist; and accordingly C accepts u.

This idea is implemented in the following construction.

Lemma 1. Let K be a language recognized by an NIDPDA A with the set of
states P and with the pushdown alphabet Γ , and let L be another language rec-
ognized by an NIDPDA B with the set of states Q and with the pushdown al-
phabet Ω. Then, the quotient K · L−1 is recognized by an NIDPDA C with the
set of states (P × {0, 1}) ∪ P ∪ (P × P × Q) and with the pushdown alphabet
(Γ × {0, 1}) ∪ Γ ∪ {#} ∪ (Γ × P ×Q).
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Proof (a sketch). At the first phase of the computation of C on an input string
u, the simulation of the computations of A and B on its imaginary continuation
v has not yet been started. This means that C assumes that all left brackets read
so far are either going to have a matching right bracket in u, or are unmatched
both in u and in v.

Thus, at the first phase, C simply simulates the operation of A on a prefix
of u, while maintaining a single extra bit of data: whether the stack is empty
or not. This is represented in states of the form (p, d), where p ∈ P is the state
of A, and d ∈ {0, 1}, with d = 0 representing stack emptiness. While in these
states, C uses stack symbols of the form (s, d), with s ∈ Γ and d ∈ {0, 1}, which
also carry the information on whether this stack symbol is at the bottom of the
stack (d = 0). This allows the simulating automaton to enter a state of the form
(p, 0) upon popping the last symbol from the stack, and thus always be aware
of its stack’s emptiness.

Every time C reads a left bracket (<), it nondeterministically guesses whether
this bracket has a matching right bracket (>) in v. If C guesses that this is not
the case, it pushes the same stack symbol as A would push (that is, C pushes
(s, 0) or (s, 1), if A would push s), and continues its computation in a state of
the form (p, 0) or (p, 1). If later, while still at the first phase, C encounters a
matching right bracket and pops that symbol, it again behaves as A would do,
remaining in a state from P × {0, 1}.

At some point, C may read a left bracket (<) and decide that it has a matching
right bracket in v, so that A operating on uv would transfer some stack symbol
s from the left bracket (<) to the right bracket (>). If this guess is correct, then
this left bracket is unmatched in u, and thus C will never have a chance to pop
the stack symbol it pushes at this moment; for that reason, it pushes a special
stack symbol (#) that will cause immediate rejection if it is ever popped. At the
same time, C guesses the computations of A and B on a suffix of v containing
the matching right bracket (>) and the neighbouring well-nested substrings, and
enters the second phase of the simulation in a state from P × P ×Q.

In the second phase, C uses triples of the form (p, p̃, q̃) as states, and, while
reading the input string u from left to right, it also guesses an imaginary string v
from right to left, along with the computations of A and of B on that imaginary
string. According to this plan, the first component of each triple, p ∈ P , is the
state of the ongoing simulation of A on the prefix of u read so far. The other two
components are the states of A and B processing v. To be precise, the second
component, p̃ ∈ P , is a state, beginning from which A accepts a suffix of v
guessed in the course of this simulation, whereas q̃ ∈ Q is a state of B, beginning
from which it accepts the same guessed suffix of v.

When C nondeterministically decides to move to the second phase along with
reading a left bracket (<), it guesses A’s and B’s computations on the last suffix
of the imaginary second part of the string. If C’s stack is empty—that is, if C
is in a state (p, 0)—then the last suffix of v is of the form x>y, where x is a
well-nested string, the right bracket (>) following x is the one that matches the
current left bracket (<) in u, and y is a concatenation of a descending string and
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an ascending string (that is, a concatenation of well-nested strings and right
brackets, followed by well-nested strings and left brackets). All right brackets in
y are then unmatched both in u and in the earlier part of v, and accordingly, C
may enter any state (p′, p̃, q̃) satisfying the following conditions:

1. upon reading this left bracket (<) in the state p, A pushes some stack symbol
s ∈ Γ and enters the state p′;

2. the automaton A, having begun its computation on x>y in the state p̃ and
with s on the stack, accepts;

3. the other automaton B, having begun its computation on x>y in the state
q̃ and with the empty stack, accepts as well.

In the other case, if C’s stack is not empty, and it is therefore in a state (p, 1),
the suffix of v is of the form x>y, where both x and y are well-nested, and the
above three conditions remain the same.

Transitions of C in a state (p, p̃, q̃) are defined as follows. A right bracket (>)
cannot be read in this state, and if it is encountered, C rejects.

Upon reading a neutral symbol c ∈ Σ0, the simulation of A in the first
component continues, while the last two components stay unchanged.

When reading a left bracket (<), the automaton C again has to guess whether
this bracket has a matching right bracket (>) in v. In case it does, C pushes the
stack symbol (#) that will cause rejection if popped, and advances the simulation
in all three components of the state in the same way as it did when entering the
second phase. On the other hand, if C nondeterministically guesses that this left
bracket (<) has a matching bracket in u, it suspends the simulation of A and B
on the imaginary suffix v, pushing a triple (s, p̃, q̃) onto the stack, where s is the
stack symbol in the ongoing simulation of A on u. Then, C enters a state p′ ∈ P
and begins processing the current well-nested substring of u in the state from
P , simulating only A.

When this well-nested substring ends, C reads the matching right bracket
(>) in u and pops the triple (s, p̃, q̃) from the stack. Then, it resumes the second
phase of the simulation in the state (p′′, p̃, q̃), where p′′ is the next state in the
ongoing simulation of A on u.

The precise correctness statement of the construction takes the following
form. When the simulating NIDPDA, after having read a string t<1u1 . . . <huh ∈
Σ∗, where t is any string, u1, . . . , uh are well-nested strings and <1, . . . , <h are
unmatched left brackets in this string, is in a state (p, p̃, q̃) and has stack contents
(sh, ph, qh) . . . (s1, p1, q1), this means that, first, there exists a computation of A
on the string t<1u1 . . . <huh that pushes each symbol si on the corresponding left
bracket <i, and reaches the state p after reading t<1u1 . . . <huh, and second,
there exists a string of the form v = vh>h . . . v1>1w, where v1, . . . , vh are well-
nested strings, >1, . . . , >h are right brackets and w ∈ Σ∗ is any string that has
no matching right brackets (>) to any left brackets (<) in t, so that A, having
begun its computation on v in the state p̃, with the stack contents sh . . . s1, after
popping each right bracket >i will be in the corresponding state pi, and will
accept in the end, whereas B, having begun its computation on the same string
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v in the state q̃ and with the empty stack, will be in the state qi after each right
bracket >i, and will accept the string as well.

The correctness statement could be proved by induction on the length of the
computation.

Finally, accepting states are of the form (p, p, q0), that is, A finishes reading
u in the state p, and A accepts v beginning in the state p, and also B accepts v
beginning in the state q0. Then, C recognizes exactly the desired quotient. ut

This proves the closure under right-quotient. Since the family of languages
recognized by input-driven automata is closed under reversal (where, in the
reversed string, left brackets become right brackets and vice versa [2]) the closure
result also extends to the left-quotient operation.

Theorem 1. The family of languages recognized by input-driven pushdown au-
tomata is closed under right-quotient and left-quotient.

4 Plan for a lower bound argument

The construction given in the previous section uses 3m+m2n states to represent
the quotient, and it turns out that it cannot be much improved upon. A lower
bound on the state complexity of the quotient of NIDPDA shall be proved using
witness languages of the following general form.

Fix an alphabet of labels, Γ . The first language contains nested sequences of
brackets with the matching brackets having identical labels; it is a subset of the
following base language.

K0 = {<a1 . . . <am>am . . . >a1 | m > 0, a1, . . . , am ∈ Γ }

All strings in the second language consist of right brackets (>), which are to be
erased by the quotient operation. Thus, the second language is a subset of the
following language.

L0 = {>am . . . >a1 | m > 0, a1, . . . , am ∈ Γ }

An automaton A recognizing a subset K ⊆ K0 performs two tasks. First,
upon reading each bracket <a, it pushes the symbol a to stack, and upon reading
a bracket >a it ensures that the symbol being popped is a; doing this task does
not require any states. Second, it operates on the string as a DFA, ensuring that
it belongs to a certain regular language.

The second automaton B recognizes a subset L ⊆ L0 essentially as a DFA.
Then, the quotient K · L−1 contains a string of the form <a1 . . . <am if the

whole string <a1 . . . <am>am . . . >a1 is in K, whereas its second half >am . . . >a1
belongs to L.

In order to construct efficient witness languages of this form, it is convenient
to reformulate them in terms of finite automata, and to consider a related state
complexity problem for finite automata. Let every left bracket (<a) labelled with
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a symbol a ∈ Γ be regarded as a symbol a, and let every right bracket (>a) be

regarded as ã, from a marked copy of the alphabet Γ̃ = { ã | a ∈ Γ }. Then the

associated state complexity problem for finite automata over Γ ∪ Γ̃ ∪ {#} is
concerned with the complexity of the following palindromic quotient operation
on languages with respect to NFAs.

PQ(K,L) = { a1 . . . am | a1 . . . am#ãm . . . ã1 ∈ K, ãm . . . ã1 ∈ L }

Lemma 2. Let K ⊆ Γ ∗#Γ̃ ∗ and L ⊆ Γ̃ ∗ be any languages, and define the
corresponding languages over the alphabet of brackets as follows.

K ′ = {<a1 . . . <am>am . . . >a1 | a1 . . . am#ãm . . . ã1 ∈ K }
L′ = {>am . . . >a1 | ãm . . . ã1 ∈ L }

Then:

1. if K is recognized by an m-state NFA, then K ′ is recognized by an m-state
NIDPDA;

2. if L is recognized by an n-state NFA, then L′ is recognized by an n-state
NIDPDA;

3. if K ′ · (L′)−1 is recognized by an N -state NIDPDA, then PQ(K,L) is recog-
nized by an N -state NFA.

In particular, to prove the third part, one can directly transform an IDPDA
recognizing the quotient K ′ · (L′)−1 to an NFA recogizing the palindromic quo-
tient PQ(K,L) by eliminating all transitions by right brackets and by ignoring
all symbols pushed to the stack upon reading left brackets.

5 The lower bound for NFA

In order to apply Lemma 2, the task is now to determine the state complexity
of the palindromic quotient operation with respect to NFAs. The tools for doing
this are well-known.

Definition 2 (Birget [3]). Let L ⊆ Σ∗ and S = {(x1, y1), . . . , (xm, ym)},
xi, yi ∈ Σ∗, i = 1, . . . ,m. The set S is a fooling set for L, if

1. xiyi ∈ L for all 1 6 i 6 m,

2. xiyj 6∈ L or xjyi 6∈ L for all 1 6 i < j 6 m.

The nondeterministic state complexity of a regular languate L, nsc(L), is the
minimal number of states of any NFA recognizing L.

Lemma 3 (Fooling set lemma [3]). If a regular language L has a fooling set
of cardinality k, then nsc(L) > k.
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For an alphabet Σ define Σ̃ = {ã | a ∈ Σ}. For a string w = a1 · · · ak, ai ∈ Σ,
1 6 i 6 k, let w̃ = ã1 · · · ãk.

Consider an alphabet Ω = Σ ∪ Σ̃ ∪ {#}, where # 6∈ Σ ∪ Σ̃. For K,L ⊆ Ω∗

define

PQ(K,L) = {w ∈ Σ∗ | w#w̃R ∈ K, w̃R ∈ L}.

The lower bound for the state complexity of the operation PQ(·, ·) will be used
for obtaining a lower bound for the state complexity of quotient of input driven
languages. For this reason the alphabet is partitioned into sets Σ, Σ̃ and {#}
which play the roles of left brackets, right brackets and neutral symbols, respec-
tively.

Lemma 4. If A is an NFA with n states and B an NFA with m states, the
language PQ(L(A), L(B)) has an NFA with n2 ·m states.

Proof. The language PQ(L(A), L(B)) can be recognized by an NFA C operating
as follows. On input w ∈ Σ∗, C simulates in parallel (i) a computation of A from
a start state to a state q1, (ii) a computation of A in reverse starting from a final
state on the string w̃, ending in a state q2, and (iii) a computation of B from a
final state in reverse on the string w̃ ending in a state p. Thus, the states of C
are triples (q1, q2, p) where q1, q2 are states of A and p is a state of B. A state
(q1, q2, p) is accepting if A has a transition on # from q1 to q2 and p is a start
state of B.

Now C has n2 ·m states and, by the choice of the final states, it is clear that
L(C) = PQ(L(A), L(B)). ut

Lemma 5. Let Σ = {a, b, c} and Ω = Σ ∪ Σ̃ ∪ {#}. For n,m ∈ N there exist
regular languages K and L over the alphabet Ω with nsc(K) = n and nsc(L) = m
such that

nsc(PQ(K,L)) > n2 ·m.

Proof. Define

K = {u1#u2# · · ·#u` | ui ∈ Ω∗, |ui|a + |ui |̃b ≡ 0 mod n, i = 1, . . . , `},

L = {v ∈ Σ̃∗ | |v|c̃ ≡ 0 (mod m)}.

Note that the definition allows some of the substrings ui to be empty which
means that the strings of K may begin or end with # and have consecutive
occurrences of #.

The language K is recognized by an NFA A = (Ω,Q, 0, 0, δ) where Q =
{0, 1, . . . , n− 1} and the transitions of δ are defined by setting

1. δ(i, a) = δ(i, b̃) = i+ 1 for i = 0, . . . , n− 2, and δ(n− 1, a) = δ(n− 1, b̃) = 0,

2. δ(i, b) = δ(i, c) = δ(i, ã) = δ(i, c̃) = i for i = 0, . . . , n− 1,

3. δ(0,#) = 0 and δ(i,#) is undefined for i = 1, . . . , n− 1.
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The automaton A is, in fact, an incomplete DFA having a cycle of length n
where the cycle counts the sum of the numbers of symbols a and b̃ modulo n.
Transitions on # are defined only when the current sum has a value divisible by
n. This means that A checks that in the substring between two occurrences of
# the sum of the numbers of occurrences of a and b̃ must be divisible by n and
A recognizes exactly the language K.

It is clear that L has an NFA with a cycle of length m that simply verifies
that the input is in {ã, b̃, c̃}∗ and counts the number of occurrences of symbols
c̃ modulo m.

For establishing the lower bound for the nondeterministic state complexity
of PQ(K,L) we define

S = {(aibjck, an−ibn−jcm−k) | 0 6 i, j 6 n− 1, 0 6 k 6 m− 1}.

The set S has cardinality n2 · m and to prove the claim, by Lemma 3, it is
sufficient to verify that S is a fooling set for PQ(K,L).

For any pair (aibjck, an−ibn−jcm−k) of S we have aibjck · an−ibn−jcm−k ∈
PQ(K,L) because with w = aibjckan−ibn−jcm−k we have w#w̃R ∈ K and
w̃R ∈ L due to the observations that |w|a + |w|̃b = n, |w̃|a + |w̃|̃b = n and
|w̃|c̃ = m.

Next consider two distinct elements of S, (aibjck, an−ibn−jcm−k) and
(arbsct, an−rbn−scm−t), where (i, j, k) 6= (r, s, t). Denote w = aibjck ·
an−rbn−scm−t. If k 6= t, w 6∈ PQ(K,L) because |w̃|c̃ 6≡ 0 mod m. If i 6= r
then |w|a + |w|̃b = i + n − r 6≡ 0 mod n and, consequently, w#w̃R 6∈ K and
w 6∈ PQ(K,L). Similarly, if j 6= s then |w̃|a + |w̃|̃b = j + n− s 6≡ 0 mod n and
again w#w̃R 6∈ K. ut

6 The state complexity of the quotient

The results on the number of states in NIDPDA needed to represent the quotient
are put together in the following theorem.

Theorem 2. In order to represent the quotient of an m-state NIDPDA by an
n-state NIDPDA, it is sufficient to use an NIDPDA with 3m + m2n states. In
the worst case, it is necessary to use at least m2n states.

This gives the state complexity of m2n+O(m).
If the goal is to construct a deterministic automaton, one possible solution is

to determinize the constructed NIDPDA. However, that would produce as many
as 2Θ(m4n2) states. Previously, for some operations, such as the concatenation, a
much more succinct direct construction of a DIDPDA was defined [14] using the
idea of computing behaviour functions of the given DIDPDA [11]. Investigating
whether there is a significantly better construction of a DIDPDA for a quotient
of two DIDPDAs is left as an open problem. A possible starting point is the DFA
state complexity of the palindromic quotient operation defined in this paper.

Another open problem concerns the state complexity of the quotient for the
intermediate unambiguous IDPDA model [13].
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