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Equicontinuity and Sensitivity of
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Pietro Di Lena

Department of Computer Science and Engineering
University of Bologna, Italy
pietro.dilena@unibo.it

Abstract. Nondeterministic Cellular Automata (NCA) are the class
of multivalued functions characterized by nondeterministic block maps.
We extend the notions of equicontinuity and sensitivity to multivalued
functions and investigate the characteristics of equicontinuous, almost
equicontinuous and sensitive NCA. The dynamical behavior of nonde-
terministic CA in these classes is much less constrained than in the
deterministic setting. In particular, we show that there are transitive
NCA with equicontinuous points and equicontinuous NCA that are not
reversible.

Keywords: nondeterministic cellular automata, equicontinuity, sensi-
tivity, transitivity

1 Introduction

Cellular Automata (CA) are discrete dynamical systems on the space of doubly
infinite grid of cells. At any temporal instant, each cell can be in one of a fi-
nite number of possible states. The state of every cell is updated synchronously
according to some fixed local rule that depends on the current state of the cell
and that of its neighboring cells. CA represent also one of the simplest abstract
models for parallel computation. The dynamical [3, 6, 10, 17] and computational
[7, 9, 11, 12] properties of the CA formalism, as well as of its asynchronous and
non-uniform variants [4, 5, 8], have been well studied in literature.

Cellular Automata can be easily extended to nondeterminism by simply al-
lowing a nondeterministic local rule. Nondeterminism is an important notion in
Computation Theory, hence Nondeterministic Cellular Automata (NCA) rep-
resent a natural model for nondeterministic parallel computation. Despite its
attractiveness, so far NCA received very little attention in literature. This may
be due to the fact that NCA are a special class of multivalued functions and
there is a substantial lack of mathematical background for studying multivalued
dynamical systems [1].

The first mention of NCA in literature traces back to the seventies [20, 21],
and then there is a gap on the subject until very recently [2, 13–15, 19]. In [13]
we started to study the most basic properties of the NCA mappings. In partic-
ular, we proved necessary and sufficient conditions that characterize the class of
nondeterministic block mappings.
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In [13] we focused essentially on surjective and reversible NCA, i.e. nondeter-
ministic block mappings whose inverse can be still defined by a nondeterministic
block map. In this work we continue our investigation on NCA from the dynami-
cal point of view. We extend some widely studied topological properties, such as
equicontinuity and sensitivity, to nondeterministic mappings. These two proper-
ties do not have a standardized definition in the multivalued setting. We show
several examples of equicontinuous, almost equicontinuous and sensitive NCA.
In comparison to CA, the dynamical behavior of NCA is much more complex
and less constrained. The largest differences are probably found in the class of
equicontinuous NCA. Surjective and equicontinuous CA have a strongly peri-
odic behavior, hence they are bijective and reversible. On the contrary, there
are equicontinuous NCA that are transitive and not reversible. Several questions
about the NCA dynamics are open. In particular, it is an open question whether
there are NCA whose set of equicontinuous points is not empty and non dense,
which would imply that there are not sensitive and not almost equicontinuous
NCA.

The paper is organized as follows. In Section 2 we introduce the basic notation
and background. Section 3 and 4, are devoted to equicontinuity and sensitivity,
respectively. In Section 5 we consider transitive NCA. Section 6 contains the
final remarks.

2 Preliminaries

2.1 Cellular Automata

We introduce the basic notation and terminology we will use throughout the rest
of the paper. We assume that the reader is familiar with the elementary notions
from Symbolic Dynamics and Topology Theory [16, 18].

Let A be a finite set with at least two elements. We denote with Ak, the set
of words over A of length k > 0, with A+ = ∪k>0A

k the set of finite words
on A and with A∗ the set of finite words of A, including the empty word. The
set AZ denotes the set of doubly infinite sequences (xi)i∈Z of symbols xi ∈ A.
Given x ∈ AZ we use the shortcut x[i,j] for the sub-word xixi+1..xj ∈ Aj−i+1. A
sequence containing a periodic repetition of the word w ∈ A+ is denoted with
∞w∞, i.e x = ∞w∞ if ∀i ∈ Z, x[i·|w|,(i+1)|w|−1] = w.

The mapping σ : AZ → AZ, defined by σ(x)i = xi+1, is called shift map. The
pair (AZ, σ) is a dynamical system, called full shift.

Consider the metric d(x, y) = 2−n on AZ, where n = min{|i| | xi 6= yi}.
The full shift AZ endowed with metric d is a Cantor space, i.e. a compact,
totally disconnected, metric space. For every word u ∈ A+ and i ∈ Z, the set
[u]i = {x ∈ AZ | x[i,|u|−1] = u} is called cylinder set. A cylinder set is a clopen

(closed and open) set in AZ. Given x ∈ AZ and ε = 2−r > 0, the open ball
Bε(x) = {y ∈ AZ | d(x, y) < ε} coincides with the cylinder set [x[−r,r]]−r. Every

open set U ⊆ AZ is defined by a countable union of cylinders.
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An endomorphism F : AZ → AZ is a sliding block code if there exists a
block map f : A2r+1 → A, for some radius r ≥ 0, such that for every point
x ∈ AZ, F (x)i = f(x[i−r,i+r]). We call f local rule of F . The fundamental

Theorem of symbolic dynamics [16], states that a mapping F : AZ → AZ is a
sliding block code if and only if F is continuous and commutes with the shift, i.e.
F (σ(x)) = σ(F (x)). The shift map σ itself is a sliding block code. The continuous
and σ-commuting endomorphisms of the full shift (AZ, F ) are usually known as
Cellular Automata (CA).

2.2 Nondeterministic Cellular Automata

Nondeterministic Cellular Automata (NCA) are the class of multivalued func-
tions (or multimaps) definable by nondeterministic block maps.

Definition 1. Let A be some alphabet A with at least two elements.

– A mutivalued mapping f : A2r+1 ⇒ A of radius r ≥ 0 is a nondeterministic
block map if,

∀w ∈ A2r+1, f(w) ⊆ A

– A multivalued function F : AZ ⇒ AZ is a nondeterministic cellular automa-
ton if there is some nondeterministic block map f : A2r+1 ⇒ A such that:

∀x ∈ AZ, F (x) = {y ∈ AZ | ∀i ∈ Z, yi ∈ f(x[i−r,i+r])}

Continuity notion for (single-valued) functions can be extended to multivalued
functions by means of the dual concepts of upper and lower semicontinuity (also
referred to as upper and lower hemicontinuity), which collapse to the ordinary
notion of continuity in the single-valued setting. The upper and lower semicon-
tinuity properties have a simple characterization in terms of preimages of closed
and open sets.

Definition 2. Let F : AZ ⇒ AZ be a multimap.

– F is said upper semicontinuous at x ∈ AZ if for any open subset V ⊆ AZ

such that F (x) ⊆ V ,

∃δ > 0 such that ∀x′ ∈ Bδ(x), F (x′) ⊆ V

– F is said lower semicontinuous at x ∈ AZ if for any open subset V ⊆ AZ

such that F (x) ∩ V 6= ∅,

∃δ > 0 such that ∀x′ ∈ Bδ(x), F (x′) ∩ V 6= ∅

– F is said continuous if it is both lower and upper semicontinuous at every
x ∈ AZ.

ut

Proposition 1. Let F : AZ ⇒ AZ be a multimap.
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1. F is upper semicontinuous if and only if for any closed set V ⊆ AZ, F−1(V )
is closed in AZ.

2. F is lower semicontinuous if and only if for any open set V ⊆ AZ, F−1(V )
is open in AZ.

It is easy to prove that nondeterministic block mappings are σ-commuting and
continuous. However, these two properties alone are not sufficient to characterize
the class of multi-valued functions definable by nondeterministic block maps.

Definition 3. Let F : AZ ⇒ AZ be a multimap.

– We say that F is locally independent at x ∈ AZ if

y /∈ F (x) if and only if ∃i ∈ Z such that yi /∈ F (x)i

where

F (x)i = {a ∈ A | ∃z ∈ F (x), zi = a}

– We say that F is locally independent if it is locally independent at every
x ∈ AZ.

ut

Theorem 1. [13] A multimap F : AZ ⇒ AZ is a NCA if and only if it is
continuous, σ-commuting and locally independent.

It is not generally true for multivalued functions that the continuous image
of a compact set is compact. It is possible to prove that this property holds for
nondeterministic block mappings.

Theorem 2. [13] Let (AZ, F ) be a NCA. Then F (U) is compact for every com-
pact subset U ⊆ AZ.

An interesting class of NCA is the class of reversible NCA.

Definition 4. Let (AZ, F ) be a NCA.

– The reversed map F−1 : F (AZ) ⇒ AZ is defined by

F−1(x) = {y ∈ AZ | x ∈ F (y)}

– We say that F is a reversible NCA if F−1 is defined by a nondeterministic
block map.

ut

In the deterministic setting reversibility coincides with the injectivity property.
In the nondeterministic setting, the scenario is more complex.

Definition 5. Let (AZ, F ) be a NCA. We say that F is injective if

∀x, y ∈ AZ, x 6= y, F (x) ∩ F (y) = ∅.
ut
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In [13] we showed that there are no injective NCA other than the class of injec-
tive CA. Moreover, if a CA (AZ, F ) is reversible, then (AZ, F−1) is an injective
CA, which implies that if (AZ, F ) is strictly nondeterministic, surjective and
reversible, then (AZ, F−1) is again strictly nondeterministic. A further charac-
teristic of reversible NCA is that they don’t need to be surjective. The simplest
non trivial examples of (surjective or not surjective) reversible NCA are the class
of NCA with radius zero.

3 Equicontinuity

Equicontinuous dynamical systems are characterized by the presence of stable
points, called equicontinuity points, under the iterations of the map. Dynamical
systems whose set of equicontinuity points is dense (residual), are called almost
equicontinuous. In the CA dynamical systems, the set of equicontinuity points
is either dense or empty, and it is inversely invariant. We show an example of
NCA whose set of equicontinuous points is not inversely invariant, while it is an
open question whether there are NCA that have a non empty and non dense set
of equicontinuous points. Furthermore, it is well known that surjective equicon-
tinuous CA are injective, hence bijective. We show an example of surjective,
equicontinuous NCA that is not reversible.

A point x is called equicontinuous if the family of iterations (Fn)n≥0 is equicon-
tinuous at x. As for the continuity notion for multivalued functions, the dual
properties of lower equicontinuity and upper equicontinuity facilitate the exten-
sion of equicontinuity to iterations of the multimap.

Definition 6. Let F : AZ ⇒ AZ be a NCA.

– We say that x ∈ AZ is an upper equicontinuous point (Fig. 2) if

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x),∀n ≥ 0, Fn(y) ⊆ Bε(Fn(x))
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– We say that x ∈ AZ is a lower equicontinuous point (Fig. 1) if

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x),∀n ≥ 0, Fn(x) ⊆ Bε(Fn(y))

– We say that x ∈ AZ is an equicontinuous point if it is both upper and
lower equicontinuous:

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x),∀n ≥ 0, Bε(F
n(x)) = Bε(F

n(y))
ut

Definition 7. Let E ⊆ AZ be the set of equicontinuous points of (AZ, F ).

– We say that (AZ, F ) is equicontinuous if E = AZ.
– We say that (AZ, F ) is almost equicontinuous if E is a residual set.

ut

The most simple class of equicontinuous CA is the class of mappings defined by
local rules of radius zero. Such class can be easily characterized also for NCA.

Proposition 2. Any NCA with radius zero is equicontinuous.

Proof. If the local rule f has radius zero, we have that ∀x ∈ AZ, ∀n ≥ 0,
Fn(x)i = fn(xi). This implies that ∀ε = 2−k > 0, if y ∈ Bε(x) = [x[−k,k]]−k
then ∀n ≥ 0

Bε(F
n(x)) = [Fn(x)[−k,k]]−k = [fn(x[−k,k])]−k = [fn(y[−k,k])]−k =

= [Fn(y)[−k,k]]−k = Bε(F
n(y))

ut

It is well known that every surjective equicontinuous CA is injective, hence re-
versible. We have already shown in [13] that every NCA with radius zero, surjec-
tive or not, is reversible. Thus nondeterministic local rules or radius zero give rise
to a non trivial class of (either surjective or not) equicontinuous and reversible
NCA. However, we can easily show that not every surjective and equicontinuous
NCA is reversible.

Example 1. (Irreversible and equicontinuous NCA) Consider the NCA
(AZ, F ) on the alphabet A = {0, 1}, defined by the following local rule:

∀a, b, c ∈ A, f(a, b, c) =

{
{0, 1} if a = 1, b = 0, c = 1
{b} otherwise

The mapping F is essentially the identity on A, except for the word 101, which
is mapped nondeterministically by the local rule to {0, 1}. F is clearly surjective,
since ∀x ∈ AZ, x ∈ F (x). In order to see that (AZ, F ) is equicontinuous, note
that 1 is a quiescent symbol, i.e. ∀x ∈ AZ,∀n ≥ 0 if xi = 1 then Fn(x)i = {1}.
The symbol 0 is quiescent everywhere except when it is immediately surrounded
by two (quiescent) 1s. Then,

∀w ∈ A3,∀x, y ∈ [w]−1,∀n ≥ 0, Fn(x)0 = Fn(y)0
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and, generalizing,

∀w ∈ A2k+1,∀x, y ∈ [w]−1,∀n ≥ 0, Fn(x)[−k+1,k−1] = Fn(y)[−k+1,k−1]

which implies equicontinuity. We conclude by showing that F is not reversible.
Consider the configuration x̃ = ∞1∞, and note that x̃ ∈ F (∞(01)∞) and
x̃ /∈ F (∞0∞). Now, if F−1 is defined by some nondeterministic block map
f−1 : A2k+1 ⇒ A, the only possibility is that f−1(12k+1) = {0, 1}. But in this
way, F−1(x̃) = AZ, while ∞0∞ /∈ F−1(x̃). ut

In topological (single-valued) dynamical systems, the set of equicontinuous points
is inversely invariant. This property does not hold for multivalued mappings. The
following example shows an almost equicontinuous NCA whose set of equicon-
tinuous points is not invariant.

Example 2. (Almost equicontinuous NCA with not inversely invariant
equicontinuous points) Consider the NCA (AZ, F ) on alphabet A = {0, 1, 2},
defined by the following nondeterministic local rule:

∀a, b, c ∈ A, f(a, b, c) =

{2} if a = 2 or b = 2 or c = 2
{0, 2} if a = b = c = 0
{c} otherwise

Note that, the symbol 2 is a quiescent symbol that spreads to the left and to the
right. The point ∞2∞ is thus an equicontinuous point of (AZ, F ). Consider the
set of sequences that contain infinitely many occurrences of the symbol 2 to the
left and to the right.

U = {x ∈ AZ | ∀i ∈ N,∃k′ ≥ i, k′′ ≤ −i, such that xk′ = 2, xk′′ = 2}

It is easy to prove (exactly the same proof as in the deterministic case) that U
is residual and contains equicontinuous points of (AZ, F ), i.e. U ⊆ E . We show
that x̃ = ∞0∞ is not an equicontinuous point of (AZ, F ). Let δ = 2−k, k ≥ 0 and
consider the point y ∈ Bδ = [02k+1]−k such that

yi =

{
xi if i 6= k + 1
1 if i = k + 1

Then F k+1(x̃)0 = {0, 2} 6= {1, 2} = F k+1(y), which implies that x̃ is not an
equicontinuous point and that (AZ, F ) is almost equicontinuous but not equicon-
tinuous. To conclude, note that x̃ = ∞0∞ ∈ F−1(U), but since x̃ /∈ U we con-
clude that F−1(E) 6⊂ E . ut

In CA equicontinuity is strictly related to the presence of blocking words.

Definition 8. Let ε = 2−k, k ≥ 0. A word w ∈ A2d+1, is a blocking word if

∀x, y ∈ [w]−d,∀n ≥ 0, Fn(x)[−k,k] = Fn(y)[−k,k].
ut
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In particular, equicontinuous points of CA are characterized by the presence
of infinitely many occurrences of blocking words. This strong characterization
implies that the set of equicontinuous points of a cellular automaton is either
empty or dense (residual). There is no immediate generalization of such property
for blocking words of NCA, as shown by the following example. This leaves open
the question whether there are NCA whose set of equicontinuous points is non
empty and not dense.

Example 3. (NCA with dense set of equicontinuous points) Consider the
NCA (AZ, F ) on the alphabet A = {0, 1}, defined by the following nondetermin-
istic local rule

∀a, b, c ∈ A, f(a, b, c) =

{0, 1, 2} if b = 2
{b} if c = 2
{c} otherwise

Note that the function F behaves like the shift map on {0, 1}Z and that for
every x ∈ AZ, F (x)∩{0, 1}Z 6= ∅. On the other end, the symbol 2 does not move
and generates all the other symbols. We first show that (AZ, F ) has a dense set
of equicontinuous points. It is easy to see that x̃ = ∞2∞ is an equicontinuous
point, since ∀ε = 2−k, k ≥ 0 and for every δ ≤ ε

∀y ∈ Bδ(x̃),∀n > 0, Fn(y)[−k,k] = Fn(x̃)[−k,k] = A2k+1

In the same way, for every w ∈ A∗, all the points in

Uw = {x ∈ AZ | ∃i ∈ Z, x[i, i+ |w| − 1] = w ∧ ∀j /∈ [i, i+ |w| − 1], xj = 2}
are equicontinuous. Then the dense set U = ∪w∈A∗Uw is contained in E .

Now, fix some ε = 2−k, k ≥ 0. For simplicity we consider k = 0, but what
follows can be generalized to larger k. By definition, the word w = 22k+1 = 2
is blocking. We show that there are sequences containing infinite occurrences of
w to left and to the right that are not equicontinuous. Consider, for example,
the periodic sequence x̃ = ∞(0002)∞, such that x̃[−1,1] = 000. Since the word 2

cannot generate all the 3-words on {0, 1}, for ε = 2−1 and for every δ = 2−d we
can build the configuration y ∈ Bδ(x̃) such that y[d+1,d+3] = 111 and yi = xi for
every i /∈ [d+ 1, d+ 3]. Then, it is easy to see that:

∃n > 0, 111 ∈ Fn(y)[−1,1], while ∀n ≥ 0, 111 /∈ Fn(x̃)[−1,1]

which implies that x̃ is not a point of equicontinuity for F . ut

4 Sensitivity

In sensitive dynamical systems small perturbations of an orbit may lead to signif-
icantly different trajectories. In some sense, sensitivity is the opposite of equicon-
tinuity and, in fact, the two notions are strictly related: a sensitive dynamical
system cannot have points of equicontinuity. The converse is not generally true,
although it is for the CA dynamical systems. The question is open for NCA
and it is strictly related to the question whether there is a NCA whose set of
equicontinuous points is not empty and not dense.
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Fig. 3. Sensitivity classes

There is no standard definition of sensitivity for multimaps. We extend the
usual definition of sensitivity to multimaps by introducing the notion of upper
and lower sensitivity. We get different classes of sensitivity that coincide with
the classical definition when the mapping is single-valued.

Definition 9. Let F : AZ ⇒ AZ be a NCA.

– We say that (AZ, F ) is upper sensitive (Fig. 1) if

∃ε > 0, ∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Fn(y) 6⊂ Bε(Fn(x))

– We say that (AZ, F ) is lower sensitive (Fig. 2) if

∃ε > 0, ∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Fn(x) 6⊂ Bε(Fn(y))

– We say that (AZ, F ) is sensitive if

∃ε > 0,∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Fn(y) 6⊂ Bε(Fn(x)) ∨ Fn(x) 6⊂
Bε(F

n(y))

– We say that (AZ, F ) is strongly sensitive if

∃ε > 0,∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Fn(y) ∩Bε(Fn(x)) = ∅
ut

The ε constant is called sensitivity constant of the map. All four sensitivity
classes imply no equicontinuous points. Note that upper and lower sensitivity
imply sensitivity but the converse is not immediately false. Strong sensitivity im-
mediately implies lower and upper sensitivity. While in the deterministic setting
all four definitions are equivalent, in the nondeterministic setting, the four defi-
nitions give rise to different classes of sensitivity. We show that all such classes
are non empty and distinct (see Fig. 3).

In the following two lemmas we prove the following properties:
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1. if some nondeterministic orbit appears in every other orbit, then the NCA
is not lower sensitive,

2. if there is a point that is mapped to the entire space, then the NCA is not
upper sensitive.

We will use these two properties to build examples of NCA that are not lower-
or-upper sensitive.

Lemma 1. Let (AZ, F ) be an NCA. Assume that there is some point x ∈ AZ

such that

∀n > 0,∀y ∈ AZ, Fn(x) ⊆ Fn(y)

then (AZ, F ) is not lower sensitive.

Proof. Let (AZ, F ) be of radius r ≥ 0 and assume there is one point x ∈ AZ as
defined in the statement. Consider some ε > 0, then

∀δ > 0,∀y ∈ Bδ(x),∀n > 0, Fn(x) ⊆ Fn(y) ⊆ Bε(F
n(y)),

which implies that F is not lower sensitive. ut

Lemma 2. Let (AZ, F ) be an NCA. Assume that there is some point x ∈ AZ

such that

F (x) = AZ.

Then F in not upper sensitive.

Proof. First of all, note that if F (x) = AZ, then ∀n > 0, Fn(x) = AZ. Consider
some ε > 0, then

∀δ > 0,∀y ∈ Bδ(x),∀n > 0, Fn(y) ⊆ Bε(Fn(x)) = Bε(A
Z),

which implies that F is not upper sensitive. ut
All the following examples are based on the shift map. We first show that

sensitivity does not imply lower and upper sensitivity.

Example 4. (Sensitive but not lower/upper sensitive NCA) Consider the
NCA (AZ, F ) on alphabet A = {0, 1} defined by the following nondeterministic
local rule:

∀a, b, c ∈ A, f(a, b, c) =

{
{0} if c = 0
{0, 1} if c = 1

This nondeterministic map contains both the shift map and the constant map,
which sends every configuration to the uniform configuration ∞0∞.

We first show that (AZ, F ) is sensitive. Consider some configuration x ∈ AZ

and note that, by definition of the local rule f , for every i > 0

F i(x)0 =

{
{0} if xi = 0
{0, 1} if xi = 1
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Let x ∈ AZ and let k > 0. Let y ∈ [x[−k,k]]−k be such that

yi =

{
xi if i 6= k + 1
1− xi if i = k + 1

Then F k+1(x)0 6= F k+1(y)0, which implies that F is sensitive with sensitivity
constant ε = 20. We now show that F is neither lower nor upper sensitive.

1. F is not upper sensitive. Consider the configuration x̃ = ∞1∞ ∈ AZ. We
have that, x̃ is mapped to the entire configuration space, i.e.

∀n > 0, Fn(x̃) = AZ.

then, by Lemma 2, F is not upper sensitive.
2. F is not lower sensitive. Consider the configuration x̃ = ∞0∞ ∈ AZ. We have

that x̃ is a quiescent configuration that appears in every orbit, i.e.

∀n > 0,∀y ∈ AZ, Fn(x̃) = {x̃} ⊆ Fn(y).

then, by Lemma 1, F is not lower sensitive.
ut

The following two examples show that upper sensitivity does not imply lower
sensitivity, and conversely.

Example 5. (Upper sensitive and not lower sensitive NCA) Consider the
NCA (AZ, F ) on alphabet A = {0, 1, 2} defined by the following nondeterministic
local rule:

∀a, b, c ∈ A, f(a, b, c) =

{0} if c = 0
{0, 1} if c = 1
{0, 2} if c = 2

Consider some configuration x ∈ AZ and note that, by definition of the local
rule f , for every i > 0

– if xi = 0, then F i(x)0 = {0},
– if xi = 1, then F i(x)0 = {0, 1},
– if xi = 2, then F i(x)0 = {0, 2},

Then, for every x ∈ AZ and δ = 2−k, k ≥ 0 we can build the configuration
y ∈ Bδ(x) = [x[−k,k]]−k such that

yi =

xi if i 6= k + 1
2 if i = k + 1 and xi ∈ {0, 1}
1 if i = k + 1 and xi = 2

It is clear that F k+1(y)0 6⊂ F k+1(x)0, which proves that F is upper sensitive
with sensitivity constant ε = 20. In order to see that F is not lower sensitive,
consider the uniform configuration x̃ = ∞0∞ ∈ AZ, which is mapped to itself,
i.e. ∀n ≥ 0, Fn(x̃) = {x̃}. Note that ∀y ∈ AZ and ∀n > 0, Fn(x̃) ⊆ Fn(y), then
by Lemma 1, F is not lower sensitive. ut
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Example 6. (Lower sensitive and not upper sensitive NCA) Consider the
one-sided NCA on alphabet A = {0, 1, 2} defined by the following nondetermin-
istic local rule:

∀a, b, c ∈ A, f(a, b, c) =

{
{0, 1, 2} if a = b = c = 0
{c} otherwise

Note that, for every x ∈ AZ and i > 0

F i(x)0 =

{
{0, 1, 2} if x[i−2,i] = 000
{xi} otherwise

For every x ∈ AZ and for every δ = 2−k, k ≥ 0 we can build the configuration
y ∈ Bδ(x) = [x[−k,k]]−k such that

yi =

xi if i 6= k + 1
2 if i = k + 1 and xi ∈ {0, 1}
1 if i = k + 1 and xi = 2

By construction, we have that, if F k+1(x) = {0, 1, 2} or F k+1(x) = {1}, then
F k+1(y) = {2}, while if F k+1(x) = {1} then F k+1(y) = {2}. In both cases,
F k+1(x) 6⊂ F k+1(y), which implies that F is lower sensitive with sensitivity
constant ε = 20. In order to see that F is not upper sensitive, note that the
configuration x̃ =∞ 0∞ ∈ AZ is mapped to the entire space, i.e. Fn(x̃) = AZ,
∀n > 0. Then, by Lemma 2, F is not upper sensitive. ut

Since CA are a subset of NCA, all sensitive CA belong to the strongly sensitive
class. We show that such class contains also strictly NCA. The simples example
is the nondeterministic reformulation of the shift map.

Example 7. (Strongly sensitive NCA) Consider the NCA (AZ, F ) on alpha-
bet A = {0, 1, 2.3} defined by the following nondeterministic local rule:

∀a, b, c ∈ A, f(a, b, c) =

{
{0, 2} if c ∈ {0, 2}
{1, 3} if c ∈ {1, 3}

Note that, F is essentially a nondeterministic shift map on the two sets {0, 2}
and {1, 3}:

∀i > 0, F i(x)0 =

{
{0, 2} if xi ∈ {0, 2}
{1, 3} if xi ∈ {1, 3}

For every x ∈ AZ and δ = 2−k, k ≥ 0 there is the configuration y ∈ Bδ(x) such
that

yi =

{
xi if i 6= k + 1
(xi + 1) mod 4 if i = k + 1

It is easy to see that F k+1(x)0 ∩F k+1(y)0 = ∅, which implies that F is strongly
sensitive with sensitivity constant ε = 20. ut

It is open the question whether there are NCA, both upper and lower sensi-
tive, that are not strongly sensitive.
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5 Transitivity

In a topologically transitive dynamical system every open set has points whose
orbits intersect any other open set. While, in general, a transitive dynamical
system can be either sensitive or almost equicontinuous, it is well known that
topologically transitive CA are sensitive. This strong characteristic does not hold
for NCA.

Definition 10. A NCA (AZ, F ) is topologically transitive if for every non-
empty open sets U, V ∈ AZ,∃n ≥ 0, Fn(U) ∩ V 6= 0.

The following general property holds for any continuous endomorphism of a
compact space.

Proposition 3. Any transitive NCA is surjective.

Proof. Since F is topologically transitive, for every non-empty open set U ∈ AZ,
F (AZ)∩U 6= ∅, which implies that F (AZ) is dense in AZ. Since F is continuous
and AZ compact, F (AZ) is closed, then F (AZ) = AZ. ut

The following sufficient condition is useful to build examples of transitive NCA.

Definition 11. Let (AZ, F ) be a NCA with local rule f : A2r+1 ⇒ A. We say
that F ′ is a sub-NCA of F if its local rule f ′ : A2r+1 ⇒ A is such that

∀w ∈ A2r+1, f ′(w) ⊆ f(w).

If a sub-NCA F ′ of F is deterministic, we denote it as sub-CA.

Lemma 3. If there is a sub-NCA F ′ such that (AZ, F ′) is transitive, then (AZ, F )
is transitive.

Proof. If (AZ, F ′) is transitive then, for every non-empty open sets U, V ⊆ AZ

there is n ≥ 0 such that Fn(U) ∩ V ⊇ (F ′)n(U) ∩ V 6= ∅. ut

By Lemma 3, all the examples of sensitive NCA in Section 4 are transitive, since
all of them contain the shift map as sub-CA. However, while it is well known
that transitive CA are sensitive, this is not true in the nondeterministic setting.
We conclude this section by showing examples of reversible and not reversible
transitive NCA that are equicontinuous.

The most simple example of transitive NCA is the map that sends every
point into the entire configuration space. Such map is equicontinuous.

Example 8. (Transitive, reversible and equicontinuous NCA). Consider
the NCA on alphabet A = {0, 1} defined by the following nondeterministic local
rule of radius zero

∀a ∈ A, f(a) = A

By Proposition 2, (AZ, F ) is equicontinuous. It is clearly transitive, since ∀n > 0,
∀x ∈ AZ, and for every open set U ⊆ AZ, Fn(x)∩U = AZ∩U = U . This example
is also easily reversible and the inverse is the map itself. ut
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With a small modification of the previous example, we can get a non-reversible,
equicontinuous and transitive NCA.

Example 9. (Transitive, irreversible and equicontinuous NCA). Consider
the NCA on alphabet A = {0, 1} defined by the following nondeterministic local
rule:

∀a, b, c ∈ A, f(a, b, c) =

{
{0} if a = c = 1, b = 0
{0, 1} otherwise

By Lemma 3, (AZ, F ) is transitive, since it contains the sensitive elementary rule
90. It is easy to see that it is equicontinuous, since ∀x ∈ AZ,∀n ≥ 2, Fn(x) = AZ.
In order to see that it is not reversible, consider the configurations x̃ = ∞1∞ and
ỹ = ∞0∞. Note that x̃ ∈ F (x̃) and x̃ ∈ F (ỹ), thus, if F−1 is a nondeterministic
block map, the only possibility is that for some r ≥ 0, f−1(12r+1) = {0, 1}, which
implies that F−1(x̃) = AZ. This is not possible, since x̃ /∈ F (∞(01)∞). ut

6 Conclusions

We investigated topological dynamical properties of Nondeterministic Cellular
Automata. First, we extended to multivalued functions the notions of equicon-
tinuity and sensitivity, which do not have a standard definition as in the single-
valued setting. Then, we studied the classes of equicontinuous, almost equicon-
tinuous and sensitive NCA and their intersections with the class of transitive
NCA. The topological dynamics of NCA is extremely complex and there are
strong differences with respect to their deterministic counterpart. The largest
differences are probably found in the class of equicontinuous NCA. Surjective
and equicontinuous CA have a strongly periodic behavior, hence they are bi-
jective and reversible. On the contrary, there are equicontinuous NCA that are
transitive and not reversible.

There are several interesting open questions. It is unknown whether there
is a NCA whose set of equicontinuous point is not empty and not dense. This
question is strictly related to the question whether there are NCA that are not
sensitive and not almost equicontinuous, which is also open.
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