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Abstract. We propose a novel method of time series decomposition based on 

the non-negative factorization of the Hankel matrix of time series and apply this 

method for time series modelling and prediction. An interim (surrogate) model 

of time series is built from the components of the time series using random 

cointegration, while the best cointegration is selected using a nature-inspired 

optimization method (Artificial Bee Colony). For modelling of cointegrated 

time series we use the ARX (AutoRegressive with eXogenous inputs) model. 

The results of modelling using the historical data (daily highest price) of S&P 

500 stocks from 2009 are presented and compared against stand-alone ARX 

models. The results are evaluated using a variety of metrics (RMSE, MAE, 

MAPE, Pearson correlation, Nash-Suttcliffe efficiency coefficient, etc.) as well 

as illustrated graphically using Taylor and Target diagrams. The results show a 

51-98% improvement of prediction accuracy (depending upon accuracy metric 

used). The proposed time series modelling method can be used for variety ap-

plications (time series denoising, prediction, etc.). 

Keywords: time series modelling; time series decomposition; ARX; random 

cointegration. 

1 INTRODUCTION 

Modelling of time series (including the prediction of any future values) is an im-

portant problem with many areas of application, including problems in bioinformatics 

[1], medical diagnosis [2], air pollution forecasting [3], industrial machine condition 

monitoring [4], environmental modelling [5], financial investment [6], production 

planning [7], sales forecasting [8] and stock portfolio management [9]. In the domain 

of financial investment management, to invest and take proper decision, a more pre-

cise forecasting of financial environments is an important issue.  



Financial time series originate from real-world systems (such as stock exchanges) 

and represent the outcome of complex multi-layer dynamic interactions between mul-

tiple agents [10]. Real-world systems have mostly nonlinear and non-stationary be-

haviour. A nonlinear time series is a signal generated by a nonlinear dynamic process, 

in which the output is not directly proportional to the input, i.e. even a small change in 

input may lead to large change in output. Moreover, real-world systems often operate 

under transient non-stationary conditions, characterized by time-changing statistics. 

These properties prevent from acquisition of an effective predictive model and its 

reliable application. Therefore, the researchers are motivated to explore new data 

modelling methods. 

Time series can be represented by different patterns of behaviour. Sometimes it is 

useful to decompose time series into several components, each representing some 

pattern or class of behaviour. It is common to decompose the economical time series 

data into trend (long term variation), cyclical (repeated but non-periodic fluctuations), 

seasonal and irregular (or noise) components [11]. Predictability can be used as a 

criterion to decomposing a times series into deterministic and non-deterministic com-

ponents (Wold decomposition [12]). STL (Seasonal Trend decomposition using 

Loess) [13] can be used to estimate seasonal effects on time series and to predict fu-

ture seasonally adjusted values. When they have time varying properties, the Holt-

Winters decomposition [14] uses exponential to derive the decomposition model, 

which also includes error corrections in forecasting future values of the time series. 

Wavelet decomposition [15] decomposes a time series using the scaling function and 

wavelet functions (i.e. mother wavelet). Second generation wavelets can be used to 

generate wavelet functions in the spatial domain and to deal with complex structure, 

arbitrary boundary conditions, and irregular sampling intervals of time series [16].  

Empirical Mode Decomposition (EMD) [17] initially has been developed for natu-

ral and engineering sciences for analysing nonlinear and non-stationary data such as 

sea wave data and earthquake signals, but has been applied to financial data as well 

[18]. EMD decomposes any time series into a finite number of intrinsic mode func-

tions (IMF). Since the decomposition is based on the local characteristic time scale of 

the data, it is applicable to non-linear and non-stationary processes, and also can ex-

tract variability on different time scales. By performing clustering [19] or remixing 

[20] of IMFs one can identify different structural patterns of a time series and further 

analyze them with respect with their orthogonality and cross-correlation properties. 

However, the application of EMD has many important problems such as the end ef-

fect [21] and the IMF stopping criterion [22]. Extensions of EMD such as BoostEMD 

[23] try to alleviate these problems and improve the characteristics of IMF.  

Despite long history and the availability of many time series decomposition algo-

rithms and models, in many cases they are unable to account for complex structure 

(such as multiple or fractional seasonality) of time series. 

We propose a novel method of time series decomposition based on the non-

negative factorization of the Hankel matrix of time series in Section 2. In Section 3 

we apply the method for time series prediction using the random cointegration ap-

proach. We describe the results of experiments using the historical stock data in Sec-

tion 4. Finally, conclusions and discussion of future work are presented in Section 5. 



2 DECOMPOSITION METHOD 

We propose a new EMD-like signal decomposition method, called Nonnegative 

Hankel Matrix Factorization based Decomposition (NHMFD). The task is to decom-

pose signal ( )x t  into long term (trend), cyclical, and irregular components: 
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here 
jc  is a cyclical component (or Intrinsic Mode Funtion, IMF), and 

T
r  is a trend, 

and 
R

r  is the irregular (random) component.  

The steps for proposed decomposition are as follows: 

1. Normalization: the signal ( )x t  is represented as time series X and normal-

ized to [0,1]  as follows: 
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               here min
X  and max

X  are the smallest and largest values of the time series. 

2. Construction of Hankel matrix: Hankel matrix H of the normalized time  

 series { }1 2 3, , , , lX x x x x= ⋯  is a square matrix:  
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The size of Hankel matrix H is 
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 here l is the length of .X   

3. Nonnegative matrix factorization: performs factorization of the form 

H V W≈ × , here 
n k

V
×=ℜ  and 

k n
W

×=ℜ  are positive matrices, and k is the 

number of factors. Factorization is not exact: matrices V  and W  are chosen 

to minimize the residual D  between H  and :V W×  

 D H V W= − ×  (4) 

4. Reconstruction of Hankel matrix: The signal is reconstructed as  

 H V W E′ = × +  (5) 

here H ′  is the reconstructed Hankel matrix, E  is the reconstruction error. 



5. Reconstruction of signal: The signal is reconstructed from the reconstructed 

Hankel matrix H ′ by taking the means of matrix elements along its minor 

(secondary) diagonals as follows:  
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The reconstruction of a signal is not exact, i.e. ,X X ε′= +  here ε  is the re-

construction error. Linear regression is performed to find the fitting coeffi-

cients α  and β  such as to minimize error ( )2
.X Xα β ′− −∑  

6. Calculation of intrinsic mode: the mode of a signal is calculated as follows. 

Let fitted reconstructed signal be: X Xα β ′= +ɶ . Then the first component 

of the signal is defined by centering the fitted reconstructed signal as: 

ˆ ,lC X X l= − ∑ɶ ɶ  and the decomposition residue is ˆˆ ˆ .l lR X C= −   

7. Iterative decomposition of residue: decomposition is continued with resi-

due until the desired number of extracted modes is reached. 

8. Denormalization. Extracted modes and residue are denormalized as follows:  

 ( ) ( )max min max min min
ˆ ˆ,C C X X R R X X X= − = − +  (7) 

9. Extraction of trend and irregular component. Finally, the residue is de-

composed into trend and irregular (random or noise) component by comput-

ing the least-squares fit of a straight line to the residue and subtracting the 

resulting function from the residue as follows:  

 ,T R Tr at b r R r= + = −  (8) 

 here a  and b minimize error ( ) ( ){ }2

at b R tt + − ∑    . 

 

Fig. 1. Example of decomposition: sample signal, IMFs, irregular residue and trend residue 



Fig. 1 shows an example of decomposition for a time series (1st subplot). The series 

was decomposed into two cyclical components, irregular residue and trend residue. 

3 MODELLING METHODOLOGY 

To derive a model of a time series, we use a combination of several methods:  

1) Nonnegative Hankel Matrix Factorization based Decomposition (NHMFD) pro-

posed in Section 2 to derive Intrinsic Mode Functions (IMFs) (see Section 2). 

2) Random cointegration of IMFs. A random vector P  is generated that is multi-

plied by the IMF component matrix C  to obtain a surrogate time series .S  Cointegra-

tion is defined as the existence of a stationary linear combination of nonstationary 

time series [24]. This indicates that there is a long run equilibrium relationship be-

tween the series. While stationarity in a strict statistical sense may not be always 

achieved, cointegration is considered to improve the statistical characteristics of time 

series [25], which is good for predictability. The cointegrated series can be considered 

as surrogate data series [26], which inherit the statistical properties of the original data 

but may have some desired properties such as predictability. The original time series 

can be restored as a sum of IMFs with unitary weights as given by Eq. 1. The cointe-

grated (surrogate) time series S can be generated by summing time series components 

jc  with random weights 
jp  as follows: 
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 3) Selection of best fitting random cointegration vector P̂  using a nature-inspired 

optimization method. We use Artificial Bee Colony (ABC) [27] algorithm to find a 

cointegration vector that ensures the lowest RMSE of 1-step ahead prediction using 

the ARX model on surrogate testing data. ABC is based on a model of foraging be-

haviour of a honeybee colony. This model consists of three essential components: 

food sources, employed foragers, and unemployed foragers, and defines two leading 

modes of the honeybee colony behaviour: recruitment to a food source and abandon-

ment of a source. The ABC algorithm implements a population-based search in which 

artificial bees change their positions aiming to discover the places of food sources 

with high nectar amount and finally the one with the highest nectar.  

4) Modelling of cointegrated time series using ARX (autoregressive with exoge-

nous inputs) model [28], with a surrogate time series ˆ ˆS PC=  as an input and original 

time series as output. The input-output relationship of an ARX model is: 
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here ( )Ŝ t  is model input (surrogate time series), ( )X t  is model output (original time 

series), A and B are polynomials, 
1q− is a backward shift operator, and ( )e t  is noise. 



4 EXPERIMENTS & RESULTS 

We use the historical data (2009) of S&P 500 stocks (245 days, 379 stocks with 

non-zero value). Here we analyze the daily highest price value. The dataset is sepa-

rated into 3 subsets: train (40%), test (40%) and validate (20%). Train subset is used 

for decomposition, test subset for finding best co-integration vector and validate sub-

set for calculating prediction accuracy. We decompose each time series into 4 compo-

nents (2 cyclical, trend and irregular residues). For the ABC algorithm, we use 100 

bees (colony size), maximum number of iterations is 200. Algorithm is run 20 times 

and the best solution is retained.  

We model the 1-day ahead value of time series and evaluate model accuracy using 

a variety of metrics (RMSE (Root Mean Square Error), MAE (Mean Absolute Error), 

MAPE (Mean Absolute Percentage Error), MSE (Mean Squared Error), Pearson cor-

relation, Nash-Suttcliffe (NS) efficiency coefficient, MSPE (Mean Squared Prediction 

Error), RMSPE (Root Mean Square Percentage Error)) as well as illustrate graphi-

cally using Taylor diagram and target diagram. 

Fig. 2 shows the mean values of RSME, MAPE, MAE and MSE. In all cases, the 

model of a time series derived using the proposed method is better (error is smaller). 

Fig. 3 shows the mean values of Pearson correlation, NS coefficient as well as the 

mean rank. Mean rank was calculated by ranking the modelling results of each stock 

(better = 1, worse = 2) based on the RMSE value. The mean rank of the proposed 

method (1.21) is better (lower) than the mean rank of the ARX model (1.79).  The 

difference is significant with p = 3·10
-67

 (using paired t-test). 

 

Fig. 2. Mean values of RSME, MAPE, MAE and MSE 



 

Fig. 3. Mean values of correlation, Nash-Suttcliffe (NS) efficiency coefficient, and rank 

Fig. 4 presents the probability that the proposed method will score better than the 

ARX model on a given accuracy metric. The probability value was calculated by 

bootstrapping (random sampling with replacement) using 10000 samples. The prob-

ability that the proposed method yields better accuracy ranges from 0.709 (using 

MAE) to 0.916 (using Pearson correlation). 

 

Fig. 4. Probability that the proposed method scores better than ARX 

Taylor diagram (Fig. 5, left) is used to perform the comparative assessment of several 

different models and to quantify the degree of correspondence between the modelled 

and observed behaviour in terms of three statistics: Pearson correlation, RMSD (Root 

Mean Square Deviation), and the standard deviation [29]. The model that is located 

lower on the diagram is considered to represent the reality better. Note that the pro-

posed model (Prop) is lower than the ARX model. 



Target diagram (Fig. 5, right) [30] summarizes and visualizes information regard-

ing the bias and the error between a model and real observations. The Y-axis corre-

sponds to the normalized bias (Bias) and the X-axis corresponds to the normalized 

unbiased RMSD (uRMSD). Variables located in the upper part of the diagram 

( )  0Y > are overestimated by the model. The standard deviation of a model is larger 

than the standard deviation for the observations when variables are located in the right 

part of the target diagram ( )  0X > . The distance between any point and the origin is 

the value of the total RMSD. Note that while the proposed model performs better than 

the ARX model in terms of uRMSD (5·10
-4

 vs 5·10
-3

) and total RSMD (1.3·10
-3

 vs 

5.1·10
-3

), it has a larger bias (8.1·10
-3

) than the ARX model (1.6·10
-3

). 

 

Fig. 5. Taylor diagram (left) and target diagram (right) 

The results are summarized in Table 1. Mean values of accuracy metrics are given 

and a relative improvement of the proposed method over ARX. Overall, the proposed 

method has improved the prediction accuracy of 78.6 % of stocks (by RMSE). 

Table 1. Summary of results 

Metric ARX Proposed Improvement, % 

RMSE 0.0051 0.0013 74.51 

RMSPE 0.0029 0.0014 51.72 

MSE 6·10-5 2.7·10-6 95.43 

MAE 0.0023 0.0012 47.83 

MAPE 0.0029 0.0014 51.72 

MASE 0.2270 0.1141 49.74 

MSPE 8.5·10-5 4.1·10-6 95.19 

NS 0.9335 0.9976 96.39 

corr 0.976 0.9997 98.75 

rank 1.786 1.214 72.77 



5 CONCLUSION 

We have introduced a new signal decomposition method based on the non-negative 

factorization of the Hankel matrix of a time series. The method offers some advantage 

over its conceptually similar counterpart, Empirical Mode Decomposition (EMD), by 

allowing to obtain the desired number of Intrinsic Mode Functions (IMF). The results 

of decomposition have been used to generate surrogate time series by prediction error 

minimization driven random cointegration of IMFs. In this paper, cointegration, to 

our knowledge, has been applied for the first time to IMFs, ever. The surrogate time 

series used as input allows for more accurate prediction of time series than predicting 

directly from the original time series. The results obtained using historical stock data 

and the ARX prediction model show a mean improvement of accuracy of 51-98% 

depending upon considered accuracy metric, while probability to achieve higher accu-

racy is 70-91% when compared to ARX prediction using the original time series only.  

Future work will focus on the application of the proposed method on other datasets 

as well as on comparison with other time series modelling and prediction methods. 
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23. Damaševic̆ius, R., Vasiljevas, M., Martišius, I., Jusas, V., Birvinskas, D., Woźniak, M.: 

BoostEMD: an extension of EMD method and its application for denoising of EMG sig-

nals, Electronics and Electrical Engineering, 21(6), 57–61 (2015) 

24. Engle, R.F., Granger, C.W.J. Co-integration and error correction: Representation, estima-

tion and testing, Econometrica, 55 (2): 251–276 (1987) 

25. Barghouthi, S.A., Rehman, I.U., Rawashdeh, G.: Testing the efficiency of Amman Stock 

Exchange by the two step regression based technique, the Johansen multivariate technique 

cointegration, and Granger causality. Electronic Journal of Applied Statistical Analysis, 

09(03), 572-586 (2016) 

26. Schreiber, T., Schmitz, A.: Surrogate time series. Journal of Physics D: Applied Physics 

142, 3-4, 346-382 (2000) 

27. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function op-

timization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 459-

471 (2007) 

28. Box, G., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 4th 

ed. Wiley, Chichester (2008) 

29. Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. 

Journal of Geophysical Research 106: 7183–7192 (2001) 

30. Jolliff, J.K., Kindle, J.C., Shulman, I., Penta, B., Friedrichs, M.A.M., Helber, R., Arnone, 

R.A.: Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. 

Journal of Marine Systems 76: 64–82 (2009) 


