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Abstract. Non-integer order calculus is a very helpful tool, which is used in 
modeling and control applications. Many real processes display fractional order 
dynamics and their behavior is described by fractional-order differential equa-
tion. In this paper we quantify fitting the Oustaloup filter to the approximated 
transfer functions for given non-integer systems. The goal of this paper is to 
verify the accuracy of the Outsaloup filter to the fractional inertial system pa-
rameter approximation in a specified narrow frequency range and order. The 
pertinence of the compared models, in both time and frequency domains, is 
verified. Finally, the approximated model can be used to design the fractional 
order differentiation operator in an integer order state-space form. The pre-
sented methodology could be utilised for a general class of systems and is illus-
trated using numerical examples. 

Keywords: fractional calculus, Oustaloup filter, fractional dynamic systems, 
parameter estimation. 

1 Introduction 

Fractional-order calculus was not especially popular in previous decades when its 
concepts have a lot of attention in various scientific fields, including more accurate 
system modeling and automatic control assignment [1, 2]. Utilising the notion of non-
integer order should be more appropriate step because real-life processes appear to be 
fractional [3, 4]. The fractional-order calculus is the generalisation of the classical 
calculus, where the order of integration and differentiation is not an integer index [5]. 
There have been some reports on non-integer calculus, applied to various areas of the 
applications, e.g.: bioengineering [6], physics [7, 8], chaos theory [9], control systems 
[10, 11, 12] and fractional signal processing [13, 14]. 

It is clear that the rise of interest in the fractional calculus domain is related to the 
increasing availability of high-performance and advanced computational tools. Frac-
tional order calculus was applied in robotics and automation, taking into account sys-
tem identification and automatic control [15]. The control performance assessment 
has a large influance on the economic aspect of the real-life processes. It was reported 
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that conventional PID controller, in industral applications, is worse than fractional 
order PID controller according to the tuning flexibility [16]. 

For fractional order system analysis one of existing packages for non-integer order 
modeling and controller synthesis tasks, such as CRONE, Ninteger or FOMCON 
[17], can be employed. Above packages are implemented in Matlab environment and 
have effective tools for solving various fractional order problems and can be easily 
connected with other Matlab facilities (e.g. simulation of models in Simulink envi-
ronment utilising graphical interface). 

The non-integer order differentiation is equivalent to infinite dimensional filter that 
is why the selection of appropriate approximation factors is very important. The goal 
of this study is to verify fitting the Outsaloup filter to the fractional inertial model 
approximation in a specified narrow frequency range. The proper Oustaloup’s ap-
proximation could be then used for modelling the non-integer order differentiation 
operator in an integer order state-space form. The fractional order control problem 
would be then reformulated to solve optimal input signal design task [18, 19]. For 
non-integer order system modeling in frequency and time domains the Fomcon tool-
box was utilised [17]. 

2 Fractional Calculus 

The idea of the differentiation operator is a fundamental tool in the study of the ordi-
nary differential equations. Fractional calculus is a special case of integration and 

differentiation to non-integer order operator 
ta D  as follows: 
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where: a, t - denote the limits of the process and α is the set for all complex numbers. 
There are different definitions of the fractional derivative operator [1].  

The Riemann-Liouville fractional derivative (α > 0) of a function f(t) is defined as: 
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where: Γ(·) stands for Euler’s gamma function and .1,0(for  N,,1   mmm  

Such a definition can also be reformulated to fractional-order derivative in the form: 
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The Laplace transform of the Riemann-Liouville derivative (2) for a = 0 is: 
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where:     .tfLsF   

The Caputo’s definition of fractional-order derivative (α > 0) is defined as follows: 
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where:        .1, mmtfdtdtf mmm    This definition for  1,0(  can be 

reformulated to fractional-order derivative in the following form: 
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The Laplace transform of the Caputo derivative (5) for a = 0 is: 
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It was reported that for real functions, the fractional-order derivative from the Rie-
mann - Liouville and Grünwald - Letnikov definitions are identical [20]. 

Finally, the Grünwald - Letnikov definition would be considered: 
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Utilising equation (9) the fractional-order derivative (8) can be suitably modified as: 
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where a = 0, t = kh is the step number and h is the step duration. The Laplace trans-

form assuming zero initial conditions of derivative (8) with R  is as follows [1]: 
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    .0 sFstfDL t
                                                  (11) 

Linear fractional-order continuous-time SISO dynamic system can be expressed by 
a fractional-order differential equation [1, 2]: 
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where: ak, bk are real numbers. The discrete-time version for various orders one can 
find in [21]. Applying the Laplace transform to (12) with zero initial conditions the 
input-output description of the fractional-order system can be expressed in the transfer 
function form: 
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The transfer function (13) is commensurate order if all orders of the fractional  
operator s are integer multiples of base order q in such a way: 

.,,10,R kqqq kk     The above continuous-time transfer function can be 

modified to give to the pseudo-rational function H(λ) in the form: 
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where: λ = sq. Using the pseudo-rational notation a fractional-order linear time-
invariant system can be easily expressed by a state-space model given by: 
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For system parameters identification purposes the difference equation representing 
input-output dynamic of the system is more convenient than the state-space descrip-
tion. However the state-space model notation provides of multiple input and multiple 
output (MIMO) fractional-order systems representation. 

3 Oustaloup Filter to Approximation of Fractional-Order 
Operators 

The potentiality of approximating the fractional-order plant model by an integer-order 
one is presented in [1]. For linear fractional-order model identification purposes the 
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Oustaloup filter method, which is often used in practical applications, should be 
considered. We focus our attention on the clasical Oustaloup approximation 
algorithm. To solve the problem of approximation of a fractional differentiator or a 
fractional integrator the following equations should be used: 
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where: poles, zeros and gain of the filter can be obtained from: 
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where: N is the order of approximation and (ωb, ωh) is the expected frequency fitting 
range. The order of the resulting filter is 2N+1, taking into account a higher orders of 
N the resulting approximation should be more accurate.  

The Oustaloup filter provides very good approximation results of fractional opera-
tors in an expected fitting range and a wide orders interval. Thus, for the fractional 
order operators where α ≥ 1 the following equation should be adopted: 

, sss n                                                          (21) 

where: n = α – γ indicates the integer part of α and sγ is evaluated according to (16) 
utilisig Oustaloup filter method.  

4 Problem Formulation 

To illustrate the properties of the above approach to fractional-order system parameter 
estimation, using the Oustaloup filter, we have selected FOMCON toolbox, which 
provides time-domain and frequency-domain non-integer order system analysis, as 
well as system stability checking [17]. The goal of this study is to verify the accuracy 
of the Oustaloup filter to the fractional inertial system transfer function parameters 
estimation in a specified frequency range ω = [ωb, ωh] and order of the filter 2N+1. 

To justify the idea of this approach to integer model parameter estimation, an iner-
tial object was selected as: 
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The fractional-order linear time invariant system can be then described by the follow-
ing single input, single output state-space model: 
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with assumed values of the matrix parameters: A = -1, B = 1 and zero initial condi-
tions. The specified wide bandwidth would cause a large computational burden as N 
is increased. Therefore, the choice of N is based on following rule: 

   .loglog bhN                                                   (24) 

The results of the Oustaloup filter approximation of the fractional transfer function 
(22) for different values α from the interval 0.5 ≤ α ≤ 1.9 and arbitrary selected band-
width ω = [10-1, 101] with N= 2 according to (24), are displayed by transfer functions 
Go(s) given by: 
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As it can be seen the resulting filters can be displayed in the Laplace domain, as rea-
sonable approximations of the non-integer order operators. Additionally, this method 
exhibit practical property: it has zeros and poles interlaced on the negative real axis of 
the s plane, and the length between following poles and zeros decreases as the estima-
tion is improved by increasing the order of the polynomials’ numerator and denomi-
nator, as it is displayed in Figure 6. 
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5 The Experimental Results for Time and Frequency Domains 

The time-domain simulation of the evaluated model of the fractional system, utilising 
step input signal, is based on the Grünwald-Letnikov definition shown in equation (8). 
The solution of the numerical problem (22) is performed utilising modified Grün-
wald-Letnikov definition [15]: 

 
,

1

0

/

1

0












  

  




n

i

ht

j
jhtj

i
tn

i

i
t y

h

a
u

h

a
y j

i

i






                                  (32) 

where h = 0.01 is the numerical step-size. The frequency-domain simulation is exe-
cuted by replacing s = jω. This substitution was applied to Eqs. (25), (27), (29-31) to 
obtain frequency domain diagrams. In order to verify the stability of the approximated 
systems we obtained a step responses (at t = [0, tend] with dt = 0.1) and Bode diagrams 
(for frequency axis range ω = [10-3, 102] and N= 2) shown in Figures 1-5. 
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Fig. 1. Step and frequency responses comparison for inertial (α = 0.5) system 
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Fig. 2. Step and frequency responses comparison for inertial (α = 0.99) system 
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Fig. 3. Step and frequency responses comparison for inertial (α = 1.5) system 
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Fig. 4. Step and frequency responses comparison for inertial (α = 1.7) system 
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Fig. 5. Step and frequency responses comparison for inertial (α = 1.9) system 

The Figures 1-5 show the Oustaloup filter step responses compared with the exact 
fractional inertial model step responses and frequency plots (Bode diagrams) of the 
real plant and obtained approximations. 

Stability of the non-integer order state-space system (15) should be established 
from the following inequality: 
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where: 0 < α < 1 is the fractional state-space system commensurate order and eig(A) 
describes the eigenvalues of the related matrix A. If this requirement is satisfied, then 
the system is stable [22]. The fractional order state-space system (23) is stable be-
cause the eigenvalue of the matrix A equals -1.  
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Fig. 6. Pole and zero maps of the approximated systems for different values of α 

The plot shown in Figure 6 indicates pole and zero maps of the approximated transfer 
functions for selected values of α. The plot shows that poles of the Oustaloup filters 
are in the left half-plane, and therefore the approximated models are stable. 

The quality of approximation of the fractional inertial system in the response space 
can be expressed by following errors and factors: 
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where Δy(w), e(w), M and R2 are respectively: absolute error, relative error, root-mean-
square error and coefficient of determination. The comparision of the performance 
indices for Oustaloup filter approximation are displayed in Table1. 

Table 1. The comparision of the approximation errors and factors. 

α 0.5 0.7 0.9 1.0 1.1 1.3 1.5 1.7 1.9 
 wymin  0.016 0.013 0.008 0.000 0.000 0.000 0.000 0.000 0.000 
 wymax  0.139 0.133 0.106 0.018 0.017 0.020 0.035 0.060 0.080 

  [%]min
we  3.26 4.50 3.83 0.00 0.00 0.00 0.04 0.00 0.00 
  [%]avg
we  11.13 11.02 9.72 0.25 0.55 0.75 0.68 0.93 0.97 

  [%]max
we  15.48 13.77 10.70 4.45 6.04 4.99 6.71 7.43 7.59 

M  0.101 0.106 0.096 0.004 0.006 0.009 0.010 0.017 0.018 

2R  0.942 0.973 0.995 0.999 0.999 0.998 0.997 0.996 0.965 

 
The estimated transfer functions parameters and obtained indices show high accuracy 
of the Oustaloup filter approximation. The slight fitting errors could be observed in 
the range of fractional order from the interval 0.9 ≤ α ≤ 1.7. 

In some applications, a zero-pole transfer functions (25-31) as a result of fractional 
order systems approximation are not helpful. Instead of this, the state-space realisa-
tion (23) is desirable. The examples of the approximated integer order state-space 
matrices for α = 0.5 and α = 1.5 are given by: 
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Fig. 7. Step responses comparison for inertial system with different order values α 

A step responses of the fractional inertial system (22) in the time duration  
t = [0, 30] seconds with a step size of h = 0.01 are obtained utilising the Grünwald-
Letnikov method (32). The step responses for α ≤ 1 are aperiodic (Fig. 7), however 
conventional first order inertial system step response can be observed for α = 1. The 
step responses are oscillating for non-integer system orders α ≥ 1. 

6 Conclusions 

In this paper the accuracy of the approximation of the Outsaloup filter yielding trans-
fer functions for a given fractional-order inertial model have been verified. The results 
of the Oustaloup filter approximation of the non-integer inertial model for different  
values α from the interval 0.5 ≤ α ≤ 1.9 and arbitrary selected narrow bandwidth ω = 
[10-1, 101] was presented. The simulation results in time and frequency domains con-
firm high accuracy of the Oustaloup estimation to the selected frequency range and 
order. The comparison of the performance indices for the Oustaloup approximation 
model and original plant shows a slight fitting errors for fractional order from the 
interval 0.9 ≤ α ≤ 1.8. The pole and zero diagrams show that for different values of α, 
obtained integer order models are stable. The choice of the approximation method 
depends on established requirements (e.g. accurate frequency behavior or precise time 
response). The proper Oustaloup’s approximation can be utilised for modelling the 
fractional order operator in an integer order state-space form. Then, it is possible to 
use one of the existing optimal control packages to solve fractional order optimal 
input problem. 
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