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Secure and Efficient k-NN Queries?
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Abstract. Given the morass of available data, ranking and best match queries
are often used to find records of interest. As such, k-NN queries, which give
the k closest matches to a query point, are of particular interest, and have many
applications. We study this problem in the context of the financial sector, wherein
an investment portfolio database is queried for matching portfolios. Given the
sensitivity of the information involved, our key contribution is to develop a secure
k-NN computation protocol that can enable the computation k-NN queries in a
distributed multi-party environment while taking domain semantics into account.
The experimental results show that the proposed protocols are extremely efficient.
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1 Introduction

Nearest neighbor (NN) queries are an extremely important data analysis tool, and have
been used in numerous domains. Indeed, they have been identified (in the form of k-
NN classification) as one of the top 10 algorithms in data mining [17], though they can
also be used for other applications such as regression, content retrieval, and structure
prediction. While the typical use of k-NN does not worry about the sensitivity of the
data, k-NN is also applicable in many cases where the data may be private, and the
organization interested in querying is different from the organization holding the data.

Consider the financial environment, wherein we have several organizations (such as
Ameritrade, Charles Schwab, etc.) which possess financial data about individuals, in-
cluding their current stock positions, transactional history, etc. Now, a regulating agency
such as the SEC may be interested in finding individuals who have a certain stock posi-
tion, or have indulged in particular type of transactional behavior. Since perfect match
is often difficult, best match queries are used to find the closest individuals of interest.
Alternatively, a financial advisor service might want to provide recommendations based
on similar stock positions or transactional behavior. Typically, since financial data is ex-
tremely sensitive, the organizations may be unwilling or even (legally) unable to allow
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unfettered access to this data. However, in certain cases, there may be a lot of value as-
sociated to be obtained through computing the best match queries. For example, one can
identify trading behavior of investors from their portfolio structures as shown by [3];
this kind of information is invaluable for numerous organizations e.g. State Exchange
Commission (SEC) in the United States. Similar problems exist in the field of medicine,
finance, and homeland security.

In this paper, we address this specific problem. We consider the scenario where sev-
eral organizations possess independent portfolio databases, each record of which con-
tains financial stock positions for a single portfolio. Together, these databases comprise
the global database which contains the portfolios of all entities, though no third party
exists which knows this global database in its entirety. Another organization, called the
querier, would like to query this global database to retrieve the k portfolios that are the
most similar to a particular query portfolio that it possesses. All of the organizations
would like to protect the privacy of their information, while still enabling the compu-
tation. There has been some work addressing this problem in the past, especially in
the context of outsourcing [7, 16]. Our proposed solution improves on the state of the
art by providing a way to incorporate the domain semantics and is significantly more
efficient. Our solution is also applicable in the outsourcing environment where an or-
ganization may want to outsource its database in encrypted form and still enable best
match queries. Furthermore, our solution can be extended to provide top-k results based
only on private ranking criteria (without reference to a specific query point) in an even
more efficient fashion. It is worth noting that while the problem has been formulated in
the context of financial domain, our approach is quite general and can be used to solve
k-NN and top-k query problems in any domain. Overall, our key contributions are:

1. We introduce the notion of semantic distance which is useful in taking domain
semantics into account while computing k-nearest neighbor queries.

2. We propose an extremely efficient multi-party protocol to compute k-NN queries
that is robust to semi-honest adversaries.

3. We show how the protocol can be adapted to the outsourced data model and used
for k-NN based classification without leaking any additional information.

2 Problem Statement

In this paper, we build a protocol for overcoming the privacy problem for situations
where organizations (or people) are interested in finding the best matches for a query
over distributed data. As discussed earlier, we formulate the problem in the context
of the financial domain i.e., finding investment portfolios from a distributed database,
which best match a given query portfolio in a dynamic and semantic aware environ-
ment, while also providing confidentiality and security-privacy guarantees to the parties
involved in the protocol. We consider a database P ∈ RN×M is horizontally distributed
among n parties P1, . . . , Pn such that for all i ∈ [n] and Ni ∈ N the database fragment
Pi ∈ RNi×M is kept by Pi where

∑
i∈[n]Ni = N . Each party Pi collects the same

features of information but for different entities. These parties could be banks, hedge-
funds, mutual-funds, or other institutions. Another party Q is interested in performing
a k-NN query, which also incorporates structure and semantics, on this distributed data
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without revealing its query, while the parties owning data being queried want to avoid
disclosure of their data except for the legitimate output of the query. Thus, the problem
can be formally defined as follows:

Definition 1 (Distributed Secure k-NN query: DS-kNN). Given a database P ∈
RN×M , which is horizontally distributed among n parties with party Pi having frag-
ment Pi ∀i ∈ [n], a querier Q wants to privately find semantic distance (definition 3)
based k-NN in P to its query q ∈ RM for N,M,n ∈ N, where n ≥ 2.

Definition 2 (Security/Privacy). A protocol Π computes DS-kNN query securely if it
reveals nothing but k-NN records toQwith leakageL to all other parties with negligible
probability in security parameter – a function, µ (m), is negligible inm if µ(m) < 1

p(m)

for all sufficiently large m and polynomial p (m).

Hence definition 2 ensures that data owners do not learn anything about the query be-
yond what they already know or infer from leakage, and Q learns nothing about P
beyond what it already knows and can infer from the output and leakage
Adversarial Model: We assume all parties to be non-colluding and semi-honest (i.e.,
honest-but-curious) adversaries, who communicate over a secure channel. However,
restriction on collusion among the data owners can be relaxed to the collusion of at
least α data owners, where α ≤ n (total number of data owners). We can accomplish
this (without any major change in the proposed protocol) by employing additive homo-
morphic encryption with threshold α, which for decryption will require α parties each
performing partial decryption on an encrypted message.

3 Proposed Approach

We first introduce a notion of semantic awareness for distance metrics that can cap-
ture the desired level of granularity and structure for measuring similarity. For exam-
ple, standard distance metrics such as Euclidean distance fails to capture structural and
semantic information such as the industry or sector a stock belongs to, market capi-
talization, risk and type of the stock, etc. Consider an investor who would like to find
similar portfolios, while incorporating portfolio structure and/or commodity relation-
ships with regards to a particular categorization model (e.g., the industry classification
of stocks [1]). Such a categorization model would typically be built by domain experts.
We assimilate the categorization model into the distance metric, denoted sem dist,
which we term as the semantic distance. This enables the integration of semantic infor-
mation representing the true interest of the querier, while evaluating similarity among
portfolios (or records). We now formalize the notion of semantic aware distance and
then discuss how it will be calculated in a secure (and privacy-preserving) manner.

Definition 3. Semantic Distance between two pointsX,Y ∈ RM is Euclidean distance
between their linear projection in space Rl, where l,M ∈ N and the projection is
guided by a given categorization model (map,W ), and is formalized as follows.

sem dist(X,Y) =

√√√√√ ∑
l:cl∈C

 ∑
j:cl∈map(sj)

wlj (xj − yj)

2
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Here, map : S → 2C specifies the category cl ∈ C to which the stock sj ∈ S should be
mapped with C and S being set of all the categories and set of all stocks respectively.
C ⊆ C is the set of categories, for which sem dist is to be calculated, whereas wlj in
W = [wlj ]|C|×M gives the number of units of cl equivalent to one unit of sj . We also de-
fine signed-distance(X,Y) at a category level (cl) to be Dl =

∑
j:cl∈map(sj)

wlj (xj − yj).

Tuple (map,W ) defines categorization model. map gives the relationship among
commodities e.g., Industrial Classification Benchmark (ICB) [1] provides a classifica-
tion for stocks based on the sector and industry; equivalently map could specify the
categorization based on market capitalization or some other type. W , here, could de-
note a weight factor to estimate equivalent worth of a stock in an industry or sector.
In general, sem dist allows for a richer query specification, which is very helpful.
For example, sem dist allows accounting for risk and/or diversity of each portfolio,
while calculating distance between a portfolio and a query portfolio. Here we show,
using an example, the effectiveness of semantic distance. Consider Table 1a, which
contains three portfolios p1, p2 and p3. Each portfolio specifies the number of stocks
of AAV, RDC, ICD, GTT and NOW held in it. The stocks in Table 1a are from Oil
and IT sectors. Table 1b gives the conversion factor per share of a stock to equivalent
dollar value in a sector. Now, consider an investor who wants to find a portfolio from
Table 1a, which is the closest in terms of its value at sector level. If Euclidean distance
is directly used, then the results are not meaningful, as can be seen from the results in
Table 1c; i.e., according to Euclidean distance, p2 and p3 are equally close (similar) to
p1, whereas we notice that in term of the value of portfolio at sector level, p1 should be
closer to p2 as compared to p3, since in contrast to p3, where only 15 shares of stocks
are held in IT sector, p1 and p2 both hold 10 shares of stocks in Oil sector and 5 shares
of stocks in IT sector. On the other hand if we use semantic distance then the results
corroborate with our intuition and the semantic meaning of the query asked by the in-
vestor; this can be seen from the calculated distances in Table 1d. Though the calculated
Euclidean distance is spatially correct, it fails to capture a lot of domain, structural and
semantic information.

AAV RDC ICD GTT NOW
p1 0 10 0 5 0
p2 5 0 5 0 5
p3 0 0 0 15 0

(a) Portfolios

AAV RDC ICD GTT NOW
OIL 80 30 50 0 0
IT 0 0 0 100 50

(b) Weights for Categories

p1 p2 p3
p1 0 10

√
2 10
√
2

p2 10
√
2 0 10

√
3

p3 10
√
2 10
√
3 0

(c) Euclid distance

p1 p2 p3
p1 0 50

√
74 100

√
109

p2 50
√
74 0 50

√
794

p3 100
√
109 50

√
794 0

(d) Semantic Distance
Table 1: Example illustrating Semantic Distance Effectiveness
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We stress that the proposed protocol is also able to calculate secure DS-kNN query
based on simple Euclidean distance measure. In semantics distance formulation, this
can be accomplished by a map : S → C, which is bijective, and setting W to identity
matrix of dimension |S| × |S|. This will essentially calculate the Euclidean distance
between two points.

3.1 DS-kNN Query Protocol

Before presenting the details of the approach to compute the k closest portfolios as per
the problem definition above, we first present the underlying assumptions, the notation
used, and a few preliminaries.N , S and C are known to all the parties including querier.
Furthermore, each data owner (Pi) knows the size (Nj ∀j ∈ [n]) of all databases frag-
ments Pj . The database can be viewed as a matrix. In rest of the paper by parties/party
we mean parties/party owning data, whereas Q is referred to as querier. Additive ho-
momorphic encryption (AHE) e.g., Paillier allows addition of two encrypted values and
multiplication of encrypted value with a plain-text value. The plain text values on which
AHE operates come from N; let us say for a given security parameter λ AHE accepts
plain-text values from P (λ) such that ∀x ∈ P (λ), x < Λ, where Λ ∈ N. We di-
vide P (λ) into two halves where lower half is positive and upper half is negative (i.e.
contains additive inverses of lower half). Whenever a text is decrypted it is converted
to equivalent negative or positive value; additive inverse of an encrypted value x i.e.,
Epk[x], is Epk[x]Λ−1. As for the decimal values we can decide for a precision up to a
decimal point d, then multiply each plain-text value with 10d and convert it to an inte-
ger value. λ ∈ N is picked in such a manner that the finally computed plain-text value
in encrypted form is always within the range. We also employ garbled circuit [19] for
secure comparison.

The basic idea in DS-kNN is for data owners to encrypt the portfolio database and
send it to Q, who calculates signed-distances w.r.t. its query, q, in encrypted form (Al-
gorithm 1), and uses them to collaboratively calculate semantic distances in form of
random shares with a data owner (Algorithm 1). A distributed rank query is then car-
ried out to identify the indices of k portfolios with the smallest distances (Algorithm 2).
Finally, Q retrieves portfolios, corresponding to the indices identified above, from the
portfolio database.

We now discuss the details. In Algorithm 1 we outline the algorithm for DS-kNN,
where a party Pt is picked at random from data owners to initiate the protocol. Pt can
be picked by each party generating a random number ri from [n] and then calculating∑
i∈[n] ri mod (n+1) using secure sum [6]. Pt generates public-private (pk, sk) key

pair of AHE and sends it to all data owners and pk toQ. Pt also picks two parties Pl and
Pl′ randomly and lets all the parties know who they are. Next, every Pi first permutes
its database, and creates encrypted shares EPi = Epk[Pπi

i −Ri] and ERi = Epk[Ri].
Note that these are homomorphically encrypted additive random shares of Pi. Now
Pi sends EPi to Pl and ERi to Pl′ . This ensures that every database is split into two
parts and thus prevents the leakage of any information to other parties or to Q. Pl and
Pl′ put all of these shares together and permute them using a common random seed s̃
(which can be done by having Pl and Pl′ each pick a random number and send it to the
other and then compute the XOR of both random numbers). These encrypted permuted
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Algorithm 1 DS-kNN
Input: (m,Pi) at Pi ∀[n], security parameter and database of portfolios
Input: At Q: q, query; (map,W ), categorization model; k, number of NN; m
Output: Q gets k-NN portfolios
1: Generate random seed, si, at Pi ∀i ∈ [n]
2: All data owners, P1, . . . , Pn, together pick t uniformly from [n]
3: Pt generates (pk, sk), key pair, for AHE and shares it with all data owners, and pk with Q
4: Pt picks l from [n] and l′ from [n] \ {l} uniformly and sends (l, l′) to all data owners
5: for each Pi ∀i ∈ [n] do
6: Generate a matrixRi of random numbers:Ri ← NNi×|S|{Ni is the size of Pi}
7: Permute the database Pi: Pπi

i = π(si,Pi)
8: Create encrypted random shares of Pπi

i : (EPi, ERi) = (EPpk[Pπi
i −Ri], EPpk[Ri])

9: Send EPi to Pl and ERi to Pl′
10: Pl sets EP = π(s̃, (EP1, . . . , EPn)){seed s̃ is picked together by Pl and Pl′}
11: Pl′ sets ER = π(s̃, (ER1, . . . , ERn))
12: Pl and Pl′ respectively send EP and ER along with t to Q
13: Q permutes EP and ER using random seed ŝ: (EPπ, ERπ) = (π(ŝ, EP ), π(ŝ, ER))
14: Q sets qenc = Epk[q]

(Λ−1)

15: Q initializes matrices, T and DQ, of sizes N × |C| and N × 1, to have Epk[0]’s and 0’s resp.
16: Pt initializes Dt as matrix of 0’s with size N × 1

17: for each i ∈ [N ] do
18: for j ∈ {1, . . . , |S|} do
19: Q sets T [i,map[j]] = T [i,map[j]]× (EPπ[i][j]×ERπ[i][j]× qenc[j])W [map[j],j]

20: for l ∈ {1 . . . |C|} do
21: Q generates random numbers r and g and sets TQ[i, l] = −r2 + g
22: Q sets vr = Epk[T [i, l]] · Epk[r](Λ−1) and vg = Epk[T [i, l]]

2r · Epk(g)(Λ−1)

23: Q sends (vr, vg) to Pt
24: Pt sets Tt[i, l] = Dsk[vr]

2 +Dsk[vg]{Dsk decrypts to equivalent +ive/-ive value}
25: Q sets DQ[i] = DQ[i] + TQ[i, l]
26: Pt sets Dt[i] = Dt[i] + Tt[i, l]
27: Q and Pt interactively find indices of k-smallest distances: I ←k-Smallest(DQ, Dt, k)
28: return portfolios corresponding to I to Q by getting their random shares decrypted from Pt

shares (denoted EP and ER) are then sent to Q. At this point, Q also randomly per-
mutes the received shares of the database to avoid linkage attack by data owners. Q can
reconstruct the database by adding together the received shares of database in encrypted
form. Q then proceeds to calculate signed-distance in encrypted form according to its
specified (map,W ) and C. This steps consists of addition of encrypted values and their
multiplication by values in plain-text (weights), which can be done in encrypted form
thanks to the additive homomorphism.

Next, these signed distances need to be squared. This is accomplished by Q gener-
ating random numbers, r and g for each signed-distance, vi,l. Q sets its random share
for the squared signed-distance to be v1i,l = −r2 + g, and sends Pt, Epk[vi,l − r] and
Epk[2rvi,l − g]. Pt decrypts the received encrypted messages, converts them to appro-
priate negative or positive values as explained in preliminaries and sets its share to be
v2i,l = (vi,l − r)2 + 2rvi,l − g. It is obvious that (vi,l)2 = v1i,l + v2i,l. Summing all
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Algorithm 2 k-Smallest(DQ, Dt, k)

Input: At Q: DQ, at Pt: Dt, such that DQ and Dt are random shares of the squared distances
Input: At Q,Pt: k, the number of closest records desired
Output: At Q: I , the array containing indices of smallest elements in DQ +Dt
1: At Q: ∀i, VQ[i] = DQ[i]× |DQ|
2: At Pt: ∀i, Vt[i] = Dt[i]× |Dt|+ i
3: while k > 0 do
4: Q sets (µQ, `) = (mean(VQ), |VQ|), and Pt sets (µt, `) = (mean(Vt), |Vt|)
5: for i ∈ 1 . . . ` do
6: Q sets UQ[i] = (VQ[i]− bµQc); Pt sets Ut[i] = (−Vt[i] + bµtc)
7: if UQ[i] ≤ Ut[i] {At Q,Pt: Yao Comparison} then
8: Remove ith element from VQ and Vt and add to V ′Q and V ′t atQ and Pt respectively
9: for j ∈ {Q, t} do

10: if |V ′j | > k then
11: set Vj = V ′j
12: else
13: For each element in V ′j , add to I the index of corresponding element in Dj
14: k = k − |V ′j |
15: return I

shares of squared signed-distances of a portfolio will give the share of square of seman-
tic distance for the portfolio. Thus Q and Pt can compute their shares for the distance
for each portfolio since sem dist(pi, q)2 =

∑|C|
l=1 v

1
i,l +

∑|C|
l=1 v

2
i,l. At this point, the

square of semantic distance between each portfolio and the query has been randomly
split between Q and Pt. For the sake of efficiency we do not compute the square root of
squared semantic distance. However, this does not impact correctness of the protocol.
Henceforth, Q and Pt engage in an interactive protocol to compute the k smallest dis-
tances corresponding to k-NN portfolios. To find the k-smallest entries from the split
distance vectors we develop a novel protocol k-Smallest that can accomplish this
both securely and efficiently. We first present the simple-k-smallest (SKS) protocol, that
efficiently computes the k-smallest entries without worrying about security. For a given
a vector V containing unique values, v, and S = {}, the k-smallest values can be found
as follows:

– 1: Set µ =
∑
v∈V

v
|V | and divide V into Vg = {v ∈ V : v > µ} and Vle = V \ Vg

– 2: If |Vle| > k, set V = Vle and go to step 1
– 3: If |Vle| ≤ k then set V = Vg , S = S ∪ Vle and k = k − |Vle|
– 4: if k 6= 0 go to step 1, terminates otherwise

SKS terminates, since each iteration reduces size of V . Note that, only the correct dis-
tances are added to the output in step 3 since the distances in Vle are guaranteed to be
smaller than the ones in Vg . SKS works very well for our problem setting and can eas-
ily be extended to be secure. Though any point in V instead of arithmetic mean can be
used to split V without affecting correctness of the algorithm, choice of arithmetic mean
as a split point is quite effective as long as subsets (of different sizes) of data are not
highly skewed to the left for small values of k. This assumption does hold in real world
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(a) mean distance’s percentile (b) percentile’s variance (c) Comparison with Samanthula et al. [7]

Fig. 1: Empirical analysis

data. Specifically, we show through empirical analysis that portfolio distances for real
world stock market data [3] are but slightly skewed to left. We used portfolio data of
hundred thousand individuals, which was collected over the period of three years from
Swedish stock market [3]. We calculated the mean distance and variance for the mean
distance over samples of various sizes (i.e., number of portfolios). Figure-1a depicts
the percentile for mean distance and average percentiles for mean distances. It can be
seen that mean distance is consistently at percentile 60. Figure-1b depicts the variance
for the above calculated percentile for mean distance, and the average variance, which
asserts that percentile for mean distance does not vary much. The complexity of SKS
for such a distribution will be O(|V |) regardless of value for k. In the case where data
is highly skewed or follows exponential distribution or leakage function is different a
randomly picked data points can be used as a split point instead.

Now we focus on devising a secure and distributed SKS so that it can be carried out
on random shares of distances without violating the privacy. It is easy to see that if the
first step of SKS can be performed in a secure and distributed form (note, in our case,
DQ andDt together give V ), the remaining steps can be performed locally atQ and Pt.

SKS requires the distances in vector to be unique i.e. ∀i ∈ [N ], DQ[i] + Dt[i] is
unique. This is necessary, not only to guarantee that the protocol terminates but also
to ensure security. In essence, if distances were non-unique, it could have been pos-
sible that all of the distances were same, thus resulting in Vle = V for all iterations.
Since, in our case, uniqueness does not generally hold; therefore, we use a perturbation
mechanism to achieve uniqueness. This can be accomplished by scaling the distance
of portfolio pi by N , and translating it by i. In the protocol, k-smallest, it is car-
ried out as follows: Q multiplies DQ[i] with N while Pt multiplies Dt[i] with N and
adds i to it (lines 1-2 of algorithm 2) (Note: |DQ| = |Dt| = |P| = N ), which will
together gives us N × (DQ[i] + Dt[i]) + i. Next we need to devise a secure and dis-
tributed protocol to compute mean and identify indices ofDQ orDt for which distances
(DQ[i] +Dt[i]) are greater than the mean. If we let mean distance to be µ = µQ + µt,
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where µQ =
∑
iDQ[i]/N and µt =

∑
iDt[i]/N then

DQ[i] +Dt[i] > µ ⇐⇒ DQ[i]− µQ > −Dt[i] + µQ

The above observation tells us that result of comparing the distance for a record against
the mean distance can be equivalently obtained by comparing the difference between
random share and the mean of random shares. Note that since Q and Pt can locally
compute this difference, the parties can simply use a secure comparison [19] (the gar-
bled circuit approach) to compute the first step of SKS in a secure manner. Furthermore,
Since we are using a finite integer field, it is possible that µQ and µt are fractional, and
hence outside the field. To avoid this we use the output of floor-function on µQ and µt
and employ the following comparison instead: DQ[i] − bµQc > −Dt[i] + bµtc, but it
does not affect the performance of algorithm 2 since 0 ≤ µ− (bµQc+bµtc) < 2. Since
the remaining steps are local, both parties can calculate k-smallest entries securely and
identify their corresponding indices in DQ or Dt.
Result Extraction: Using above found indices Q can identify and obtain k-NN portfo-
lios from the encrypted database. Let I contain the indices of k-smallest distances and
∀j ∈ I, t̂j and t̃j be the corresponding records in EP and ER then for all j, Q asks
Pt for decryption of Epk[ϕj ] = Epk[t̂j ] ⊗ Epk[t̃j ] ⊗ γj , where γj is uniformly picked
vector of size |S| from an appropriate domain and ⊗ gives coordinate-wise product of
two vectors. It is straightforward to compute Epk[ϕj ] for homomorphically encrypted
values and the original record tj from ϕj i.e., tj = ϕj − γj . Thus completing the pro-
tocol for computing sem dist based k-NN for horizontally fragmented database in a
privacy preserving fashion.

3.2 Extensions

We can easily extend the protocol devised above to work for the outsourced data model.
It can also be used for k-NN classification. Both of these are briefly described below.
Outsourcing Case: Our protocol can very simply be applied for the case where the
computation of data owners is transferred to the cloud in a secure manner. Parties can
pick non-colluding, semi-honest and untrusted servers C1 and C2 to take responsibili-
ties of Pl and Pl′ respectively except for creation random shares of their databases and
their encryption. All the responsibilities of Pt for distance and k-smallest computation
along with decryption for result retrieval phase are handed to one of the servers. Once
responsibilities have been assigned to C1 and C2, following the protocol stated in DS-
kNN will compute k-NN securely in cloud.
k-NN Classification Case: The proposed protocol also has the ability to carry out k-NN
classification with a very small modification. Let us say there are G classes with labels
{1, 2, . . . , G}. We append each database fragment with G new columns and name them
1, 2, . . . , G. For each row with class label g only column g of the appended G columns
will have the value 1, and value 0 for the others. Now all the steps outlined in DS-kNN
are carried on the database with appended columns, except for the result retrieval step;
furthermore, appended columns are not used for k-NN computations. Once Q has iden-
tified k-NN records in encrypted database, it computes a vector G, where ∀g ∈ [G], G[g]
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contains k minus the sum of values in column g of k-NN records i.e., k minus the num-
ber of votes for each class; thus smaller the value G[g], higher the number of votes for
class g. Next, Q permutes G, creates random shares of values in π(G) and send them to
Pt, after which both Q and Pt follow k-smallest protocol with k = 1. At the end
of k-smallest Q is able to identify the class of its instance q.

4 Complexity Analysis

Let N be the number of portfolios in database P horizontally distributed among parties
P1, . . . Pn, where each record is of dimension M = |S|. The asymptotic computational
complexity of DS-kNN is O(N2) = O(NM,N × |C| + N2) since in the worst case
there will be O(NM) encryption and O(N × |C|) decryption operations along with
O(N2) secure comparison by data owners, whereas querier will perform O(N × |C|)
arithmetic operations on encrypted values andO(N2) secure comparisons; furthermore,
in most of the application scenarios M, |C|, k � N .

It is important to note that in real world data for portfolios require only O(N) com-
parison to find k smallest entries as shown in Figure 1 and is explained in section 6.
Moreover, |C| would also be much smaller as compared to |S| because thousands of
stocks are traded in the market. So for all practical purposes asymptotically complexity
for our problem will beO(NM) Following the same reasoning as above the asymptotic
communication complexity of DS-kNN will also be O(NM).

With respect to the communication complexity, it may appear that the cost of trans-
ferring the entire database over is excessive. While this is true in terms of the communi-
cation itself, both the monetary and time cost of doing this is negligible, since currently
available bandwidth and speed are quite high e.g, currently ISPs are providing 1000
Mbps connection to residential users and small businesses, which allows an encrypted
database of million rows and ten attributes to be transferred in matter of few seconds.
On the other hand, in many cases cost and the time required for secure operations are
significantly higher than that of required for data transfer. Additionally, many of the se-
cure protocols including [7, 12] require transferring complete database between/among
the parties. Therefore, we believe that this cost is reasonable.

5 Security Analysis

In this section we analyze the security of DS-kNN under the framework of definition 2.
We want to show the following:

DS-kNN is secure if probabilistic polynomial time simulators Si(m,Pi,LP ) and
SQ(m, q, (map,W ),LQ,Ok) can respectively simulate the view of Pi, ∀i ∈ [n] and Q
during the execution of DS-kNN.

This means that if Si is provided with Pi’s input (m,Pi) and leakage LP ( which
gives (J, j1, . . . , jJ , N1, . . . , Nn, |C|) ), and SQ with Q’s input (m, q, (map,W )) and
output (Ok i.e. k-NN records) along with LQ (which gives (J, j1, . . . , jP , N, S) ) then
these simulators will have the same view as their respective parties; thus asserting that
DS-kNN reveals no extra information and does fulfill the security definition 2. In the
output of leakage functions J is the total number of iterations taken in Algorithm 2
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corresponding to P and q, j` is the percentile of mean distance in `th iteration, whereas
rest of the symbols are same as defined previously.

Let us analyze Sj for the situation where j = t and also j ∈ {l, l′} ( l, l′ and t
are as per specification in Algorithm 1) since such a party, Pj , will receive the biggest
set of intermediate messages, in all other cases parties receive less information. Pj’s
view consists of its input (m,Pj), random shares (Di ∈ NNi×|S|, ∀i ∈ [n]) of database
fragments, random shares (HR ∈ NN×|C|) of distances at category level, random seeds
(sj , s̃), random-tape (rj ∈ {0, 1}p(m)) and LP . Pj’s view can easily be generated by
Sj : based on m,Pj and LP that are provided to Sj , it can generate Dji ← NNi×|S|,
HjR ← NN×|C|, (s′j , s̃′j) ← N2 and r′j ← {0, 1}p(m), LPj using uniform distribu-
tion. Thus Pj’s view, (m,Pj ,D1, . . . ,Dn,HR, sj , s̃j , rj ,LP ), is computationally in-
distinguishable from Sj’s view, (m,Pj ,Dj1, . . . ,Djn,H

j
R, s
′
j , s̃
′
j , r
′
j ,LP ), in polynomial

time, otherwise pseudo-random generator, which is assumed to be secure, can be bro-
ken which is used to create random shares and seeds. It is straightforward that for all
other cases a party’s view will consist of less information than that of Pj’s view; hence
∀i ∈ [n], Si will be able to generate Pi’s view.

The case for SQ, is also very similar in that respective inputs, output, and leak-
age is provided to SQ, except for the difference that Q receives encrypted database
EP ∈ NN×|S| instead of random share of a database, but since AHE is (semantically)
secure – meaning EP is computationally indistinguishable from EP ′ ← NN×|S| (i.e.
generated uniformly)– SQ can generate a view using m, q, (map,W ) and LQ that is
indistinguishable from Q’s view. Thus proving that DS-kNN is secure.

Note that the defined leakage reveals information, usually known in our application
scenario. If one wants to hide this information then following is one way to accomplish
this. Instead of mean distance, randomly picked distances can be used for the purpose
of comparison to find k-smallest distances; dummy portfolios with sentinel values can
be added to hide size of database; extra columns can be added for dummy coordinates,
mapping to which can be provided through a secure and modified bloom filter. |C| can
be hidden by adding dummy signed-distances with value zero. Though such measures
will stop the leakage, they will significantly reduce the efficiency of the protocol.

6 Experimental Evaluation

We implemented DS-kNN in Java. The platform used for testing is asymmetric in terms
of its computational power. The querier machine had a 2.2 GH core-i7 processor and 16
GB RAM whereas each of the database owners was a Xeon E5-2680 v2, with 10 cores
running at 2.80GHz, and 96 GB RAM. For AHE and garbled circuit we employed
the implementation available at [2] with key size 1024 and [9] with a key size of 512
respectively. The default values for parameters are set based upon domain semantics.
Specifically, even though 2k-3k stocks are traded on the stock exchange, only a few
hundred of them are most often traded; thus we set |S| to be 100. |C| is set to be 10
because ICB [1] classification taxonomy segregates stocks to 10 industries at the top
level. As for k, it is set to 1, which represents the worst case for Algorithm 2. Lastly, N
is set to be 1000. For each experiment, only one parameter is varied, while keeping the
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(a) Varying N (b) Varying k (c) k-smallest on real data

Fig. 2: k-smallest (Algorithm 2) computation time

(a) Varying N (b) Varying |S| (c) Varying |C|

Fig. 3: Distance computation time for Q and Pt

rest constant. Experiments described below were carried out with synthetic data. The
results on real data are described later.

Figures 3a-3c report time taken for distance computation by Q and Pt, with varying
N , |S| and |C| respectively. Time for all of these experiments grows linearly except for
Pt w.r.t. |S|. This is because of the fact that distance computation time for Pt depends
on |C| and N , but not on |S|. Let us now look at the performance of Algorithm 2,
which only depends upon N . Figure 2a plots the computation time taken by Algorithm
2 for varying values of N . Again, the computation time scales linearly w.r.t. N . Figure
2b plots the computation time with respect to varying k. It is interesting to note that
the time taken is roughly constant, and thus the time taken by our approach is actually
independent of k.

We also compare our work with Elmehdwi et al. [7] for outsourcing case. Figure
1c compares the complete time taken by DS-kNN and SRkNN [7]. For the sake of fair
comparison results are computed for same parameters and equivalent processing power.
It can be seen that DS-kNN outperforms existing state of the art by an order of magni-
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tude. Additionally, our implementation is in Java and uses threading only for decryption
at Pt, whereas implementation in [7] uses the openMP parallelization framework. Thus
with an equivalent implementation, our results can be further improved.
Performance on real data: We obtained Swiss stock market data for year 2009-2011,
which is a collection of portfolios of around 100k individuals for 300 stocks; the data
was previously used in [3]. We only evaluated the performance of k-smallest pro-
tocol because time for distance computation is independent of data distribution. We
randomly picked a subset of the data and choose one portfolio from it as the query port-
folio, and computed the number of actual comparisons required by the k-smallest
protocol for k = 1. Figure 2c plots the number of comparisons carried out for different
values ofN (the number of portfolios) along with a reference line for 2N . The two lines
are almost perfectly in lock-step, which demonstrates the efficiency and suitability of
our algorithm for real world data. However, in the worst case, it is still possible that in
each iteration only one distance will be removed resulting in O(N2) total comparisons.

7 Related Work

Privacy-preserving data mining has received a lot of attention [15]. Given the numerous
practical applications of privacy-preserving k-NN search, various protocols have been
developed to address this problem. [5,14] present solutions to the problem of computing
k-NN, where the data is fragmented among different parties, while also preserving pri-
vacy. [4] uses a semi-trusted third party to find best k matches. In [12] Qi et al. introduce
a single-step protocol for k-NN search, whereas [8] proposed a secure k-NN searching
protocol based on PIR for location-based services. However, none of the above work
is appropriate for computation over encrypted data. [10] solves recommendation prob-
lem using Self-Organizing Map for clustering and k-NN based collaborative filtering,
but reveals query to data owner. Zang et. al. in [20] employ homomorphic encryption
for finding k-NN in distributed setting, but in contrast to our work it reveals distances,
partial access pattern to the parties. In [18], the query along with k-NN distances is
exposed and the output is less accurate. [11] makes use of untrusted third party and
reveals query to parties. Although semantic distance can be applied here, the catego-
rization model will be revealed to data owners. Shaneck et. al [13] provide a solution
that reveals partial access pattern while being slower than our proposed protocol. Not
only is our protocol straightforwardly extensible to provide outsourcing and k-NN clas-
sification, but it also allows for incorporation of semantic distance, while still being
comparatively very efficient as compared to state of the art [7].

8 Conclusion and Future Work

In this paper we have presented a secure approach to computing k-nearest neighbor
queries for horizontally distributed data. Our approach is an order of magnitude faster
than the existing state of the art. It is also applicable in the outsourcing environment,
and can be used to compute top-k queries, as well as k-NN based classification. In the
future, we plan to develop solutions that are resilient to stronger adversaries, some of
which may collude as well.
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