
HAL Id: hal-01648002
https://inria.hal.science/hal-01648002

Submitted on 24 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Study of Overflow Vulnerabilities on GPUs
Bang Di, Jianhua Sun, Hao Chen

To cite this version:
Bang Di, Jianhua Sun, Hao Chen. A Study of Overflow Vulnerabilities on GPUs. 13th IFIP Interna-
tional Conference on Network and Parallel Computing (NPC), Oct 2016, Xi’an, China. pp.103-115,
�10.1007/978-3-319-47099-3_9�. �hal-01648002�

https://inria.hal.science/hal-01648002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Study of Overflow Vulnerabilities on GPUs

Bang Di, Jianhua Sun, and Hao Chen

College of Computer Science and Electronic Engineering
Hunan University

Changsha 410082, China
{dibang,jhsun,haochen}@hnu.edu.cn

Abstract. GPU-accelerated computing gains rapidly-growing popular-
ity in many areas such as scientific computing, database systems, and
cloud environments. However, there are less investigations on the security
implications of concurrently running GPU applications. In this paper, we
explore security vulnerabilities of CUDA from multiple dimensions. In
particular, we first present a study on GPU stack, and reveal that stack
overflow of CUDA can affect the execution of other threads by manipu-
lating different memory spaces. Then, we show that the heap of CUDA
is organized in a way that allows threads from the same warp or different
blocks or even kernels to overwrite each other’s content, which indicates
a high risk of corrupting data or steering the execution flow by over-
writing function pointers. Furthermore, we verify that integer overflow
and function pointer overflow in struct also can be exploited on GPUs.
But other attacks against format string and exception handler seems not
feasible due to the design choices of CUDA runtime and programming
language features. Finally, we propose potential solutions of preventing
the presented vulnerabilities for CUDA.

Keywords: GPGPU; CUDA; Security; Buffer overflow

1 Introduction

Graphics processing units (GPUs) were originally developed to perform com-
plex mathematical and geometric calculations that are indispensable parts of
graphics rendering. Nowadays, due to the high performance and data paral-
lelism, GPUs have been increasingly adopted to perform generic computational
tasks. For example, GPUs can provide a significant speed-up for financial and
scientific computations. GPUs also have been used to accelerate network traf-
fic processing in software routers by offloading specific computations to GPUs.
Computation-intensive encryption algorithms like AES have also been ported to
GPU platforms to exploit the data parallelism, and significant improvement in
throughput was reported. In addition, using GPUs for co-processing in database
systems, such as offloading query processing to GPUs, has also been shown to
be beneficial.

With the remarkable success of adopting GPUs in a diverse range of real-
world applications, especially the flourish of cloud computing and advancement

2

in GPU virtualization [1], sharing GPUs among cloud tenants is increasingly
becoming norm. For example, major cloud vendors such as Amazon and Alibaba
both offer GPU support for customers. However, this poses great challenges in
guaranteeing strong isolation between different tenants sharing GPU devices.

As will be discussed in this paper, common well-studied security vulnerabili-
ties on CPUs, such as the stack and heap overflow and integer overflow, exist on
GPUs too. Unfortunately, with high concurrency and lacking effective protec-
tion, GPUs are subject to greater threat. In fact, the execution model of GPU
programs consisting of CPU code and GPU code, is different from traditional
programs that only contains host-side code. After launching a GPU kernel (de-
fined in the following section), the execution of the GPU code is delegated to the
device and its driver. Therefore, we can know that the GPU is isolated from the
CPU from the perspective of code execution, which means that the CPU can
not supervise its execution. Thus, existing protection techniques implemented
on CPUs are invalid for GPUs. On the other hand, the massively parallel execu-
tion model of GPUs makes it difficult to implement efficient solutions tackling
security issues. Unfortunately, despite GPU’s pervasiveness in many fields, a
thorough awareness of GPU security is lacking, and the security of GPUs are
subject to threat especially in scenarios where GPUs are shared, such as GPU
clusters and cloud.

From the above discussion, we know that GPUs may become a weakness that
can be exploited by adversaries to execute malicious code to circumvent detection
or steal sensitive information. For example, although GPU-assisted encryption
algorithms achieve high performance, information leakage such as private secrete
key has been proven to be feasible [2]. In particular, in order to fully exert the
computing power of GPUs, effective approaches to providing shared access to
GPUs has been proposed in the literature [3,4]. However, without proper media-
tion mechanisms, shared access may cause information leakage as demonstrated
in [2]. Furthermore, we expect that other traditional software vulnerabilities on
CPU platforms would have important implications for GPUs, because of similar
language features (CUDA programming language inherits C/C++). Although
preliminary experiments has been conducted to show the impact of overflow is-
sues on GPU security [5], much remains unclear considering the wide spectrum
of security issues. In this paper, we explore the potential overflow vulnerabilities
on GPUs. To the best of our knowledge, it is the most extensive study on over-
flow issues for GPU architectures. Our evaluation was conducted from multiple
aspects, which not only includes different types of attacks but also considers
specific GPU architectural features like distinct memory spaces and concurrent
kernel execution. Although we focus on the CUDA platform, we believe the
results are also applicable to other GPU programming frameworks.

The rest of this paper is organized as follows. Section 2 provides necessary
background about the CUDA architecture. In Section 3, we perform an extensive
evaluation on how traditional overflow vulnerabilities can be implemented on
GPUs to affect the execution flow. Possible countermeasures are discussed in
Section 4. Section 5 presents related work, and Section 6 concludes this paper.

3

2 Background on CUDA Architecture

CUDA is a popular general purpose computing platform for NVIDIA GPUs.
CUDA is composed of device driver (handles the low-level interactions with the
GPU), the runtime, and the compilation tool-chain. An application written for
CUDA consists of host code running on the CPU, and device code typically called
kernels that runs on the GPU. A running kernel consists of a vast amount of GPU
threads. Threads are grouped into blocks, and blocks are grouped into grids. The
basic execution unit is warp that typically contains 32 threads. Each thread has
its own program counters, registers, and local memory. A block is an independent
unit of parallelism, and can execute independently of other thread blocks. Each
thread block has a private per-block shared memory space used for inter-thread
communication and data sharing when implementing parallel algorithms. A grid
is an array of blocks that can execute the same kernel concurrently. An entire
grid is handled by a single GPU.

The GPU kernel execution consists of the following four steps: (i) input data
is transferred from the host memory to GPU memory through the DMA; (ii) a
host program instructs the GPU to launch a kernel; (iii) the output is transferred
from the device memory back to the host memory through the DMA.

CUDA provides different memory spaces. During execution, CUDA threads
may access data from multiple memory spaces. Each thread maintains its own
private local memory that actually resides in global memory. Automatic variables
declared inside a kernel are mapped to local memory. The on-chip shared memory
is accessible to all the threads that are in the same block. The shared memory
features low-latency access (similar to L1 cache), and is mainly used for sharing
data among threads belonging to the same block. The global memory (also called
device memory) is accessible to all threads, and can be accessed by both GPU
and CPU. There are two read-only memory spaces accessible by all threads, i.e.
constant and texture memory. Texture memory also offers different addressing
models, as well as data filtering, for some specific data formats. The global,
constant, and texture memory spaces are optimized for different memory usages,
and they are persistent across kernel launches by the same application.

3 Empirical Evaluation of GPU Vulnerabilities

In this section, we first introduce the testing environment. Then, we discuss
specific vulnerabilities for stack overflow, heap overflow, and others respectively,
with a focus on the heap overflow because of its potential negative impact and
significance in scenarios where multiple users share GPU devices. Due to the
proprietary nature of the CUDA platform, we can only experimentally confirm
the existence of certain vulnerabilities. And further exploration about inherent
reasons and such issues is beyond the scope of this paper, which may require
a deeper understanding of the underlying implementation of CUDA framework
and hardware device intricacy.

4

1 typedef unsigned long(*pFdummy)(void);

2 __device__ __noinline__ unsigned long normal1() {

3 printf("Normal\n");

4 return 0;

5 }

6 __device__ __noinline__ unsigned long malicious() {

7 printf("Attack!\n");

8 return 0;

9 }

10 __device__ int overf[100];

11 //===

12 for(int i = 0; i < length; i++) {overf[i] = input[i];}

13 unsigned int buf[16];

14 pFdummy fp[8];

15 fp[0]=normal1; fp[1]=normal2; fp[2]=normal3; fp[3]=normal4;

16 fp[4]=normal5; fp[5]=normal6; fp[6]=normal7; fp[7]=normal8;

17 for(int i = 0; i < length; i++) {buf[i] = overf[i];}

18 fp[5];

Fig. 1. A code snippet of stack overflow in device.

3.1 Experiment Setup

The machine conducting the experiment has a Intel Core i5-4590 CPU clocked at
3.30GHz, and the GPU is NVIDIA GeForce GTX 750Ti (Maxwell architecture)
that has compute capability 5.0. The operating system is Ubuntu 14.04.4 LTS (64
bit) with CUDA 7.5 installed. nvcc is used to compile CUDA code, and NVIDIA
visual profiler is adopted as a performance profiling tool. CUDA-GDB allows us
to debug both the CPU and GPU portions of the application simultaneously.
The source code of all implemented benchmarks is publicly available at https:
//github.com/aimlab/cuda-overflow.

3.2 Stack Overflow

In this section, we investigate the stack overflow on GPUs by considering different
memory spaces that store adversary-controlled data, and exploring all possible
interactions among threads that are located in the same block, or in different
blocks of the same kernel, or in distinct kernels.

The main idea is as follows. The adversary formulates malicious input data
that contains the address of a malicious function, and assign it to variable a that
is defined in global scope. Two stack variables b and c are declared in a way to
make their addresses adjacent. If we use a to assign values to b to intentionally
overflow b and consequently corrupt the stack variable c that stores function
pointers. Then, when one of the function pointers of c is invoked, the execution
flow would be diverted to the adversary-controlled function. Note that there
is a difference of the stack between the GPU and CPU. In fact, the storage
allocation of GPU stack is similar to the heap, so the direction of overflow is
from low address to high address.

https://github.com/aimlab/cuda-overflow
https://github.com/aimlab/cuda-overflow

5

We explain how a malicious kernel can manipulate a benign kernel’s stack
with an illustrating example that is shown in Figure 1. In the GPU code, we
define 9 functions containing 1 malicious function (used to simulate malicious
behavior) and 8 normal functions (only one is shown in Figure 1, and the other
7 functions are the same as the function normal1 except the naming). The
device qualifier declares a function that is executed on the device and callable

from the device only. The noinline function qualifier can be used as a hint
for the compiler not to inline the function if possible. The array overf[100] is
declared globally to store data from another array input[100] that is controlled
by the malicious kernel. Given the global scope, the storage of overf[100] is al-
located in the global memory space, indicating both the malicious kernel and
benign kernel can access. In addition, two arrays named buf and fp are declared
one after another on the stack to ensure that their addresses are consecutively
assigned. The fp stores function pointers that point to the normal functions de-
clared before, and the data in overf[100] is copied to buf (shown at line 17)
to trigger the overflow. The length variable is used to control how many words
should be copied from overf to buf (shown at line 17). It is worth noting that
the line 12 is only executed in the malicious kernel to initialize the overf buffer.
If we set length to 26 and initialize overf with the value 0x590 (address of
the malicious function that can be obtained using printf(”%p”,malicious) or
CUDA-GDB [5]), the output at line 18 would be string ”Normal”. This is be-
cause with value 26, we can only overwrite the first 5 pointers in fp (sizeof(buf)
+ sizeof(pFdummy) * 5 == 26). However, setting length to 27 would cause the
output at line 18 to be ”Attack!”, indicating that fp[5] is successfully overwrit-
ten by the address of the malicious function. This example demonstrates that
current GPUs have no mechanisms to prevent stack overflow like stack canaries
on the CPU counterpart.

Thread

Local
memory

Shared
memory

Shared
memory

Global memory

fp[5]

fp[0]

…
.

0x590
0x590
0x590

0x590
0x590
0x590
0x590
0x590

Malicious

Normal

0x590

buf 0xfffc38

0x590

0x590 …
.

Stack

Fig. 2. Illustration of stack overflow.

It is straightforward to extend our experiments to other scenarios. For ex-
ample, by locating the array overf in the shared memory, we can observe that

6

the attack is feasible only if the malicious thread and benign thread both reside
in the same block. While if overf is in the local memory, other threads haves
no way to conduct malicious activities. In summary, our evaluation shows that
attacking a GPU kernel based on stack overflow is possible, but the risk level
of such vulnerability depends on specific conditions like explicit communication
between kernels.

3.3 Heap Overflow

In this section, we study a set of heap vulnerabilities in CUDA. We first in-
vestigate the heap isolation on CUDA GPUs. Then, we discuss how to corrupt
locally-allocated heap data when the malicious and benign threads co-locate in
the same block. Finally, we generalize the heap overflow to cases where two
kernels are run sequentially or concurrently.

1 // ============== a virtual table of the device code ================

2 class Vtable {

3 public:

4 __device__ virtual unsigned long v1() {printf("Normal\n");return 0;}

5 __device__ virtual unsigned long v2() {printf("Normal\n");return 0;}

6 __device__ virtual unsigned long v3() {printf("Normal\n");return 0;}

7 __device__ virtual unsigned long v4() {printf("Normal\n");return 0;}

8 };

9 //====================== malicious function ==========================

10 __device__ __noinline__ unsigned long malicious() {

11 printf("Attack!\n");

12 return 0;

13 }

14 //============= a snippet code of memory isolation of heap ===========

15 __shared__ unsigned long *buf;

16 if(threadIdx.x == 0)

17 buf = (unsigned long *) malloc(sizeof(unsigned long) * 8);

18 Vtable *fp = new Vtable;

19 if(threadIdx.x == 0)

20 for(int i = 0; i < length; i++) {buf[i] = input[i];}

21 if(threadIdx.x == 1)

22 printf("%lx", buf[0]);

23 //============ a snippet code of exploiting of ’global’ heap =========

24 unsigned long *buf;

25 buf = (unsigned long *) malloc(sizeof(unsigned long) * 8);

26 Vtable *fp = new Vtable;

27 printf("malicious %p\n", malicious);

28 for(int i = 0; i < length; i++) {buf[i] = input[i];}

29 res=fp->v1(); res=fp->v2(); res=fp->v3(); res=fp->v4();

Fig. 3. A code snippet of heap overflow

Heap Isolation. Similar to the description of stack overflow, we also use a
running example to illustrate heap isolation from two aspects. First, we consider
the case of a single kernel. As shown in Figure 3 (from line 15 to 22), suppose we

7

have two independent threads t1 and t2 in the same block, and a pointer variable
buf is defined in the shared memory. We can obtain similar results when buf is
defined in the global memory. For clarity, we use buf1 and buf2 to represent the
buf in t1 and t2. buf1 is allocated by calling malloc as shown at lines 16 and 17.
Our experiments show that t2 can always access buf1 (line 21 to 22) unless buf
is defined in the local scope. Second, we consider the case of two kernels (not
shown in the figure). Kernel a allocates memory space for buf, and assigns the
input value to it. If a returns without freeing the memory of buf, another kernel
b can always read the content in buf if b also has a variable buf defined in either
shared memory or global memory (no memory allocation for buf in b). This is
because the GPU assigns the same address to buf for b, which makes it possible
to access the not freed content of buf in b. In summary, for globally-defined heap
pointer, the memory it points to can be freely accessed by threads that are not
the original allocator. It is not the case for locally-defined heap pointers, but
it may still be possible if we can successfully guest the addresses of local heap
pointers (we leave this to future work). Most importantly, when a heap pointer is
globally visible and the corresponding memory is not properly managed (freed),
arbitrary memory accesses across kernels would be possible.

Heap Exploitation. In this experiment, we present that because the heap
memory for different threads or kernels is allocated contiguously, overflowing one
thread’s local buffer may lead to the corruption of another thread’s heap data.

We first consider heap memory allocated in local scope. As shown in Figure 3
(from line 24 to 29), like before, suppose we have two threads t1 and t2 in the
same block. For t1, we use malloc and new to allocate memory for buf1 and fp1
respectively (we use these notations to clarify our discussion). fp1 just stores
the start address of the four virtual functions (the addresses is contained in
the VTABLE). buf1 and fp1 are declared locally. t2 is the same as t1. After
initializing t1 and t2, the memory layout of buf1, fp1, buf2, and fp2 looks like
that shown in Figure 4. Assume t2 has malicious intention. The input in t1
consists of normal data, and the input in t2 consists of four addresses of the
malicious function (0x138), and the remaining contents of input are the address
of buf2 (0x50263f920). When length is less than 11 (not 9 due to alignment),
both t1 and t2 will print the string ”Normal”. However, when length is set to
11, the virtual table address in fp1 would be modified to the start address of
buf2 where the four addresses of the malicious function are stored. So the output
of t1 will be the string ”Attack!”. When length is set to 21 (this value is relative
to fp1), both t1 and t2 will invoke the malicious function. Similarly, assuming
t1 is the malicious thread, both t1 and t2 will output ”Normal” when length is
less than 21. By assigning 21 to length, only t1 will print ”Attack!”. And when
the value of length is 31, both t1 and t2 will invoke the malicious function.

Based on the analysis above, we can conclude that the memory allocated from
the heap in CUDA is globally accessible from different GPU threads without
proper access control, and no protection is provided by the runtime system to
prevent buffer overflow of heap-allocated memory. The addresses of heap pointers
are often guessable, which makes it easy for a adversary to conduct attacks.

8

Because of the closed-source nature of CUDA, further investigation about the
implementation-level details is left as future work. In the following, we extend our
analysis to the scenario where two kernels are considered when experimenting
buffer overflow.

Malicious
 (t2)

Normal
 (t1)

buf1
buf2
fp1
fp2

‘Global’ heap

Normal
data

0x138

Malicious
buf1

buf2

fp1

fp2

0x138

0x138

0x50263f920

0x50263f920
…

…

0x50263f920

0x138

Fig. 4. A heap overflow: t1 and t2 represent the benign and malicious thread respec-
tively.

Heap Exploitation Between Kernels. First, we consider the overflow be-
tween sequentially launched kernels. The experiment setup is similar to the previ-
ous section except that the host launches serially two kernels, kernel1 (launched
first) and kernel2. kernel1 simulates behaviors of an adversary and initializes
the thread t1. kernel2 represents a benign user. t1’s input data consist of four
addresses of malicious function, and its remaining contents are the address of
buf1. kernel1 intentionally overflows buf1 by using a large value of length1, and
then terminates. kernel2 allocates memory for buf2 and fp2, but does not assign
any value to them. When accessing one element in fp2 as a function call, we will
observe the output of string ”Attack!”. This is because the GPU assigns the
same addresses of pointer variables to the second kernel, and the contents used
in the first kernel are remained in GPU memory unchanged.

Second, we analyze the situation of two concurrently running kernels as shown
in Figure 5. This is the typical case of sharing GPUs in cloud or cluster environ-
ment, where different users may access the GPU at the same time. kernel1 and
kernel2 must be in different streams. cudaMemcpyAsync is called to receive data
from the host that allocates page-locked memory. The sleep() function is used
to perform a simple synchronization between kernels to make our experiments
more deterministic. t1 in kernel1 mimics a malicious user’s behavior. When buf2
and fp2 are initialized (from line 9 to 12) and at the same time t1 has finished
the execution of the for loop (at line 20), we will observe the output of string
”Attack!” from t2 if it continues to run after the pause at line 13. Based on
these observations, we can conclude that multiple kernels, regardless of serially

9

1 //==================== sleep function ======================

2 __device__ void sleep(int64_t num_cycles) {

3 int64_t cycles = 0;

4 int64_t start = clock64();

5 while (cycles < num_cycles)

6 cycles = clock64() - start;

7 }

8 //==================== normal kernel =======================

9 unsigned long *buf;

10 buf = (unsigned long *) malloc(sizeof(unsigned long) * 8);

11 Vtable *fp = new Vtable;

12 for(int i = 0; i < length; i++) {buf[i] = input[i];}

13 sleep(10000000);

14 res=fp->v1(); res=fp->v2(); res=fp->v3(); res=fp->v4();

15 //==================== malicious kernel ====================

16 unsigned long *buf;

17 buf = (unsigned long *) malloc(sizeof(unsigned long) * 8);

18 Vtable *fp = new Vtable;

19 sleep(1000000);

20 for(int i = 0; i < length; i++) {buf[i] = input[i];}

21 res=fp->v1(); res=fp->v2(); res=fp->v3(); res=fp->v4();

Fig. 5. A code snippet of concurrent kernel execution.

or concurrently running, have the opportunity to intentionally manipulate the
heap memory of each other.

3.4 Other Vulnerabilities

In this section, we discuss the issues of struct and integer overflow that are
demonstrated in one example. In this case, the attacker can exploit the char-
acteristics of integer operations. Because of the two’s complementary represen-
tation of integers, integer operations may produce undesirable results when an
arithmetic operation attempts to produce a numeric value that is too large to
be representable with a certain type.

In this experiment (Figure 6), we define two variables input[10] and length,
which stores user data and data size respectively. The device code for func-
tions normal and malicious are the same as defined in Figure 5. In addition,
we define a struct unsafe, which contains an array buf[6] and a function pointer
of type normal. The init() (line 6) function is used to initialize the structure
defined above. The if statement (line 12) performs array-bounds check to pre-
vent out-of-bound access. Suppose that the address of the malicious function is
0x43800000438 that is assigned to input[10] as input data by a malicious user.
The variable length whose type is unsigned char is set to 0 by the attacker.
The if branch would be executed because the value of length (0) is smaller than
6. But, the value of length will be 255 after it is decremented by one, which
causes that the assignment at line 15 overflows the array buf and corrupt the
function pointer in struct unsafe. This experiment shows that struct and integers
can both be exploited in CUDA. In particular, both overflow and underflow of

10

integer arithmetic operation are possible, which exposes more opportunities for
the adversaries.

1 // ================== a snippet of the device code ==================

2 struct unsafe {

3 unsigned long buf[6];

4 void (*normal)();

5 };

6 __device__ __noinline__ void init(struct unsafe *data) {

7 data->normal = normal;

8 }

9 __global__ void test_kernel(unsigned long *input, unsigned char length) {

10 struct unsafe cu;

11 init(&cu);

12 if (length < 6) {

13 length = length - 1;

14 for (int i = 0; i < length; i++)

15 cu.buf[i] = input[i];

16 }

17 cu.normal();

18 }

Fig. 6. A snippet code of struct and integer vulnerabilities

Format string and exception handling vulnerabilities have been studied on
CPUs. However, our experiments show that they currently are not exploitable
on the GPU due to the limited support in CUDA. For format string, the format-
ted output is only supported by devices with compute capability 2.x and higher.
The in-kernel printf function behaves in a similar way to the counterpart in
the standard C-library. In essence, the string passed in as format is output to
a stream on the host, which makes it impossible to conduct malicious behavior
through printf to expose memory errors on the GPU. For the exception han-
dling in C++, it is only supported for the host code, but not the device code.
Therefore, we can not exploit the security issues of exception handling on CUDA
GPUs currently.

4 Discussions and Countermeasures

This section discusses potential countermeasures that can prevent or restrict
the impact of the described vulnerabilities. Basically, most discussed weaknesses
have limited impact on current GPUs if considered from the security point of
view. For example, stack overflow and in-kernel heap overflow can only corrupt
the memory data from within the same kernel. It is difficult to inject executable
code into a running kernel to change its control flow under the GPU program-
ming model. Of course, it may not be the case when more functionalities are
integrated to make developing GPU applications more like the CPU counter-
parts [6]. However, exploitable vulnerabilities for concurrent kernels pose real

11

and practical risks on GPUs, and effective defenses are required for a secure
GPU computing environment.

For security issues of the heap, calling the free() function, to a certain extent,
can offer necessary protection for heap overflows. When an attacker wants to ex-
ploit vulnerabilities to corrupt the heap memory that belongs to other threads
and has been freed, error message is reported and the application is terminated.
But this is hard to guarantee in environments where multiple kernels are run-
ning concurrently. The bounds check can be used to prevent overflow for both
the stack and heap, but the performance overhead is non-trivial if frequently
invoked at runtime. In addition, integer overflow may be leveraged to bypass the
bounds check. Therefore, a multifaceted solution is desired to provide full protec-
tion against these potential attacks. For example, standalone or hybrid dynamic
and static analysis approaches can be designed to detect memory and integer
overflows. Ideally, such protections should be implemented by the underlying
system such as the runtime system, compiler, or hardware of GPU platforms, as
many countermeasures against memory errors on CPUs, such as stack canaries,
address sanitizers, and address randomization, have been shown to be effective
and practical. Unfortunately, similar countermeasures are still missing on GPUs.

CUDA-MEMCHECK [7] can identify the source and cause of memory ac-
cess errors in GPU code, so it can detect all the heap related overflows in our
experiments. But it fails to identify the stack overflows. CUDA-MEMCHECK
is effective as a testing tool, but the runtime overhead makes it impractical to
be deployed in production environments. Most importantly, when multiple mu-
tually untrusted users share a GPU device, dynamic protection mechanisms are
indispensable. Thus, we argue that research endeavors should be devoted to the
design of efficient approaches to preventing security issues for GPUs.

A wide range of defensive techniques has been proposed to prevent or de-
tect buffer overflows on CPUs. Compiler-oriented techniques including canaries,
bounds checking, and tagging are especially useful in our context. Given that
CUDA’s backend is based on the LLVM framework and Clang already supports
buffer overflow detection (AddressSanitizer) through compiler options, we be-
lieve these existing tools can be leveraged to implement efficient defenses against
GPU-based overflow vulnerabilities.

5 Related Work

Recently, using GPUs in cloud environment has been shown to be beneficial.
The authors of [4] present a framework to enable applications executing within
virtual machines to transparently share one or more GPUs. Their approach aims
at energy efficiency and do not consider the security issues as discussed in this
work. For GPU-assisted database systems, the study in [8] shows that data in
GPU memory is retrievable by other processes by creating a memory dump of
the device memory. In [9], it is demonstrated feasible to recover user-visited web
pages in widely-used browsers such as Chromium and Firefox, because these
web browsers rely on GPUs to render web pages but do not scrub the con-

12

tent remained on GPU memory, leading to information leakage. The paper [10]
highlights possible information leakage of GPUs in virtualized and cloud envi-
ronments. They find that GPU’s global memory is zeroed only when ECC (Error
Correction Codes) is enabled, which poses high risk of private information expo-
sure when ECC is disabled or not available on GPUs. In [2], the authors present
a detailed analysis of information leakage in CUDA for multiple memory spaces
including the global memory, shared memory, and register. A real case study
is performed on a GPU-based AES encryption implementation to reveal the
vulnerability of leaking private keys.

However, all existing studies on GPU security have less considered vulner-
abilities that are more extensively studied on CPUs. The paper [5] presents a
preliminary study of buffer overflow vulnerabilities in CUDA, but the breadth
and depth are limited as compared to our work. For example, we put more em-
phasis on heap overflows between concurrently running kernels, which we believe
deserves special attentions in future research of securing shared GPU access.

6 Conclusion

In this paper, we have investigated the weakness of GPUs under malicious inten-
tions with a focus on the CUDA platform. We believe the experiments conducted
in this work are also applicable to other GPU frameworks such as OpenCL to
reveal the potential security vulnerabilities. Particularly, we have confirmed the
existence of stack and heap overflows through a diversified set of experiments,
and also uncovered how integer overflow can be used in overwriting a function
pointer in a struct. Other security issues such as format string and exception
handling are also investigated. Although direct exploitation of these potential
vulnerabilities is not feasible on current CUDA platform, care must be taken
when developing applications for future GPU platforms, because GPU program-
ming platforms are evolving with a fast pace. We hope this study can not only
disclose real security issues for GPUs but stimulate future research on this topic
especially for scenarios where GPU devices are shared among untrusted users.

Acknowledgment

This research was supported in part by the National Science Foundation of China
under grants 61272190, 61572179 and 61173166.

References

1. Shi, L., Chen, H., Sun, J., Li, K.: vcuda: Gpu-accelerated high-performance com-
puting in virtual machines. IEEE Trans. Comput. 61(6) (June 2012) 804–816

2. Pietro, R.D., Lombardi, F., Villani, A.: CUDA leaks: A detailed hack for CUDA
and a (partial) fix. ACM Trans. Embedded Comput. Syst. 15(1) (2016) 15

13

3. Pai, S., Thazhuthaveetil, M.J., Govindarajan, R.: Improving GPGPU concurrency
with elastic kernels. In: Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013. (2013)
407–418

4. Ravi, V.T., Becchi, M., Agrawal, G., Chakradhar, S.T.: Supporting GPU sharing
in cloud environments with a transparent runtime consolidation framework. In:
Proceedings of the 20th ACM International Symposium on High Performance Dis-
tributed Computing, HPDC 2011, San Jose, CA, USA, June 8-11, 2011. (2011)
217–228

5. Miele, A.: Buffer overflow vulnerabilities in CUDA: a preliminary analysis. J.
Computer Virology and Hacking Techniques 12(2) (2016) 113–120

6. Silberstein, M., Ford, B., Keidar, I., Witchel, E.: Gpufs: Integrating a file system
with gpus. In: Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ASPLOS
’13, ACM (2013) 485–498

7. NVIDIA: Cuda-memcheck. https://developer.nvidia.com/cuda-memcheck.
8. Breß, S., Kiltz, S., Schäler, M.: Forensics on GPU coprocessing in databases -

research challenges, first experiments, and countermeasures. In: Datenbanksysteme
für Business, Technologie und Web (BTW), - Workshopband, 15. Fachtagung des
GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 11.-15.3.2013
in Magdeburg, Germany. Proceedings. (2013) 115–129

9. Lee, S., Kim, Y., Kim, J., Kim, J.: Stealing webpages rendered on your browser
by exploiting GPU vulnerabilities. In: 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. (2014) 19–33

10. Maurice, C., Neumann, C., Heen, O., Francillon, A.: Confidentiality issues on a
GPU in a virtualized environment. In: Financial Cryptography and Data Security
- 18th International Conference, FC 2014, Christ Church, Barbados, March 3-7,
2014, Revised Selected Papers. (2014) 119–135

https://developer.nvidia.com/cuda-memcheck

	A Study of Overflow Vulnerabilities on GPUs

