
HAL Id: hal-01647720
https://inria.hal.science/hal-01647720

Submitted on 24 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Endev: Declarative Prototyping with Data
Filip Kis, Cristian Bogdan

To cite this version:
Filip Kis, Cristian Bogdan. Endev: Declarative Prototyping with Data. 6th International Conference
on Human-Centred Software Engineering (HCSE) / 8th International Conference on Human Error,
Safety, and System Development (HESSD), Aug 2016, Stockholm, Sweden. pp.359-365, �10.1007/978-
3-319-44902-9_23�. �hal-01647720�

https://inria.hal.science/hal-01647720
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Endev: Declarative Prototyping with Data

Filip Kis and Cristian Bogdan

KTH Royal Institute of Technology, Stockholm, Sweden
fkis@kth.se, cristi@kth.se

Abstract. The trend of Open Data and Internet-of-Things initiatives
contribute to the ever growing amount of data available through web
APIs. While building web applications has become easier with recent ad-
vancement in web development technologies and proliferation of JavaScript
frameworks, the access to data from various APIs and data stores still
poses certain challenges. It often requires complex setup and advanced
programming skills that hinder the rapid prototyping efforts. Therefore,
we propose Endev, a declarative framework for prototyping applications
that is built on modern web technologies and supports building modern
web applications, that utilize the vast amount of available data, without
the need for setup or write complex JavaScript code.

Keywords: UI modeling, GUI generation, interactive prototypes, dis-
course model, query annotations

1 Introduction

The Open Data and the Internet-of-Things trends are producing more and more
data that users are expected to have access to via GUIs of interactive appli-
cations. At the same time building such data-centric applications requires less
effort than ever, for skilled developers, thanks to cloud services, popularization of
scripting development technologies (e.g. JavaScript, Python) and the omnipres-
ence of web1. However, the setup and advanced programming skills required to
build interactive prototypes hinders the rapid prototyping efforts.

Prototyping is the key activity in human-centered software engineering pro-
cess as it allows designers to explore design alternatives and include end-users
early on in the process. Various prototyping methods, from sketching to using
dedicated prototyping tools, are used in practice, however, the research shows
that designers desire better tools that would allow them to prototype the flow of
data and advanced interaction [6,9]. Furthermore, a survey of 4000 designers [3]
shows that HTML is preferred prototyping tool over tools specifically designed
for prototyping (e.g. InVisio) or even general design tools (e.g. Photoshop, In-
Design).

Building on these research results, and with the aim to support rapid pro-
totyping of data-centric applications, we demonstrate Endev [7] – a declarative

1 Web is becoming the platform of choice for many applications as it is easier to
maintain (no installs or updates) compared to desktop or mobile applications.

prototyping solutions. The declarative HTML annotations allow users to proto-
type interactions with, and connection to, data. Endev is developed as JavaScript
library and utilizes cloud services to support data storage and API access with-
out the need for server setup or dedicate development environments.

2 Related Work

Declarative languages have played an important role in UI development and
especially in web design where HTML and CSS are dominating as markup tech-
nologies for defining UI layout. Modern client-side web development frameworks
(e.g. Angular [2], Ember [1]) use declarative data-binding constraints that pro-
vide more dynamic features, such as keeping HTML elements automatically in
synchronization with the application data values, though they still require sig-
nificant amount of non-declarative code to access the backend or the API data.

Quilt [4] is a recent solution that provides HTML annotations to connect the
interface to a spreadsheet that serves as the datastore. Quilt allows both data
read and write and keeps the interface in synchronization with the spreadsheet
data. Another solution based on spreadsheets as the datastore is Gneiss [5].
Unlike Quilt, Gneiss is a live programming mashup environment where, instead
of using HTML annotations, the users can drag and drop widgets to the page and
connect them with spreadsheet values. A key feature of Gneiss is the support
for any REST2 web service returning JSON3 data which can be interactively
combined in the spreadsheet before their data is used in the interface. The main
drawback for Gneiss compared to Endev is that the users are limited to working
with UI widgets existing in the system, which significantly reduces the design
possibilities.

XFormsDB [10] is a declarative data binding solution that binds to server-side
data. It is based on the XForms4, a W3C Recommendation, that was designed to
be the next generation of HTML forms. XFormsDB depends on having a complex
server setup and supports only XML based databases, thus it is not ideal for
quick prototyping. Furthermore, even though XForms are relatively old-standard
(first version published in 2007), none of the major browsers currently natively
supports it.

3 Setup-free prototyping with Endev

During prototyping, it is often important to be able to share the prototype with
other stakeholders to solicit feedback. When the prototype is interactive, includes
data, or requires a complex setup, it becomes hard to share it beyond screen-
shots or video recordings that capture only fixed path interaction. However,

2 Representational State Transfer protocol - most widely used protocol for web service
APIs

3 JavaScript Object Notation - data format often used by exchanging data through
web services

4 https://www.w3.org/MarkUp/Forms/

Endev addresses these challenge by utilizing modern web technologies and cloud
services.

With Endev the users can prototype web applications that provide data
storage and other features that contemporary users expect (e.g. drag-and-drop
interaction, real-time data synchronization) by writing HTML and annotating
it with declarative expressions. Such prototypes can be executed in any browser,
which makes them easily sharable. In other words, the prototype can be sent by
email, shared over Dropbox or put on-line in one of the code playgrounds (e.g.
CodePen5, JsFiddle6) for easy access and modification.

We will use an example Wish List app (shown in Figure 1) to demonstrate
how a prototype can be built with Endev. The goal of the Wish List app is to give
the users possibility to setup their wish list (e.g. for a birthday or Christmas).
Each item on the list can optionally include a picture that the users can retrieve
by searching through public pictures on Flickr.

Fig. 1. The Wish List prototype showing the items on the list (with name and op-
tionally an image) on the left (Current list) with possibility to add a new item on the
right (Add item to the list). At the top right the users can type the name of the new
item, while in the bottom right they can search and select a picture that should be
associated to the item.

The following sections will describe how the two main challenges (storing the
wish list data and getting the pictures from Flickr) are achieved through pro-
totyping with Endev. The more comprehensive and interactive tutorial covering
the main features of Endev is available on-line7.

5 http://codepen.io/
6 https://jsfiddle.net/
7 http://www.endevjs.org/tutorial

4 On-the-fly creation of own data

Storing the data is typically not a concern that is addressed during UI prototyp-
ing. The designers normally use dummy data that is either not possible to edit
or, at a more advanced stage of the prototyping, the edits are temporary (e.g.
refresh of the page or reload of the app reset the data). However, there is a value
in working with the data that is stored. For instance, when testing with users
they get to experience the flow of the application by experiencing the interaction
with the data. Furthermore, if there is a need to quickly modify the design, the
user-entered data is still there and thus makes the comparison of alternatives
easier to compare.

Listing 1.1 shows the HTML code with Endev annotations needed to list the
items from the wish list and add a new item to the list. The code is the same code
used for the application shown in Figure 1 without the additional layout-only
HTML code.

Current list
<div data-from="firebase:WishList item" data-auto-update="true">

<input data-value="item.name"/>

</div>

Add item to list
<input data-value="newItem.name"/>

<button data-insert-into="firebase:WishList"

data-click="insert ({ name:newItem.name ,image:newItem.image })">
Add

</button>

Listing 1.1. Endev code of Wish List app (see Figure 1) for listing the items in the
wish list and adding a new item to the list.

In this example data-from and data-insert-into annotations are used to
connect to the data storage for which we use Firebase8 cloud storage. Firebase is
a document-based storage, therefore, there is no need to define the data structure
before hand. Instead, data is stored as-is and on-the-fly.

We have seen, in the related work, some solutions use spreadsheets to al-
low building applications quickly without the need for complex database setup.
However, document-based data storage provides more complex data objects com-
pared to spreadsheets thus allowing for more complex use-cases. Furthermore,
Firebase is just one of several data providers offered by Endev and others (e.g.
spreadsheet storage) can be added easily.

Other annotations like data-value and data-click serve to bind the values
to some UI elements or user actions respectively. Finally, the data-auto-update
annotation enables automatic updates of the values in the Current list, in other
words, as soon as the users modify any of the items in the list the changes are
saved automatically.

8 https://firebase.google.com/

5 Seamless integration of API data

The second challenge of the Wish List app is to integrate with Flickr search
API so that an image can be associated with the wish list item. Traditionally
such feature would be prototyped with dummy data instead of having a real
API integration. However, with more and more web services generating data
and applications that work with them it is important that prototyping includes
working with real API data. Web service data, compared to proprietary domain-
data, comes with certain challenges (e.g. quality, reliability, latency) that are
often out of control of application developers. For instance, the end-users or
designers might expect the results from API to be the same as when they use the
actual service where the data comes from. While, in reality, the service provider
might have different algorithms for these two cases. Experiencing the differences
early on in the prototyping allows for better management of expectations and
thus better design.

Accessing APIs requires certain amount of complex and error-prone code [8]
that needlessly increases the prototyping effort. Endev addresses this by provid-
ing seamless mechanism for reading web service data that is seen by the users as
just another data provider. In other words, the difference between reading their
own data (as seen in Listing 1.1) and the data coming from an API is in the
string that defines the data source (e.g. data-from annotation).

Listing that follows shows how the users can read data from Flickr API based
on the inputed search term.

Search for an image
<input data-value="searchTerm"/>
<div data-from="yql:flickr.photos.search result"

data-where="result.text= searchTerm AND
result.api_key = '_API_KEY_OMITTED_ '">

<div data-from="result.photo photo">
<img src="http://farm{{ photo.farm }}. staticflickr.com/{{ photo.server }}/{{

photo.id}}_{{photo.secret }}.jpg"
data-insert-into="firebase:PhotoCollection"
data-click="newItem.image = '_LONG_URL_OMITTED_ '">

<small data-from="yql:flickr.people.info2 people"
data-where="people.user_id = photo.owner AND

people.api_key = '_API_KEY_OMITTED_ '">
by {{ people.person.username }}

</small>
</div>

</div>

Listing 1.2. Endev code of Wish List app (see Figure 1) for searching public images
on Flickr and, when one image is clicked, adding it to the new item.

The first data-from has similar meaning as in Listing 1.1. However, instead
of getting data from Firebase, Endev now uses Yahoo Query Language platform9

to directly access the Flickr search API. Since the data returned by the API is
hierarchical (i.e. contains an item called photo that contains an array of actual
photo results) the second data-from is used to access each item in the array.
The final data-from is used to access another Flickr API which returns the

9 https://developer.yahoo.com/yql/

information about the owners of the photos based on their ids. Finally, the
data-click sets the value of the image of the newItem which was used in Listing
1.1 when creating the new item for the list.

6 Behind the scenes

Endev is implemented as JavaScript framework with architecture shown in Fig-
ure 2. Endev Core is responsible for caching (on the client-side) and querying the
data from one of the Endev Providers which, in turn, access the data and keep
it in sync with the data storage. Endev Annotations are built on top of Anuglar,
therefore, Endev supports evolutionary prototyping as the prototype can evolve
beyond the capabilities provided by Endev. Thus, Endev can be used to either
quickly prototype a completely new application or just a new feature in already
existing applications. In both cases the prototype can evolve into a more stable
system without the need of re-implementing the whole interface from scratch.

Fig. 2. Endev architecture

7 Conclusion and future work

In this paper we demonstrated Endev, the tool for prototyping interactive ap-
plications with data. Endev enables prototyping with real data, created by the
users or coming from a web service, through declarative annotations without
the need for complex setup or server orchestration. The prototypes are simple
HTML files that can easily be shared among all the stakeholders and require
only a browser to be executed.

While the declarative annotations employed by Endev provide a uniform
way of accessing data, there is a challenge in finding and understanding the
growing amount of web service data. Endev currently supports a basic way of
exploring the data returned from an API, however, in the future we would like to
explore how to better support the discovery and understanding of APIs during
prototyping.

References

1. Ember.js - A framework for creating ambitious web ... (2011), http://emberjs.com/
2. AngularJS - Superheroic JavaScript MVW Framework (2014),

https://angularjs.org/
3. The Tools Designers Are Using Today (2015), http://tools.subtraction.com/
4. Benson, E., Zhang, A.X., Karger, D.R.: Spreadsheet driven web applications. In:

Proceedings of the 27th annual ACM symposium on User interface software and
technology (UIST). pp. 97–106. ACM Press, New York, New York, USA (2014)

5. Chang, K.S.P., Myers, B.A.: Creating Interactive Web Data Applications with
Spreadsheets. In: ACM symposium on User interface software and technology
(UIST). pp. 87–96. ACM Press, New York, New York, USA (2014)

6. Grigoreanu, V., Fernandez, R., Inkpen, K., Robertson, G.: What designers want:
Needs of interactive application designers. In: Visual Languages and Human-
Centric Computing, 2009. VL/HCC 2009. IEEE Symposium on. pp. 139–146 (sep
2009)

7. Kis, F., Bogdan, C.: Declarative Setup-free Web Application Prototyping Combin-
ing Local and Cloud Datastores. In: 2016 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE Computer Society (2016)

8. Myers, B.A.: Separating application code from toolkits. In: Proceedings of the 4th
annual ACM symposium on User interface software and technology (UIST). pp.
211–220. ACM Press, New York, New York, USA (1991)

9. Myers, B.A., Park, S.Y., Nakano, Y., Mueller, G., Ko, A.J.: How designers design
and program interactive behaviors. In: 2008 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). pp. 177–184. IEEE Computer Society,
Washington, DC, USA (2008)

10. Vuorimaa, P., Laine, M., Litvinova, E., Shestakov, D.: Leveraging declarative lan-
guages in web application development. World Wide Web 19(4), 519—-543 (2016)

